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ABSTRACT. We use transfinite induction to show that if L is an epimorphism of a

vector space V and maps a vector subspace W of V into a proper subspace of itself,

then there is a smallest subspace E of V containing W such that L(E) E (or a minimal

space of surjectivity or solvability) and we give examples where there are infinitely

many distinct minimal spaces of solvability. We produce an example showing that if L 1
and L 2 are two epimorphisms of a vector space V which are endomorphisms of a proper

subspace W of V such that LI(W) n L2(W is a proper subspace of W, then there may not

exist a smallest subspace E of V containing W such that LI(E) E L2(E). While no

nonconstant linear partial differential operator maps the field of meromorphic

functions onto itself, we construct a locally convex topological vector space of

formal power series containing the meromorphic functions such that every linear

partial differential operator with constant coefficients maps this space linearly and

continuously onto itself. Furthermore, we show that algebraically there is for every

linear partial differential operator P(D) with constant coefficients a smallest

extension E of the meromorphic functions in n complex variables, where

), with the property that for every f in E, there is a u in E suchD (Bz
I Bzn

that P(D)u=f.
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differential operator, meromorphic functions, formal power series, global solvability

of partial differential equations.
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1. INTRODUCTION.

A straightforward argument using transfinite induction and the axiom of choice

will show that if L is a linear transformation of the vector space V over the field F

onto itself, and W is a subspace of V such that L(W) is a proper subset of W, then

there is a subspace E of V containing W such that L(E) E and such that if F is any

proper subspace of E containing W, then L(F) F. That is to say there is a smallest

extension E of W in which the inhomogeneous equation

Lu f (I.I)

has a solution u in E for every f in E.
In section two of this paper we show that there is a vector space V, a subspace W

of V, a pair of linear transformations L 1 and L2 of V onto itself such that

LI(W n L2(W is a proper subspace of W and such that if E is any vector space

containing W and contained in V such that LI(E) L2(E) E, then there is also a

proper subspace F of E containing W such that LI(F) L2(F) F. Thus the minimal

space of surjectivity question for families of mappings is not solvable.

If c is a category whose objects are sets, possibly equipped with some structure,

and whose morphisms are mappings between the sets, which preserve the structure, then

we can define the minimal space of surjectivity question as follows. Let C be such a

category. Let V be an object in C and let W be a subobject of V, a subset of V which

has the structure (if any) induced by that of V. Let L be a mapping that is an

epimorphism of V in the sense that (e.g. Northcott [1], chapter Ill) V is the unique

object in the category of vector spaces and linear transformations such that IvL and

LI V are defined where V is the identity mapping of V and L(V) V. Further assume

that if U is any subobject of V, then the restriction of L to U defines a morphism of

the category whose range can be any subobject of V containing U. Then we say E is a

solution of the minimal space of surjectivity problem defined by the triple (V,W,L)
satisfying the preceding conditions if L(E) E, L(W) is a proper subspace of W, and

if F is any subspace of E containing W, then L(F) F. If there is a triple for which

there is no solution to the minimal space of surjectivity problem we say that for the

category the MSS question has a negative answer. If there is a triple (V,W,L)
satisfying the above conditions for which the MSS problem does not have a unique

answer, we say that there is nonuniqueness for the MSS question for the category.

In section 3 of this paper we show that the MSS question has a positive answer

for the category of vector spaces and linear transformations, but in section 4 we show

that we have nonuniqueness in this category.

In section 5 of this paper we show, for every nonzero linear partial differential

operator with constant coefficients, the existence of a smallest extension of the

meromorphic functions on which the operator is an epimorphism. We do this by

exhibiting a locally convex topolgoical vector space containing the meromorphic

functions on which every linear partial differential operator is an epimorphism and

applying the results of the previous sections.
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2. NONEXISTENCE OF A MSS FOR SOME FAMILIES OF EPIMORPHISMS.
It can be shown that if V is a vector space, W is a subspace of V, and L is an

epimorphism of V such that L(W) is a proper subset of W, then there is a subspace E of

V containing W which is minimal with respect to surjectivity in the sense that

L(E) E, but if U is any proper subspace of E containing W, then L(U) does not

contain U. It seems natural to ask the same question for families of linear

transformations.

