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ABSTRACT. We use transfinite induction to show that if L is an epimorphism of a
vector space V and maps a vector subspace W of V into a proper subspace of itself,
then there is a smallest subspace E of V containing W such that L(E) = E (or a minimal
space of surjectivity or solvability) and we give examples where there are infinitely
many distinct minimal spaces of solvability. We produce an example showing that if L1
and L2 are two epimorphisms of a vector space V which are endomorphisms of a proper
subspace W of V such that Ll(w) n LZ(H) is a proper subspace of W, then there may not
exist a smallest subspace E of V containing W such that LI(E) =E = L2(E). While no
nonconstant linear partial differential operator maps the field of meromorphic
functions onto itself, we construct a locally convex topological vector space of
formal power series containing the meromorphic functions such that every linear
partial differential operator with constant coefficients maps this space linearly and
continuously onto itself. Furthermore, we show that algebraically there is for every
linear partial differential operator P(D) with constant coefficients a smallest

extension E of the meromorphic functions in n complex variables, where

D= (ggz, veey 5%;), with the property that for every f in E, there is a u in E such

that P(D)u=f.
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of partial differential equations.
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1.  INTRODUCTION.

A straightforward argument using transfinite induction and the axiom of choice
will show that if L is a linear transformation of the vector space V over the field F
onto itself, and W is a subspace of V such that L(W) is a proper subset of W, then
there is a subspace E of V containing W such that L(E) = E and such that if F is any
proper subspace of E containing W, then L(F) # F. That is to say there is a smallest
extension E of W in which the inhomogeneous equation

Lu = f (1.1)

has a solution u in E for every f in E.

In section two of this paper we show that there is a vector space V, a subspace W
of V, a pair of 1linear transformations L1 and L2 of V onto itself such that
Ll(w) n LZ(H) is a proper subspace of W and such that if E is any vector space
containing W and contained in V such that Ll(E) = L2(E) = E, then there is also a
proper subspace F of E containing W such that LI(F) = LZ(F) = F. Thus the minimal
space of surjectivity question for families of mappings is not solvable.

If C is a category whose objects are sets, possibly equipped with some structure,
and whose morphisms are mappings between the sets, which preserve the structure, then
we can define the minimal space of surjectivity question as follows. Let C be such a
category. Let V be an object in C and let W be a subobject of V, a subset of V which
has the structure (if any) induced by that of V. Let L be a mapping that is an
epimorphism of V in the sense that (e.g. Northcott [1], chapter III) V is the unique
object in the category of vector spaces and linear transformations such that IVL and
le are defined where Iv is the identity mapping of V and L(V) = V. Further assume
that if U is any subobject of V, then the restriction of L to U defines a morphism of
the category whose range can be any subobject of V containing U. Then we say E is a
solution of the minimal space of surjectivity problem defined by the triple (V,W,L)
satisfying the preceding conditions if L(E) = E, L(W) is a proper subspace of W, and
if F is any subspace of E containing W, then L(F) # F. If there is a triple for which
there is no solution to the minimal space of surjectivity problem we say that for the
category the MSS question has a negative answer. If there is a triple (V,W,L)
satisfying the above conditions for which the MSS problem does not have a unique
answer, we say that there is nonuniqueness for the MSS question for the category.

In section 3 of this paper we show that the MSS question has a positive answer
for the category of vector spaces and linear transformations, but in section 4 we show
that we have nonuniqueness in this category.

In section 5 of this paper we show, for every nonzero linear partial differential
operator with constant coefficients, the existence of a smallest extension of the
meromorphic functions on which the operator is an epimorphism. We do this by
exhibiting a locally convex topolgoical vector space containing the meromorphic
functions on which every linear partial differential operator is an epimorphism and
applying the results of the previous sections.
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2. NONEXISTENCE OF A MSS FOR SOME FAMILIES OF EPIMORPHISMS.

It can be shown that if V is a vector space, W is a subspace of V, and L is an
epimorphism of V such that L(W) is a proper subset of W, then there is a subspace E of
V containing W which is minimal with respect to surjectivity in the sense that
L(E) = E, but if U is any proper subspace of E containing W, then L(U) does not
contain U. It seems natural to ask the same question for families of Tlinear
transformations.

MSS Question for Families of Mappings. Let V be a vector space. Let W be a
subspace of V. Let F be a family of epimorphisms of V such that L(W)C W for all L in
Fand L(W) # W for at least one L in F. Does there exist a subspace E of V containing
W such that L(E) = E for every L in F having the additional property that if U is any
subspace of E containing W, then L(U) # U for some L in F if U # E.

