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ABSTRACT. The Green’s function formulation for ship motion at forward speed contains

double integrals with singularities in the path of integrations with respect to the

wave number. In this study, the double integrals have been replaced by single

integrals with the use of complex exponential integrals. It has been found that this

analysis provides an efficient way of computing the wave resistance for three

dimensional potential problem of ship motion with forward speed.
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I. INTRODUCTION.

In ship hydrodynamics, Green’s functions play a very important role in predicting

the wave resistance, wave induced responses at zero forward speed, and the motions of

a vessel advancing in waves. The Green’s function formulation for ship motions at

forward speed is the most difficult part of the problem partly because it contains

double integrals and partly because of the presence of the singularities in the path

of integrations with respect to the wave numbers. Nowadays, considerable interest has

been paid to evaluate the three dimensional Green’s function for ship motions at

forward speed.

Many authors including Haskind [I] and Havelock [2] have expressed the Green’s

function having a constant forward speed as a double integral. This form of Green’s

function is not suitable for numerical analysis because the detailed computation of

the double integral is very expensive. Therefore, in the present study, we have

replaced the double integral by a single integral (see Wu and Taylor [3]) involving a

complex exponential integral, and it is found that it is more efficient to calculate

the Green’s function numerically.

2. A FORM OF THE GREEN’S FUNCTION.

Consider the coordinate system oxyz which is moving at constant forward speed U

along the x axis and z measured positive upwards from the mean free surface (see

Figure I).
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Z

Figure 1" The Coodinate System

It is assumed that a ship is travelling at a constant forward speed U along the

Ox direction and oscillating at a frequency as in the form of e Wehausen and

Ialtone [4] in 1960 have shown that the Green’s function which satisfies the exact

free surface condition can be written as

=I 1+2g ’G(x y,z;a,b c) - R 7
dO F(0,k)dk + 2_ 7/2

7
d8 F(8,k)dk

o o L

+_K d6 F(6,k)dk
7 7/2 L

2

where

R /(x-a)2 + (y-b)2 + (z-c)
2

Rankine source located at (a,b,c)

2 2 2
R /(x-a) + (y-b) + (z+c) Image about the mean free surface at (a,b,-c)

g acceleration due to gravity

k e
k[(z+c) + i(x-a)cSe]cos[k(y-b)sine|

(2.2)F(,k) 2gk-( w+kUcos e)

(x,y,z) is the field point and (a,b,c) is the source distribution point. The other

parameters in Equation (2.1) are defined by

o if T < (2.3)

-I
cos (-) if t (2.4)

J
where T is called the Strouhal number

g

The contours L and L
2

are defined as follows:
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kl k2

k3 k4

There are two singular points in L and two singular points in the L
2 integral of

Equation (2.1). These singular points can be obtained as follows:

/gkl /gk3
/1-4 cose
2 cos-----m (2.5)

/g--7-2K /gk--4 + /i-4 COS8 (2.6)

The alternative forms of these singularities k I, k 2, k
3
and k

4
can be written as

(I 2 cosS) : /1-4 cos8
k
2

k
2 T2cos 2 e

2
for /2 e w; and where v

g

v (2.8)

It should be noted here that kl=k3 and k2=k4. These singularities are real in

the ranges indicated. It is, however, worth mentioning here that in the range

0 ( e y, the singularities k and k
2

become complex quantities and are either given

by
+/- i/4T cos/gk2’ /gkl 2T cos0 (2.9)

or

2z cos0 +/- i/4 cos-I
v (2.10)k2 ’kl

2 z2cos2 0

Thus the integrand in the integral

F(8,k)dk]de
O O

contains no real singular points in the path of integration from 0 to (R).

3. EVALUATION OF INTEGRALS.

The Green’s function given in equation (2. I) is difficult to integrate

numerically because as we have seen in the previous section, the contours L and L
2

have singularities at kl,k2,k3 and k4. This difficulty can be overcome by introducing

the Cauchy Principal Value (PV) integrals.

k.i k2

o- F
’k>
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The first contour integral along the path L can be rewritten as

712
G
L 2-K d0 F(0,k)dk

L

F( 0,k)dk

When z 0, equation (3.1) can be written as

where

7/2 7/22_g f dO (V.V.) f F(0,k)dk /
2g f fGL1 f dO {+ F(O,k)dk

y o y
(3.2)

kl- k2-e
(P.V.) f F( 0,k)dk Lim f + f + f F( O,k)dk 0 (3.3)

o 0 k1+e k2+e
To evaluate the integral along the deformationsandf we decompose the

integral F(0,k) in terms of its singularities. We write

k k
2F(O,k) [Z_k Z_f exp{k[(z+c) + i(x-a)cosO]} cos(k(y-b)sin0) (3.4)

g II-4 zcos O

which can be put in the following compact form

F(8,k)
kl k2

2g,/1-4"rcosO [[2kl k-k2] [exp(kXl) + exp(kx2)] (3.5)

where

xl= (z+c) + iw+, x
2

(z+c) + i w.