MSS Question for Families of Mappings. Le___t V be a vector space. Let W be a

subspace of V. Let F be a family of epimorphisms of V such that L(W)C W for all L in

F and L(W) # W for at.least one L inF. Does there exist a subspace E o__fV containing
W such that L(E) E for every L in F having the additional property that if U is any

subspace of E containinq W, then L(U) # U for some L in F i__f U E.

The following theorem shows that the MSS question for families of linear

transformations fails in general to have a positive answer even if F contains only two

mappings.

Theorem 2.1. There exists a vector space V, two epimorphisms L and L 2 o__f V,

subspace W o__f V such that Lk(W) c W for k 1, 2, such that LI(W) n L2(W) is a proper
subset of W, and having the additional property that if E is any subspace of V

containing W such that Lk(E) E for k I, 2 then there is a proper subspace U o_f E

containinq W such that Lk(U) U for k 1, 2.

Proof of Theorem 2.1. Let N denote the set of nonnegative integers. Let Q

denote the set of all nonzero integer powers of the prime q. Let F denote an

arbitrary field. For convenience we introduce the following.

Definition 2.1. If S is a set without a topology and v" S F is a mapping from

the set S into a field F, then the support of v is defined by the rule,

supp(V) {j S:(j) # O}

We let V0 denote the vector space of mappings from {0} into the field F. For

every positive integer k we let Vk denote the vector space of mappings from Q into F

whose support is a finite subset of Q. Let P Vk Vk denote the projector onto the

space of functions whose supports are subsets of

Nq {q-n n 1,2,3 (2.1)

Let T P(Vk) P(Vk) be a linear transformation defined by the rule

T(Pk)(q’2n pk(q-n) (2.2)

and

-(2n-I)) 0 (2.3)T(Pk) (q

for all positive integers n and all functions k in Vk.
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-n -vto
Lemma 2.1. If ’ is a function in P(Vk) whose, support is precisely {q q ,
-n -2n -2n2 -2n

o r}, then the support of Tv is exactly {q q q r}.
-2nProof of Lemma 2.1. Suppose q were in the support of T. Then by definition

n must be one of {n 1, n2 nr}.
As a corollary of Lenna 2.1 we observe that Ker(T) is trivial.

Let Vk V k denote the projector defined by the rule

(q2n) (q2n) (2.4)

for all positive integers n, and

)v(qm) 0 (2..,=)

if m is an integer that is not equal to 2n for some positive integer n.

Let B VI VO be defined by the rule,

BY (2.6)

where

.(0) : V(q2n+l) (2.7)

Define a mapping,

S.Vk (I-P)Vk (2.8)

by the rule,

Sv(q2n) V(qn)

Si(q2n-1) i(q-n)
(2.9)

and

SV(q"n) 0 (2.10)

for all positive integers n.

Let V be the vector space over F defined to be the set of all

(0’ 1’ Vk

where Vk is a member of Vk for all nonnegative integers k and k is identically zero

for all but a finite number of nonnegative integers k, and let w denote the space of

w (t0, 1’ O, ...) (2.11)
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where 0 is a member of V0 and I is a member of (VI) n Ker(B) where- p _1 (2.12)

Define a mapping L V V by the rule,

+ +L1(0’I ’n "’’) (B(TI)’TPI + ]I + 2 TPn n n+l (2.13)

Define a mapping L2"V V by the rule

+ v (2 14)+ v2 Sn n+l

Lemma 2.2. Lk’V V is an epimorphism for k 1,2, and L2-V V is an

s omorph sm.

Proof. That each Lk is an epimorphism is obvious since V0 is one dimensional and

n+l covers the part of the nth coordinate space not covered by TP n + ]n or S n,
+ is identically zero this implies that each vrespectively. Also if each Sv n n+l n

is identically zero, if Vn+l O, since S’Vn (I-P)Vn is an isomorphism.