The following theorem shows that the MSS question for families of linear
transformations fails in general to have a positive answer even if F contains only two
mappings.

Theorem 2.1. There exists a vector space V, two epimorphisms L1 and L2 of V, a
subspace W of V such that Lk(N) c W for k =1, 2, such that Ll(w) n LZ(W) is a proper
subset of W, and having the additional property that if E is any subspace of V
containing W such that Lk(E) = E for k = 1, 2 then there is a proper subspace U of E
containing W such that Lk(U) =Ufork=1, 2.

Proof of Theorem 2.1. Let N denote the set of nonnegative integers. Let Q
denote the set of all nonzero integer powers of the prime q. Let F denote an
arbitrary field. For convenience we introduce the following.

Definition 2.1. If S is a set without a topology and ¥: S ~ F is a mapping from
the set S into a field F, then the support of ¥ is defined by the rule,

supp(¥) = {j e S:¥(j) # 0} .

We Tet Vo denote the vector space of mappings from {0} into the field F. For
every positive integer k we let Vk denote the vector space of mappings from Q into F
whose support is a finite subset of Q. Let P : Vk + Vk denote the projector onto the
space of functions whose supports are subsets of

N ={q" :n=1,2,3, ...} . (2.1)

q
Let T : P(Vk) -+ P(Vk) be a linear transformation defined by the rule

TPy, ) (q72") = Py, (a™") (2.2)
and

T(pr,) (a" 21y = 0 (2.3)

for all positive integers n and all functions ¥y in Vk.
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-n -l

Lemma 2.1. If ¥ is a function in P(Vk) whose support is precisely {¢ “, q -,

-n. -2n -2n -2n
...y 0 '}, then the support of Ty is exactly {q » q s +.e3 q

Proof of Lemma 2.1. Suppose q-2n were in the support of T¥. Then by definition

y.

n must be one of {nl, Nos wees nr}.
As a corollary of Lemma 2.1 we observe that Ker(T) is trivial.
Let P : Vk -> Vk denote the projector defined by the rule

”
P¥(a®™) = ¥(a"" (2.4)

for all positive integers n, and
Py(q™ =0 (2.5)

if m is an integer that is not equal to 2n for some positive integer n.

Let B : V1 +> Vo be defined by the rule,
BY = ¢, (2.6)
where
o(0) =T ¥(a™™h . (2.7)
k=0
Define a mapping,
S:V (I-P)Vk s (2.8)

by the rule,

s¥(q?") = ¥(q") ,
2"'1)

(2.9)

s¥(q ¥(q™") ,

and
s¥(q™™ =0 (2.10)

for all positive integers n.
Let V be the vector space over F defined to be the set of all
(“’0’ wl’ LI ) \yk’ oo.)
where ¥ is a member of Vk for all nonnegative integers k and ¥ is identically zero
for all but a finite number of nonnegative integers k, and let w denote the space of

W= (VO, 05 -ees 0, ...) (2.11)
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where ¥, is a member of V, and ¢, is a member of ﬁ(Vl) N Ker(B) where
P=1-P-P. (2.12)

Define a mapping L1 : V» V by the rule,
Ly(¥gatyseeestoens) = (B(PYy), TPy, + Pwl Py TP+ Py by ) (2.13)

Define a mapping L2:V + V by the rule

\ =
Lz(wo,wl,wz,...,wn,..., (wo,Svl ty, ,...,Swn + vn+l,...) (2.14)

Lemma 2.2. Lk:V + V is an_epimorphism for k = 1,2, and LZ:V + V is an

isomorphism.

Proof. That each L, isan epimorphism is obvious since Vo is one dimensional and
¥ 41 covers the part of the nth coordinate space not covered by TPWn + ?Wn or Swn,
respectively. Also if each Svn + Wn+1 is identically zero this implies that each v
is identically zero, if ¥ ., =0, since S:V - (I-P)Vn is an isomorphism.

Now let us construct a space of surjectivity, E, for the operators L1 and L2

which contains W. Let (WO,O,O,...) denote a nonzero member of W. Then there exists a
vector

($r3¥q5.0.,¥ ,0,0,...) =V inV
0°'1 n

such that

Lyv = (WO,O,...,O,...) .

Since (-@0,0,...,0,...) js in W and E is a vector space we conclude that

v=(03132p.qwm0&,u.), (2.15)

it in E and Lyv = LIV. Now suppose that n > 1., Then the nth entry of
Ll(O,Wl,...,Yn,0,0,...) is TP\Pn + Fwn. Since T:PVn + PVn is a monomorphism by Lemma
2.1 we conclude that Py and Pvn are identically zero. Now we know that Pv ., +
Pwn-l + ¥, is identically zero. Thus, the fact that (P+?)(Pwn_1+Pwn+?n) is
identically zero implies that Pwn-l + Pwn-l is identically zero. Hence, v is
identically zero. Since n represents an arbitrary integer larger than 2, we conclude
that the vector v defined in (2.15) is of the form

v = (0,?1,0,0,...)

where Pwl and Pwl are identically zero. We conclude that

an-l
supp(wl) = {q t k=1,2,...,r} (2.16)

where 0 < NP <My < cee €M < Mgy < e <N, Presumably ¥ is not identically zero
and, consequently, ¥, ¢ Ker(B). Let supp(Wl) denote the support of ¥;. Then we



650 D.K. COHOON

observe that sz e E and that there is some vq in E such that L2V1 =v = (0,?1,0,...).
We observe that L2 is a one-to-one mapping. Hence Lél({v}) contains only a single

element. Observe that if the support of ¥y is defined by (2.16), then

;1) = (0,6,0,0,...,0,...)
and
"k

squ(01) = {q tk=1,2,...,r} .

Now we observe that since Pol =9 that

L;'v1 = (o,T"ol,o,...,o,...) .

Notice that the support of T"¢l is given by
-2"n, -2"n -2"n
supp(T"ol) =tq Ya .0 .

Now let us look at

n - n
LdO{ToPO”.HOV.J -(0§T¢1ﬁ,”.&,“.).

Observe that the support of ST"@1 is given by

22™, -1 22" -1
supp(ST"ol) = {q 1 seeesq L

Observe that

n -
B(ST ¢1) =¥ -

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

Thus, we can say that the vector space generated by the elements we know to be in E

has the property that

We LI(E) n LZ(E) .

Indeed

Ll(O,ST"ol,O,...,O,...) = (90:0,0,...,0,...) .

Now the support of S"'ST%1 is given by

Zm(Z-Z"nl-l) 2“(2-2"nr-1)
}

supp(s"STe;) = (q seeesd

Now there must be a vector w in E of the form

W= (¢0!¢1’¢29---9¢n,...)

(2.23)

(2.24)
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such that

LW = (0,9,,0,...,0,...) .

Since W is a vector space and (-¢0,0,0,...,0,...) is in W we may assume that w is
actually of the form (0,¢1,¢2,...,¢n,...), where 41 € Ker(B). But ) € Ker(B) and
(P+5)¢1 = 0 implies that

(0,“"1,0,...,0,...) 4 w .

Thus, we may assume that

W= (0,0,0,,. 0000 ,.00) .

We can show that if n > 2, that ¢n is identically zero. Thus, we may assume that

W= (0,0,¢2,0,...,0,...) .

Since (P+T°)¢2 = 0 we deduce that ¢, = ¥,. Hence, we deduce that

{(0,?1,0,...,0,...), (O,O,WI,O,...,0,...),...}

are all contained in E. Thus, the set of functions in E whose coordinate functions
are in P(Ker(B)) or else are modulo a function in P(Ker(B)) a function with support
sufficiently far out forms a proper subspace of E which is mapped onto itself by L1
and L2.
3.  THE MINIMAL SPACE OF SURJECTIVITY PROBLEM FOR VECTOR

SPACES AND LINEAR TRANSFORMATIONS

Let L be a linear transformation of a vector space V onto itself, and let W be a
subspace of V such that L(W) is a proper subspace of W. The solvability of the MSS
problem for the category of vector spaces and linear transformations is expressed in
the following theorem.

Theorem 3.1. Let L, V, and W be as defined in the introduction to this section.
Then there is a subspace E of V containing W such that L(E) = E and such that if E1 is
a_proper subspace of E containing W, then L(El) # El.

Proof of Theorem 3.1. Let wl be a subspace of W such that W = L(W) @ Nl. Let
B(Nl) be a bases for Hl. Let El(w) be a set consisting of precisely one member from
each of the sets in the family

(wlw) :we B(W)} (3.1)

The axiom of choice tells us that this set exists. We need the following result.
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Lemma 3.1. Let L : V> V be a linear transformation of V onto itself. Let T be

a linearly independent subset of V. If S is a set consisting of precisely one member

from each of the sets in the family

{L'l(t) tte T} (3.2)

then ¢ is a linearly independent set.
Proof of Lemma 3.1. Let Vis sees Vo be an arbitrary finite subset of S. Let Cys

cees Cp be scalars. Then CQVp * etV = 0 implies CIL(VI) oL+ cmL(vm) = 0.
But {L(vl),...,L(vm)} is an m-element subset of T and is, therefore, linearly
independent. Hence, €p =€) = .. =Cp = 0.