Now let us construct a space of surjectivity, E, for the operators L and L2
which contains W. Let (0,0,0 denote a nonzero member of W. Then there exists a

vector

(0,i Vn,O,O,...) in V

such that

LIT (Vo’O 0

Since (-0,0 ,0 is in W and E is a vector space we conclude that

v (O,Vl, 2 ,Vn,O,O (2.15)

it in E and L lv LI. Now suppose that n > 1. Then the nth entry of

LI(O, 1,...,vn,O,O is TP n + n" Since T:PVn PVn is a monomorphism by Lemma

2.1 we conclude that Pn and n are identically zero. Now we know that Pn-1 +

n-1 + Vn is identically zero. Thus, the fact that (P+)(Pn_1+lXn+V n) is

identically zero implies that Pn-1 + ]n-1 is identically zero. Hence, n is

identically zero. Since n represents an arbitrary integer larger than 2, we conclude

that the vector v defined in (2.15) is of the form

v (0,1,0,0

where P and1 are identically zero. We conclude that

2nk-1supp(vl q k 1,2 ,r} (2.16)

where 0 < n < n2 < < nk
< nk+1 < < nr. Presumably VO is not identically zero

and,, consequently, Vl # Ker(B). Let supp( I) denote the support of 11" Then we
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observe that L2v E and that there is some v I in E such that L2v v (O,Vl,O ).
We observe that L2 is a one-to-one mappirg. Hence Ll({v}) contains only a single

element. Observe that if the support of vI is defined by (2.16), then

L)(v)--(0,,,0,0, 0,...) (2.17)

and

-nksupp(1 q k 1,2,...,r} (2.18)

Now we observe that since PI 1’ that

Lv I (O,Tn>1,0 ,0 (2.19)

Notice that the support of Tn 1 is given by

-2nnl -2nn2supp(Tn* 1 q ’q
_2n

,...,q nr} (2.20)

Now let us look at

L2(O,TnI,0 0 (O,STnI,0 ,0 (2.21)

Observe that the support of STn 1 is given by

22nn1-1supp(sTn, q
22nn -1r,q (2.22)

Observe that

B(STnI IO

Thus, we can say that the vector space generated by the elements we know to be in E

has the property that

W c LI(E n L2(E (2.23)

Indeed

LI(O,STnI,0 0,...) (Vo,O,O 0,...)

Now the support of SmsTn@ 1 is given by

2m(2.2nni-1 2m(2.2nnr-1)
supp (SmSTn I q q

(2.24)

Now there must be a vector w in E of the fom

w (0,i,2, n"’"
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such that

L l(w) (O,Vl,O ,0,...)

Since W is a vector space and (-0,0,0 ,0,...) is in W we may assume that w is

actually of the form (0,i, 2 Cn ), where I Ker(B). But 1 Ker(B) and

(P+)1 0 implies that

(0,-1,0 ,0 W

Thus, we may assume that

w (0,0, 2 Cn"’"
We can show that if n > 2, that Cn is identically zero. Thus, we may assume that

Since (P+-P) 2

w (0,0,2,0, 0,...)

0 we deduce that 2 1" Hence, we deduce that

(0,1,0,...,0,...), (O,O,Vl,0 0,...)

are all contained in E. Thus, the set of functions in E whose coordinate functions

are in P(Ker(B)) or else are modulo a function in P(Ker(B)) a function with support
sufficiently far out forms a proper subspace of E which is mapped onto itself by L 1
and L2

3. THE MINIMAL SPACE OF SURJECTIVITY PROBLEM FOR VECTOR
SPACES AND LINEAR TRANSFORMATIONS
Let L be a linear transformation of a vector space V onto itself, and let W be a

subspace of V such that L(W) is a proper subspace of W. The solvability of the MSS

problem for the category of vector spaces and linear transformations is expressed in

the fol owing theorem.

Theorem 3.1. Let L, V, and W be as defined in the introduction to this section.

Then there is a subspace E of V containinq W such that L(E) E and such that if E 1 is

a proper subspace of E containinq W, then L(E) # Ez.
Proof of Theorem 3.1. Let W1 be a subspace of W such that W L(W) ) W1. Let

B(WI) be a bases for W1. Let ’I(W) be a set consisting of precisely one men)er from

each of the sets in the family

{L-l(w) w B(W1)} (3.1)

The axiom of choice tells us that this set exists. We need the following result.
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Lemma 3.1. Let L V V be a linear transformation of V onto itself. Let T be

a linearl>, independent subset of V. I__f s is a set consistin9 of precisely one member

from each of the sets in the family

{L-1(t) t T} (3.2)

then S is a linearly independent set.

Proof of Lemma 3.1. Let v vm be an arbitrary finite subset ofs. Let c 1,
cm be scalars. Then ClV + + CmVm 0 implies ciL(v 1) + + CmL(Vm) 0.