Lemma 3.2. Let L, T, and S be as defined in Lemma 3.1. If [T] and [S] denote
the vector spaces generated by T and S, respectively, and if B([S]) is a basis for
[S], then L(B[S] is a bases for [T].

Proof of Lemma 3.2. Let {ul,...,um} be an m-element subset of B([S]). MWrite

Yj * .?El A,k = Leem) (3:3)

where {vl,vz,...,vp] is a p-element subset of 5 and the matrix

3(1,1) - ¥(1,m)
A= : : (3.4)

(p,1) " ¥(p,m)

is a cne-to-one linear transformation from m-dimensional space to p-dimensional space.
Then L is a Tinear implies

p
L(uj) = k; a(k,j)L(vk) (3 =1,....,m) . (3.5)
Now suppose that we had

f:l ch(uJ-) =0 (3.6)
J.‘.‘

Then interchanging summation signs we deduce from combining 3.6 and 3.5 that

p m
kzl ('21 3k j)cj) L(vk) =0 (3.7)
= j= ’
But Lemma 3.1 implies that
m
£ s .0

for k = 1,2,...,p. But the fact that the matrix A defined by 3.4 is one-to-one
implies that
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Hence, the fact that (3.6) implies (3.9) for all m-element subsets {upseensupd of
B([S]) tells us that L(B[S]) is a Tlinearly independent set. To see that L(B[S])
gererates [T] we let L(v) denote an arbitrary element of T, where v ¢ S. Then there
exist Ups eees U in B[S] such that

Cup + .ot cu =V (3.10)
By linearity of L and (3.10) we see that L(v) is a linear combination of a finite
number of elements in L(B[S]).

Let U1 W and let E1 be the vector space generated by E(U ) and Ul’ where E(U )
is an image of the choice function on the family of sets {L~ (t) te B(N )}. Then we
may define

E, =y, @ [E(Ul)]

where [S] denotes the vector space generated by S for all subsets S of the vector
-space V.

Lemma 3.3. Suppose L is a linear transformation of V into itself and U1 is a
subspace of V such that L(Ul) is a proper subspace of Ul' Suppose E(Ul) is_the set
obtained by taking one member from each set in the family

wale) :te B(W,)) (3.11)

where U1 = L(Ul) ® ”1' Define

E =Y ® [E(Ul)] . (3.12)

Then E1 is a proper subspace of E1 containing Ul implies that L(El) does not contain
1]
1.

Proof of Lemma 3.3. Let mn be a projection of E1 onto [E(Ul)]’ Then nl(El) must
be a proper subspace of [E(Ul)] since the definition of direct sum and the fact that

E1 is a proper subspace of E1 containing U1 implies

1 _ 1

E* = U1 ] nl(E ) (3.13)
We denote by B (U } a basis for [E(U )] which contains B(wl(E )), a basws for "I(E ).
By Lemma 3.2 we know that L(E (U )) is a basis for Nl Since L (E ) 1s a proper

subspace of [E(U )], it f011ows that B(nl(E )) must be a proper subset of £l (U ). For
if B(nl(El)) were equal to £l (U ), then we would have

1
m(E h - [B(wl(E )1 = [E°(U))] = [E(u))] (3.14)

which contradicts the supposition that nl(El) is a proper subspace of [E(Ul)]' Thus,
(3.14) and the definition of ™ imply that
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L(EY) = L(u)) @ Ly (EN), (3.15)

and consequent]y that L(E ) is a proper subspace L(U )@ w = ;.

Hence, L(E ) does not contain U We use transﬁmte induction to construct for
every ordinal o less thané + 1, where 6 is the ordinality of a basis for V, a set Em
which is minimal with respect to the property that

Um=w&li(U{EY :y<a}CL(Ea) (3.16)
and
U{F.Y 1y <al}c Ea (3.17)
in the sense that if
W celck (3.18)
[ f [¢3

then L(El) does not contain Ua. We have constructed Ea fora = 1. Thus, we suppose
that Eu has been constructed for all 8 < a. Then define Ua as in (3.16). It is clear
that Uu is a vector space, since W and each EY is a vector space and Y17, implies
FylC EYZ. Let Na be a subspace of V such that

U =L(u)®w. (3.19)

Let B(wa) be a basis for Ha. Let E’(Ua) be defined to be the set obtained by taking
one element from each set in the family

(whw) s we B ) . (3.20)

We let E be the vector space generated by U and E(U ). Then the Lemnas 3.1, 3.2 and

the prevmus argument show that if gl sat1sf1es (3. 18), then L(E ) # El. Since

L(V) =V, it is clear that there is some ordinal e such that L(Ea ) = Eu . But the
0 0

ordinals are well ordered. Thus, we may suppose

B =minly : L(Ey) = Ey} (3.21)

Indeed, it is easy to see that B is the first infinite ordinal.

The following Temma gives important information about the space EB.

Lemma 3.4. If g is defined by (3.21), then U, = E;.

Proof of Lemma 3.4. Suppose UB # EB Then L(UB) would be a proper subspace of
U,. It is easy to show by transfinite induction that L(UG)C U for every ordinal a.

B
Then we can write

UB = L(UB) ® W, (3.22)



MINIMAL SPACE OF SURJECTIVITY QUESTIONS 655
Then we would let B(NB) be a basis for NB and let E(UB) be the set consisting of one
member from each set in the family,

(lw) s we B (W) (3.23)

Then EB is the vector space generated UB and E(UB) and clearly L(EB) c UB‘ This
contradicts the supposition that L(EB) = E.
Lemma 3.5. For every ordinal « less thané + 1 let

U = {Ey:y<a} , (3.24)

a
let wa be a subspace of V such that

U = L(Uu) & W, (3.25)

1_e_§B(Na) be a basis for wu, litE(Uu) be a set consisting of precisely one element
from each set in the family

wlw) cwer ), (3.26)

and let

LA V- [E(Ua)] (3.27)

be a projector of V onto the vector space [E(Ua)] generated sz(Ua). Then

EU)Iny =0 (3.28)

and for every vector v in V

v=w+2na(v) (1<sa<s +1), (3.29)

where w is a member of W.

Proof of Lemma 3.5. To prove (3.28) note that if v ¢ [E(Ua)] nou then
L(v) € L(Ua) n L {0}. Thus, v = C¥p + - oV for some elements v , ..., v in
E(Ua) and some scalars Cys wens Cpe But {L(vl),...,L(vm)} is an m-element subset of
B(Na), a basis for wa, and is, therefore, a linearly independent set. Hence, L(v) = 0
jmplies v = 0. In other words (3.28) is valid. Next we show that o < B implies

na(V)ﬂ nB(V) ={0}. Now

[£(y)] <E <y, (3.30)

and by (3.28)

Ug " [E(U,)] = (0} (3.31)
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Combining (3.30) and (3.31) we deduce that [E(Ua)] n [E(UB)] = {0} if a and B are
ordinals anda < 8. Then (3.29) is an immediate consequence of the fact that

=We (83 [r (U)](1<a <6 +1)) (3.32)

Proof of Theorem 3.1. Let E1 be a proper subset of EB which contains W, where B
is defined by (3.21). Then £, E' = €' # .. Thus, we deduce that

ty : eln E AE)F4 (3.33)

The well ordering property and (3.33) enable us to define

1

= mi : n . .
o =minly : E EY # Ey} (3.34)

From the fact thaty < o implies E1 n EY = EY we deduce that
un€el=uy (3.35)
o3 a

or that U is a subspace of £l ifa is defined by (3.34). Thus, Lemma 3.5 implies
that

(0% = (e) = (15 )(EY

Y2a

where %a is the projection of V onto Ua . Furthermore,
eley o (15 )(h (3.36)
o 1 :

But el e £l implies there is a u el and a v (I-Ea)(El) such that

el =y +v
a a
But e1 -u e E1 implies v, € El. Thus, from (3.36) we deduce that

el =u e ((15)(ehn el . (3.37)

In order that L(El) = E1 we must have in particular that UuC L(El). But

= L(y) e L(E(U)D) (3.38)

Now (I-'rr )(E ))n E1 is a proper subspace of (I-w )J(V). We want to show that L(El)
could not possibly contain U . Suppose L(E ) d1d contain U . Then L(E )n u, =
L(u)e 'Wa =U. LetB(Wa) be a basis for wa ThenB(N )C L(E ). Then each set in
the family

1

wlwn el s we B(W ) (3.39)
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must be nonempty. Let E (U ) be a set consisting of one member from each set in the
family (3.39). Then [E (U )] c E c E < V. Let y be an ordinal number larger than
a, Therefore L([E (U ) C U and L([E(UY)]) n U = {0}. Thus, [E(UY)] n [El(Ua)] =
{0} for all ordinals y > a. Thus, E1 c E 1mp11es that

[2'(u)]c E e B =€ @ (0L [ (U)] a <y <8) (3.40)
Thus, v € [El(Ua)] implies
Ve o+ (E:vy, a<y<B). (3.41)
L(v-vu) € Ua and
L(Ozvy,a <y<B) =0 (3.42)
or else
L(OZ v <y < g) £ Uo. (3.43)