But {L(v I) L(Vm)} is an m-element subset of T and is, therefore, linearly

independent. Hence, c c2 c
m 0.

Lemma 3.2. Let L, T, and S be as defined in Lemma 3.1. If [9] and Is] denote

the vector spaces generated by and %, r.esp.e.ctively, and if B([S]) is a basis for

IS], then L(B[S] is a bases for [7].
Proof of Lemma 3.2. Let {u I um} be an m-element subset of B([%]). Write

P
uj 1= a(k’j)Vk (J I, m) (3.3)

where {v 1,v2 Vp} is a p-element subset of % and the matrix

a(1,1) a(l,m)
A (3.4)

a(p,1) a(p,m)

is a ene-to-one linear transformation from m-dimensional space to p-dimensional space.

Then L is a linear implies

P
L(uj) k-- a(k’j)L(Vk) (j 1, m) (.5)

Now suppose that we had

m
cjL(uj) 0 (3.6)

j=l

Then interchanging summation signs we deduce from combining 3.6 and 3.5 that

p m

(1"= a(k’j)cj) L(vk) 0 (3.7)

But Lemma 3.1 implies that

m
] a cj 0 (3 8)
j:l (k,j)

for k 1,2 p. But the fact that the matrix A defined by 3.4 is one-to-one

implies that
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c co c r (3 a)

Hence, the fact that (3.6) implies (3.9) for all m-element subsets {u um} of

B([S]) tells us that L(B[S]) is a linearly independent set. To see that L(B[S])
generates [T] we let L(v) denote an arbitrary element of T, where v S. Then there

exist u I, um in B[S] such that

ClU + + CmUm v (3.10)

By linearity of L and (3.10) we see that L(v) is a linear combination of a finite

number of elements in L(B[S]).
Let U W and let E be the vector space generated by (U I) and U 1, where (U1)

is an image of the choice function on the family of sets {L-1(t)’t B(W1 )}" Then we

may define

E U Q [(UI)]

where [S] denotes the vector space generated by S for all subsets S of the vector

space V.
Lemma 3.3. uppose L is a linear transformation of V into itself and U is a

subspace of V such that L(U I) is a proper subspace of UI. Suppose E(UI) is the set

obtained by taking one member from each set in.the family

{L-l(t) t e B(WI)} (3.11)

where U L(UI) ( WI. Define

E U 1
$ [E(U1) (3.12)

Then E I is a proper subspace of E1 containinq U implies that L(E1) does not contain

UI"
Proof of Lemma 3.3. Let 71 be a projection of E onto [(UI)]. Then I(EI) must

be a proper subspace of [E(U1)] since the definition of direct sum and the fact that

E 1 is a proper subspace of E 1 containing U implies

E 1 U1 I(EI) (3.13)

We denote by EI(uI) a basis for [(UI)] which contains B(I(E1)), a basis for I(EI).
By Lema 3.2 we know that L(’I(u1 )) is a basis for W1. Since I(E1) is a proper

subspace of [(UI)], it follows that B(I(EI)) must be a proper subset of I(u1). For

if B(,I(E1)) were equal to Zl(U1), then we would have

I(E1) [B(I(E1)] [1(UI) [(UI) (3.14)

which contradicts the supposition that I(EI) is a proper subspace of [(U1)]. Thus,

(3.14) and the definition of 71 imply that
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L(E I) L(U I) Q [(I(EI)), (3.15)

and consequently that L(E I) is a proper subspace L(U1)Q W1 U 1.
Hence, L(E1) does not contain UI. We use transfinite induction to construct for

every ordinal a less than 6 + I, where 6 is the ordinality of a basis for V, a set E
which is minimal with respect to the property that

and

Us W (u{Ey -y < } c L(E) (3.16)

u{Ey y < a} c Ea (3.17)

in the sense that if

W E c E (3.18)

then L(EI) does not contain U We have constructed E for 1. Thus, we suppose
that E has been constructed for all B < a. Then define U as in (3.16). It is clear

that Us is a vector space, since W and each Ey is a vector space and y1 < Y2 implies

E Let W be a subspace of V such that
Y 2

Let B(W) be a basis for W:. Let (U) be defined to be the set obtained by taking

one element frn each set in the family

{L-I(w) w B(W)} (3.20)

We let Es be the vector space generated by Us and(U). Then the Lemmas 3.1, 3.2 and

the previous argument show that if E satisfies (3.18), then L(E 1) E 1. Since

E But theL(V) V, it is clear that there is some ordinal s O such that L(O SO
ordinals are well ordered. Thus, we may suppose

min(y L(Ey) Ey} (3.21)

Indeed, it is easy to see that B is the first infinite ordinal.

The following lemma gives important information about the space EB-
Lemma 3.4. l__f B is defined bj (3.21), then UB EB.
Proof of Lemma 3.4. Suppose UB # EB. Then L(UB) would be a proper subspace of

UB. It is easy to show by transfinite induction that L(U)C U for every ordinal s.

Then we can write

UB L(UB) WB (3.22)
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Then we would letB(WB) be a basis for WB and letE(UB) be the set consisting of one
member from each set in the family,

{L-l(w) w B(WB)} (3.23)

Then EB is the vector space generated UB and E(UB) and clearly L(EB) c UB. This

contradicts the supposition that L(EB)
Lemma 3.5. For every ordinal less than 5 + let

U {Ey" y < } (3.24)

let W be a subspace of V such that

U L(U) O W, (3.25)

let B(W) be a basis for W let E(U) be a set consistinq, of preciseljl one element

from each set in the famil),

{L’I(w) w B(W)} (3.26)

and let

x V/ [(U)] (3.27)

be a projector of V onto the vector space [(U)] generated by (U). Then

[(U)] n U {0} (3.28)

and for every, vector v in V

v w + (v) (1< < a + 1) (3.29)

where w is a member of W.
Proof of Lemma 3.5. To prove (3.28) note that if v [E(U)] n U then

L(v) L(U) n We {0}. Thus, v ClV 1
+ + CmVm for some elements v 1, Vm in

(U) and some scalars c1, cm. But {L(Vl),...,L(Vm)} is an m-element subset of

B(W) a basis for W and is therefore a linearly independent set. Hence, L(v) 0

implies v O. In other words (3.28) is valid. Next we show that < B implies

(V)F B(V) {0}. Now

[E(U)] c Ec UB (3.30)

and by (3.28)

UB
n [(UB)] {0} (3.31)
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Combining (3.30) and (3.31) we deduce that [E(U)] n [E(UB)] {0} if and B are

ordinalm and < B. Then (3.29) is an immediate consequence of the fact that

v w (R) ((R)Yl. [ (u)](I_< a + )) (3.32)

Proof of Theorem 3.1. Let E be a proper subset of which contains W, where

is defined by (3.21). Then EB n E E # EB. Thus, we deduce that

{y El F Ey # Ey} # (3.33)

The well ordering property and (3.33) enable us to define

Emin{y n E # E_} (3.34)
Y

From the fact thaty < a implies E n E E we deduce that
Y Y

U n E U (3.35)

om that U is a subspace of E if a is defined by (3.34). Thus, Lemma 3.5 implies

that

(0 (El)): (I-)(E1)
y>-a Y

where is the projection of V onto U Furthermore,

EIc U (I-)(E1) (3.36)

But e E implies there is a u U and a v (I-)(E

eI u + v

1) such that

E EBut e u implies v Thus, from (3.36) we deduce that

E I U=e ((I-)(E1) C E 1) (3.37)

In order that L(EI) E 1 we must have in particular that UC L(E 1). But

U: L(U) L([E(U)]) (3.38)

Now (I-)(El)) n E 1 is a proper subspace of (I)(V). We want to show that L(E1)
could not possibly contain U. Suppose L(E I) did contain U. Then L(E I) n U
L(U) T U. LetB(l) be a basis for. ThenB(T)c L(EI). Then each set in

the family

{L-I(w) n E I w B($1)} (3.39)
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must be nonempty. Let EI(u be a set consisting of one member from each set in the

family (3.39). Then [EI(u ] El E V Let y be an ordinal ntunber larger than

herefore L([EI(u )]) c U
s

and L([’(UI )]) n U
s

{0}. Thus, [E(U )] n [EI(u )]
s y y s

{0} for all ordinals y Thus, E’c E
B implies that

El(u )] E c E6 E (O][E (U)] s < y B) (3.40)

Thus, v [EI(u )] implies

v=v+ (vy_,< < ) (3.1)