But since L(v-va) € Ua, it follows that (3.43) is impossible. Hence, L(v-va) € Uu.
But L is one-to-one on each of the subspaces [z (U )] and is consequently one-to-one
on their direct sum. Thus, v. = 0 for all ordinals y such that o« < y < 8, where the
v, are defined by (3.41). Hence, v = Vo This implies that [El(Ua)] is a subspace of
Ea and since [E (U )] n U = {0} is consequently a subspace of [E(UQ)]. But this
would imply that

1 1
U, ® [z (Ua)] =E°N E,

is a subspace of Ec with the property that Uu‘: L(Uu & [El(Ua)]). This implies by
Lemma 3.2 that

1 -
U e [z(u)l=u e [z(u)] .
Hence, E1 n Ea = Ea, which contradicts (3.34).

4, NONUNIQUENESS OF THE MSS PROBLEM FOR THE CATEGORY

OF VECTOR SPACES AND LINEAR TRANSFORMATIONS

In this section we prove that if V is a vector space with a subspace W and L is
an epimorphism of V which maps W into a proper subspace of itself, then there does not
necessarily exist a unique subspace E of V containing W such that L(E) = E and L(El) #
E1 for all proper subspaces E1 of E containing W. We also define the semigroup
s(V, L, W) of endomorphisms of V which commute with L and leave W fixed.

Theorem 4.1. Let F be a field. Then there exists a pair of vector spaces V and
W such that both V and W have countable dimension, with W being a subspace of V, such
that there exists a linear transformation L of V onto itself which maps W into but not
onto itself. Furthermore, V, W, and L described above can be constructed in such a
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way that there exists a sequence of spaces {V(m) :me N such that V = V(O) 2 V(l) 2
# #

V(Z) > ... ®W, L maps each V(m) linearly onto itself, and
# #

n v(m oy (4.1)
m=0

In_addition there exists an uncountable family of subspaces {E_ : o e A} of V

containing W such that L maps each Ea linearly onto itself and such that if Ei is a
subspace of V satisfying

weeler |, (4.2)
(1# o

then L(Ei) is not equal to Ei. Furthermore, we may construct the minimal spaces of

surjectivity EOl so that if ay # a5 then

E nE =W (4.3)

if we ask only that 4 be countable.

Proof. Let Vi denote the set of all functions from ¥ = {0,1,2,...} into F which
vanish for almost all members of ¥ for i = 1,2,3,4,...
Let

x Vo x Lo x Voox L, (4.4)
Let

W=V x {0} x ... x {0} x ... (4.5)
where 0 is the zero element of V, for i =1,2,... Let
y:N x N+ N (4.6)

be a bijection. Define L1:V1 + V by the rule,

Ly(v) = (xpyv,0,0,...)

= ((v(0),0,v(2),0,v(4),0,...),0,0,...) (4.7)
Define
L2:V2 +~V by the rule,
Ly(v) =
(0, nio v(x(0,m), 0, éo V(r(1,1),0,...),0,0,...) (4.8)

where y is defined by (4.6). Define L3:V3 + V by the rule
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Ly(v) = (0,v,0,0,...) . (4.9)
If m is an integer larger than three, define Lm:V + V by the rule,

m
0,v,0,0,...) (4.10)
Fof

(m-2)nd mth

position position

Ly (V) = (0,...,

Define L:V+ V by the rule,

LD, @y oy ) (4.11)
i=1 !
Then L maps V linearly onto itself and L maps W linearly into, but not onto, itself.
Define

_ ) (
VM)-lev? xvf)x.“ (4.12)

where for each ie {1,2,3,...},

v@’={vw+ F] v(n)=0 for n<m, (4.13)

We first show that L:V(m)-* V(m) is a linear mapping of V(m) onto itself. Let
((v(0)2v(1) (2),...) W B W E3) L) (4.14)

denote an arbitrary member of V(m).
Let P = y(n,mn), where

m = inflke ¥ :y(n,k) > m (4.15)
Define

w(l)(Zn) = v(n) for ne ¥
and define

w(2n41) = 0

for ne ¥, Define

w(z)(Pn) = v(2n+1) for ne ¥
and define

W (k) = 0 4F kg TPLPLLPy.. )