L(v-v U and

L((R)v, < y < B) 0 (3.42)

or el se

L((R)v,s < y < B) Us (3.43)

But since L(v-v U it follows that (3.43) is impossible. Hence, L(v-v U

But L is one-to-one on each of the subspaces [E (U)] and is consequently one-to-one
Y

on their direct sum. Thus, v 0 for all ordinals y such that s < y < B, where the
Y [Elv are defined by (3.41). Hence v v This implies that (U)] is a subspace of

y s s
E and since [EI(u )] U {0} is consequently a subspace of [E(U )]. Sut this

would imply that

U [EI(u )] E n E

is a subspace of E with the property that U c L(U [EI(u )]). This implies by

Lema 3.2 that

U $ [El(us)] U [E(U )]

Hence, E n E E which contradicts (3.34).

4. NONUNIQUENESS OF THE MSS PROBLEM FOR THE CATEGORY
OF VECTOR SPACES AND LINEAR TRANSFORMATIONS
In this section we prove that if V is a vector space with a subspace W and L is

an epimorphism of V which maps W into a proper subspace of itself, then there does not

necessarily exist a unique subspace E of V containing W such that L(E) E and L(E I) #
E 1 for all proper subspaces E1 of E containing W. We also define the semigroup

s(V, L, W) of endomorphisms of V which commute with L and leave W fixed.

Theorem 4.1. Le___t F be a field. Then there exists a pair of vector spaces V and
W such that both V an___d W have countable dimension, with W being a subspace of V, such

that there exists a linear transformation L o__f V onto itself which maps W into but not

onto itself. Furthermore, V, W, and L described above can be constructed in such a
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way that there exists a sequence of spaces {V ’m’{ m N} such that V V ’0’{ V ’1’{

V2Jl W, L maps each V mjl linearly onto itself, and

V (m) W (4.1)
m=0

In addition there exists an uncountable family of subspaces {E A} of V

containing W such that L maps each E linearly onto itself and such that if E Is a

subspace of V satisfyin9

W c El c E (4.2)

then L(E1) is not equal to E Furthermore we may construct the minimal spaces of

suriectivitj E so that if I =2 then

E n E W (4.3)
1 2

if we ask onl), that A be countable.

Proof. Let V denote the set of all functions from N {0,1,2 into F which

vanish for almost all members of N for 1,2,3,4

Let
V V V2

x V3 V (4.4)

Let

W V {0_} x {0_} (4.5)

where O is the zero element of V for 1,2 Let

(4.6)

be a bijection. Define LI"V V by the rule,

L 1(v) (X2Nv,O,O

((v(0),0,v(2),0,v(4),0 ),0,0

Define

L2:V2 V by the rule,

L2(v

((o, ] v(y(o,n)), o, ] v(y(,n)),o ),o,o
n=O n=O

where y is defined by (4.6). Define L3"V3 V by the rule

(4.7)

(4.8)
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L3(v) (_O,v,_O,O_

If m is an integer larger than three, define Lm Vm/ V by the rule,

Define L-V/ V by the rule,

Lm" (V) (0 O,v,O,O
/ /

(m-2) nd mth
position position

(4.9)

(4.10)

L(v (1) v (2) ..) L v (i) (4 11)
i=1

Then L maps V linearly onto itself and L maps W linearly into, but not onto, itself.

Def ne

v v m) (4.

where for each {1,2,3 },

V!m) {v’J F v(n) 0 for n < m} (4.13)

We first show that L’V (m)+ V(m) is a linear mapping of V (m) onto itself.

((v(O),v(1),v(2) ),v (2) ,v(3),...)

denote an arbitrary member of V (m)

Let Pn Y (n’mn)’ where

mn
inf{k V y(n,k) > m}

Define

w(1)(2n) v(n) for n V

Let

(4.14)

(4.15)

and define

w(1)(2n+1) 0

for n N. Define

and defi ne

w(2)(Pn) v(2n+l) for n N

w(2){k) 0 if k {Po,P1,P2 }.

Define
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w ()= v ()

and

w(k+l) v (k) for k 2,3

Then

L(w(1),w(2),w(3) (v v (2) v (3) (4 16)

which shows that L maps V (m) linearly onto itself. Let k’V Vk be the natural

projection.

Lemma 4.1. We may write

E 1E 2E 3E

The proof of Lemma 4.1 is immediate. Let Ek ,kE for k 1,2 Note that E2
and hence every Ek must be infinite dimensional, since by hypothesis E V1. The

proof we have just repeated shows that if we just require that supp(E2), the support

of the functions in E2, satisfy supp(E2) N {y(n,O), y(n,l), y(n,2) for every

n, and take Ek E2 for all k 3,4,5 then L will map E linearly onto itself.

Also E will be minimal provided that

suppE2 F {y(n,O), y(n,1), y(n,2) (4.17)

has just one element in it for every n v. There are clearly an uncountable number

of ways of choosing E2 so that the set (4.17) has just one element in it for every

n J. Also, the number of ways of choosing E2 so that condition (4.2) satisfied is

at most countable since for each integer n it must be true that

supp(2El F {y(n,O), y(n,l)

is not equal to

supp(2E2 F {y(n,O), y(n,1)

Definition 4.1. Le__t L be an epimorphism of a vector space V which has a subspace
W with the propert}, that L(W) .is a..prop.er subspace of itself. Le.__t 7(V,L,W) be the

s. emi-group of all endomorphisms of V which commute with L and leave elements of W

fixed.

Theorem 4.2. If L, V, and W satisfy the conditions of Definition 4.1 then

S(V,L,W) contains only one element if and only if E is a proper subspace of V

containing W .implies L(E) E.
Proof. Suppose E were a subspace of V containing W. Let us write V Ker(L)( F

and write E Ker(L) n E ( . Let B() be a basis for , and let B(F) be a basis for

F containing B(). Let B(Ker(L)) be a basis for Ker(L) containing B(Ker(L) n E), a

basis for Ker(L)n E. Then each v in V may be written as
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where

and

+ b + + bqWqv alw + + apWp lWl

CrGr+ clu I + + + dlU + + dsU s

{I ,p} c B(Ker(L) n E)

{w Wq} c B(Ker(L)) B(Ker(L) n E)

{ ,r ()

{Ul, us} c B(F)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

Then define

(v) al1 + + app + c11 + + Crr

We deduce from the definition (4.23) of and the fact that L(E) E, that

L((v)) cIL(GI) + + CrL(r) (L(v))

(4.23)

(4.24)

Thus, the projector we have constructed belongs to S(V,L,W). Conversely, if

belongs to S(V,L,W) then E (V) satisfies L(E) L((V)) (L(V)) E. It is clear

that the identity transformation belongs to (V,L,W). From our construction it is

clear that if E is a proper subspace of V such that L(E) E, then the projector we

have constructed is distinct from the identity. This completes the proof of the

Theorem.

5. SURJECTIVITY OF DIFFERENTIAL OPERATORS ON LOCALLY CONVEX
SPACES CONTAINING THE MEROMORPHIC FUNCTIONS
Let B(Cn) denote the meromorphic functions of n complex variables. We construct

a special locally-convex space E n) containing B(Cn) such that every nontrivial linear

partial differential operator with n independent variables and constant coefficients

maps E {nl continuously onto itself.

For each j {1,...,n} and for each u(X) C[[X I, Xn]] define

Tju(X) u(X 1,...,xj_ 1,1-Xj,Xj+I ,Xn) (5.1)

Let F(n)=En) (exterior direct sum), where y runs through the set /, where

I {0,I} {0,I} (n factors), (5.2)

where
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En) C[[X ,Xn]]
Y1 YnE (n) T Tn C[[X X ]]y n (5.3)

and we agree that TO the identity map on C[[X1,. ,Xn]] These spaces of formal

power series are equipped with the usual locally-convex topology of simple convergence

of coefficients.

Proposition I. The dual space of E (n) is isomorphic to the space

Y1 E (n)C[T X 1,...,Tnnxn of polynomials. Furthermore,
Y

is a reflexive Frechet space for

all y i__n %, where _T is liven by (5.2).
Proof. It is well-known (e.g. Treves [2], page 266) that [ n) and C[X Xn]

are duals of one another. But if E’c E, where E is a topological vector space, and

J E F is an isomorphism then F’ J(E’). Furthermore, if E is a Frechet space, F

is a locally convex space and J E F is a topological isomporphism, then F is also

a Frechet space.