Define
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"] =V
and
Wkt oK) e 223,
Then
Liw( D (@) W3y 2 (D 3 (4.16)

which shows that L maps V(

projection.
Lemma 4.1. We may write

m) linearly onto itself. Let nk:V > Vk be the natural

E=1r1E><n2Ex1r3Ex

The proof of Lemma 4.1 is immediate. Let Ek = "kE for k = 1,2,... Note that E2
and hence every Ek must be infinite dimensional, since by hypothesis E1 = Vl. The
proof we have just repeated shows that if we just require that supp(Ez), the support
of the functions in E2, satisfy supp(Ez) n {y(n,0), y(n,1), y(n,2), ...} # @ for every
n, and take Ek = E2 for all k = 3,4,5,... then L will map E linearly onto itself.
Also E will be minimal provided that

suppE, n {y(n,0), v(n,1), ¥(n,2), ...} (4.17)

has just one element in it for every n ¢ N. There are clearly an uncountable number
of ways of choosing E2 so that the set (4.17) has just one element in it for every
neN. Also, the number of ways of choosing E2 so that condition (4.2) satisfied is
at most countable since for each integer n it must be true that

SuPp('ﬂ'zEul) n {Y(nso)' Y(n,l),._,}

is not equal to
supp(anaz) N {y(n,0), y(n,1),...} .
Definition 4.1. Let L be an epimorphism of a vector space V which has a subspace

W with the property that L(W) is a proper subspace of itself. Let S(V,L,W) be the
semi-group of all endomorphisms of V which commute with L and leave elements of W

fixed.

Theorem 4.2. If L, V, and W satisfy the conditions of Definition 4.1 then
S(V,L,W) contains only one element if and only if E is a proper subspace of V
containing W implies L(E) # E.

Proof. Suppose E were a subspace of V containing W. Let us write V= Ker(L) ® F
and write E = Ker(L) N E ® F. Let B(F) be a basis for F, and let B(F) be a basis for
F containing B(F). Let B(Ker(L)) be a basis for Ker(L) containing B(Ker(L) N E), a
basis for Ker(L)N E. Then each v in V may be written as
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Vo= agw, + ... taw + blw1 + ... +bw

P'p q'q
toup . tcu ¢t dlu1 + .04 dsuS (4.18)
where
{Wl,...,ﬁp) c B(Ker(L) n E) , (4.19)
{wl,...,wq} < B(Ker(L)) - B(Ker(L)N E) , (4.20)
(Gl,...,ﬁr} < B(F) , (4.21)
and
{ul,...,us} c B(F) - B(F) (4.22)
Then define
n(v) = ajw; ot apwp Uyt (4.23)

We deduce from the definition (4.23) of = and the fact that L(E) = E, that

L(w(v)) = clL(Gl) + .t crL(Gr) = n(L(v)) (4.24)

Thus, the projector = we have constructed belongs to S(V,L,W). Conversely, if ¢
belongs to S(V,L,W) then E = ¢(V) satisfies L(E) = L(¥(V)) = w(L(V)) = E. It is clear
that the identity transformation I belongs to S(V,L,W). From our construction it is
clear that if E is a proper subspace of V such that L(E) = E, then the projector 7 we
have constructed is distinct from the identity. This completes the proof of the
Theorem.

5.  SURJECTIVITY OF DIFFERENTIAL OPERATORS ON LOCALLY CONVEX

SPACES CONTAINING THE MEROMORPHIC FUNCTIONS

Let R(C") denote the meromorphic functions of n complex variables. We construct
a special locally-convex space E(") containing H(C") such that every nontrivial linear
partial differential operator with n independent variables and constant coefficients
maps E(") continuously onto itself.

For each j ¢ {1,...,n} and for each u(X) ¢ c[[xl,...,xn]] define

Tu(X) = ulKpaeen Xy o1oXg kg0 Xg) - (5.1)

Let F(")=§:E§n) (exterior direct sum), where Yy runs through the set I, where
Y

I=1{0,1} x ... x{0,1} (n factors), (5.2)

where
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Egn) = C[[Xl,...’xn]] ’

(n) _ Y1 Yn
EY T1 cee Tn C[[Xl""’xn]] s (5.3)
and we agree that Tg = I, the identity map on C[[Xl,...,Xn]]. These spaces of formal
power series are equipped with the usual locally-convex topology of simple convergence
of coefficients.
Proposition 1. The dual space of Ei") is isomorphic to the space

Y
C[Tllxl,...,T Ny 1 of polynomials. Furthermore, Esn) is a reflexive Frechet space for

all y in I, where I is given by (5.2).

Proof. It is well-known (e.g. Tr;ves [2], page 266) that Eén) and C[Xl,...,Xn}
are duals of one another. But if E'c E, where E is a topological vector space, and
J: E> F is an isomorphism then F' = J(E'). Furthermore, if E is a Frechet space, F
is a locally convex space and J : E + F is a topological isomporphism, then F is also
a Frechet space.