Definition 1. The duality bracket between a po..lynomial P i_n C[X X n] and a

formal power series u i__n C[[X Xn]] is given by

<P u> (-[) [(B/BX) P(X)]x:o[(B/@X)u(X)]x=on (5.4)

The duality bracketr between a polynomial Qy in the dual of E’n’Y and a formal power
series v in E nj is given by

<Qy,Vy> ] n (T) [(@/@x) Qy]x:y [(@/@x) Vy]x=Y (5.5)

It is easy to see that if

P(B/BX) -]’n (II!)[(@I@X)P(X)]x:y (@/@X) (5.6)

and u En), then

<P,u> [P()/@X)u]xi=Y {I n} (5.7)

It is similarly easy to check that if

Qy(@/BX) ]n (1/!)[(@IBX)TYQy(X)]x=y (B/BX) (5.8)

and v E(n) then

{1 ,n} (5.9)<Qy, vy> [Qy(@/ X) Vy]x :Y

By E. Borel’s Theorem (e.g. Treves [3], Theorem 18.1) if u belongs to E n), there

is a in C(Rn) such that the coefficients of the Taylor series expansion for about
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X (0) (0 0) are identical to the coefficients of u. Thus, we may rewrite (7) as

<P,u> <P(-BIBX)6,> (5.10)

where 6 is the Dirac delta function. Again by E. Borel’s Theorem (e.g. Treves [3],
(n) a Oy in (pn) such that the coefficientsTheorem 18.1) there is for every vy in Ey CO

of the Taylor series expansion of o(J) about y are equal to the corresponding

coefficients of vj, where X (Y) y. Thus, we may rewrite (5.9) as

<Qy,Vy> <Qy(-/X)(X-X(Y)),y> (5.11)

Let L L(B/BX) denote a linear partial differential operator with constant

can use m (5.10) and (5.11) to determine the action to tL on En)"coefficients. We
U

and E j)’ for all y in I, where I is given by (5.2). It is well known that
Y

<P,L(alBX)u> <P(-alBX),L(alaX)> (5.12)

implies that the transpose of L is one-to-one, since it follows that

tLP(X) L(X)P(X)

E (n)Similarly, if Qy and v E (n) then
Y Y Y

<Qy,L(/BX)u> <L(-/@X)P(-@/BX),y>

E(n),Thus, for every polynomial Qy in
Y

tLQ
Y

Y1 YnL(T X Tn Xn)QY

(5.13)

(5.14)

(5.5)

for all y in I. By Theorem 28.1 of Treves [3] it follows that L(X)E nj’ is a closed
Y

subspace of E nj’ for every y in I. This, in view of a classical theorem due
Y

essentially to S. Banach, which states that a continuous linear map L of one Frechet

space E into another Frechet space F is an epimorphism if and only if its transpose is

one-to-one and weakly closed, implies that L E(n) E (n) is an isomorphism for all y

in/.

Let V (n) be the subspace of E (n) consisting of all members of E (n) which may be

identified with a member of ] E,n) (exterior direct sum). Then L is still an
y’y

(n)/v(n) since L(V (n)) c V (n) Note that V (n) is closed The spaceepimorphism of Ey Y Y Y Y
R(Cn) can be identified with a subspace of

E (n) ER)IvR) ER)Ivn), En) (5.16)

Thus, R(Cn) can, when regarded as a vector space, be given a locally convex topology

in a natural way, namely the one induced by E n).
Let f(z I Zn)/g(z zn) be a member of R(cn). Let j’C

n Cn-1 be defined

by the rule,
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j(z) (z Zj_l,Zj+ Zn) (5.17)

Let us write

g(z I, z n) go(j(z)) + zjgl(j(z)) + + Zgr(j(z)) +

Let r be the smallest positive integer such that gr(j(z)) # O.

=1 k0

k. hk(j(z))zj

Then

ho(j(z)) hr_l( (z))
+ + J + ] h (7 (z))z-rr zj k j

zj k=r
(5.18)

where the functions hk(j(z)), are members of/?(cn-1). Proceeding in this manner we

deduce that each representative of a member of R(Cn) is contained in

TYc[[X Xn]] (exterior direct sum) or eliminating redundancy that
y

R(Cn) c C[[X]] ( TYC[[X]]/ n) (5.19)
y
Y #0
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