Definition 1. The duality bracket between a polynomial P in C[Xl,...,Xn] and_a
formal power series u in C[[Xl,...,Xn]] is given by

<P,u> = Z

aelN

(&) L7000 (X)L (3/0X)%u(X) ]y g - (5.4)

The duality bracket between a polynomial QY in the dual of Ein) and a formal power
series vy in Esn) is given by

1 a a
<Qv.> = :{,ﬂn o) [G/ax)% Iy, [(3/3X)% 1y - (5.5)

It is easy to see that if

Pla/aX) = X (1/al)[(a/2X)%P(X) ]y, (2/0X)" (5.6)
and u € Eé"), then
<P,u> = [P(3/3X - ie{l,...,n} (5.7)
u [p( )UJXi°Yi ie n

It is similarly easy to check that if

= a+Y a
Q,(/0) = L (1/aD)[(3/2X)°TQ, (M), (0/2%) (5.8)
and v_ € E("), then
Y Y
<Qy,vY> = [QY(B/BX)VY]X1=Yi ie{1,...,n} (5.9)

By E. Borel's Theorem (e.g. Treves [3], Theorem 18.1) if u belongs to Eén), there
is a ¢ in C;(Rn) such that the coefficients of the Taylor series expansion for ¢ about
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= (0,...,0) are identical to the coefficients of u. Thus, we may rewrite (7) as
<P,u> = <P(-3/3X)6,¢> , (5.10)
where & is the Dirac delta function. Again by E. Borel's Theorem (e.g. Treves [3],
Theorem 18.1) there is for every v, in Ein) a ¢Y in C;(Rn) such that the coefficients
of the Taylor series expansion of ¢(j) about y are equal to the corresponding

coefficients of vj, where X(Y) = y. Thus, we may rewrite (5.9) as

< > = < - - ( ) >
Qv Q, (-2/2X) 8(X-X v )s0.> (5.11)

Let L = L(3/3X) denote a linear partial differential operator with constant
coefficients. We can use m (5.10) and (5.11) to determine the action to Y on E(")'
and E(J)' for all y in I, where I is given by (5.2). It is well known that

<P,L(3/3X)u> = <P(-3/3X)6,L(3/3X)¢> (5.12)
implies that the transpose of L is one-to-one, since it follows that
Yp(x) = LIX)P(X) . (5.13)
Similarly, if QY € E$")' and VY € E£"), then

<Qy,L(a/ax)u> = <L(-a/aX)P(-a/aX)6,¢Y> . (5.14)

(n),

Thus, for every polyncmial QY in EY
tn o _ 'l Yn
LQY = L(T1 Xl""’Tn Xn)QY (5.15)

for all y in I. By Theorem 28.1 of Treves [3] it follows that L(X)E(")' is a closed
subspace of E(")‘ for every y in I. This, in view of a c1ass1ca1 theorem due
essentially to S. Banach, which states that a continuous linear map L of one Frechet
space E into another Frechet space F is an epimorphism if and only if its transpose is
one-to-one and weakly closed, implies that L : Eﬁn) he Ei") is an isomorphism for all v
in I.

Let Vsn) be the subspace of Esn) consisting of all members of Ei") which may be

identified with a member of 2: E(?) (exterior direct sum). Then L is still an

epimorphism of E(n)/V(") since L(V(")) < V(n) Note that V$") is closed. The space
R(c") can be 1dent1f1ed with a subspace of

gln . Er(]")/vfl") ®...0 E{")/vg") ® E[()") . (5.16)

Thus, R(Cn) can, when regarded as a vector s?ace, be given a locally convex topology
in a natural way, namely the one induced by E

Let f(zl,...,zn)/g(zl,...,zn) be a member of R(C"). Let nj:Cn > ¢™1 be defined
by the rule,
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wj(z) = (21"'"Zj-l’zj+1""’zn) . (5.17)
Let us write
_ r
g(zl,...,zn) = 90(“j(z)) + ngl("j(z)) + ..t zjgrhrj(z)) ..
Let r be the smallest positive integer such that grbrj(z)) # 0. Then

oy = 5 T nlrg (e

zg k=0
h T . ) h T . 0
- of rJ(Z) P _%L(fn + 3 hy b (25T, (5.18)
Z; J k=r J J

where the functions hkbrj(z)), are members of R(C"'l). Proceeding in this manner we
deduce that each representative of a member ofl?(cn) is contained in

2 T¥C[[X1""’Xn]] (exterior direct sum) or eliminating redundancy that
YeE

R(CM e cfxI] oL Perrxhi(™ . (5.19)
Ye
Y #0
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