w+ (x-a)cosO + (y-b)sin0, w_ (x-a)cosO- (y-b)sln O (3.6)

We know that (z+c)0 so we can redefine x and x
2

as follows

x {(z+c) iw+}, x
2

{(z+c) iw_}. (3.7)

Thus, equation (3.5) can be rewritten as

F(0,k) [kl {exp(-kXl) + exp(-kx2) k2 {exp(-kXl) + exp(-kx2)
(3.8)

2g,/I-4 z cos o k-kl k-k2
The integration along the deformatlons.and fIn equation (3.2) can be obtained

according to the residue theorem. Thus

f + f F(8,k)dk

2g,/I-4 zcos O
{kl(exp(-klXI) + exp(-klX2)) + k2(exp(-k2xI) + exp(-k2x2))}

Thus, equation (3.9) reduces to

(3.9)
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=2__K 12

Gel / d0 (P.V.) / F(e,k)dk
y 0
/2

-k (e-k+ i {kl(e-klXl + e IX2) + k 2 2Xl + e-k2x2)} de
,/I-4 os e (3.10)

In a similar manner the second contour integral along path L
2 equation (2.1) can

be obtained

GL 2g f de (P.V.) f F(0,k)dk
2 /2 0

,/1-4 cos e /2
{k3(k3Xl + e-k3x2) k4(e-k4Xl + e-k4x2)} (3.11)

Therefore the Greens function in equation (2.1) can be rewritten as follows:

Gl(x,y,z; a,b,c) R R

/2
+ 2g f + de (P.V.)

x /2

+ f d0 f F(0,k)dk
0 0

f F( e,k)dk
0

/2
i J {k (e

,/I-4 cos e y

-k -k
2-klXl + e x2) + k2(e Xl+ e-k2x2)} de

/2

-k
3

-k
3

-k4
x -k4x2{k3(e Xl+ e x2) k4(e + e de} (3.12)

or

where

G G + G
2

+ G
3
+ G

4
+ iG

5

G1 ’ G2 R-
G3 =2g Y

f de f F(e,k)dk
0 0

/2
G4 f + f e (P.V.) f F(e,k)dk

y /2 0

(3.13)

/2

G5 f
,/I-4 cos e

-k2 -k2x2{kl(e-klXl+ e-klX2) + k2(e Xl+ e )} de

+f
/2 ,/1-4 cos O

{k3(e-k3xl+ e-k3x2) k4(e-k4xl+ e-k4x2) d e (3.14)

There are two cases to be considered.

Case I

y= 0 if <
and in this case G

3
0.

Therefore, equation (3.13) becomes

G G + G
2
+ G

4
+ iG

5
(3.15)
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Case II

-1
if %-y cos 4T

and in this case equation (3.13) becomes

G G + G
2

+ G
3
+ G

4
+ iG

5
(3.16)

The double integrals in G
3

and G
4

are highly oscillatory at large values of k

because of the imaginary argument of the exponential function. In order to calculate

them numerically, at minimum computer cost, these integrals must be reduced to single

integrals as suggested by Shen and Farell [5], and Inglis and Price [6]. We shall

treat Case I first and evaluate the Cauchy Principal Value (P.V.) integral in G4.

The term G
4 of the Green function can be written as

72 dO
+12_13_14) + d0

(15+16-17-18) (3.17)G4 (II
7/2 I-4Tcos8y {l-4Icos 8

where
k exp(-kx klexp(-kx2)

I (P.V.) dk, 12 (P.V.)
k_kl0 k-kl 0

dk (3.18)

k2exp (-kx
13 (P.V.)

0 k-k2
for y ( O 7/2

k2exp (-kx i)
15 (P.V.)

0 k-k3

k
2exp

-kx2
dk, 14 (P’V’)

k_k2
dk

0

k3exp -kx
dk, 16 (P.V.)

k_k3
dk (3.19)

0

k4exp (-kx k4exp(-kx2
17 (P.V.)

k_k4
dk 18 (P.V.)

k_k40 0
dk

for 7/2 O ,.
To obtain analytic expressions of these integrals, we consider a contour in the

K k + ik’ plane as suggested by Smith et al [7] (see Figure 2) and later used by

Chen et al [8].

We impose the condition that

1 __[-KXll o

on the integration path 5 which makes an angle a with the real axis, so that the

argument of the exponential can be made real along the ray.

Therefore, we get

I [-(k + ik’) (Iz+cl-lw+)] 0
m

which simplifies to yield

and
-I k’ -I w+

a= tan tan Z+C i-
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K--k+ ik

4

Figure 2" A closed contour for w+> 0

Thus with this value of ,
+ w+

2

-kV 0

Also, we have

K --k+ ik’
kV

=V+c[-iw+
Integrating along the contour shown in Figure 2,

klexp(-kx)
I 2i {klexp(-klXl) i klexp(-klX 1)

5 k-kl
klexp(-kx

(i) klexp(-klXl) k-k
dk

5

dk

Along the path 5

0
exp(-kV) exp(-u)d(kV) kkl (kV) 2 klXl 0 u kIx5

du

where

k exp(-klX 1) E l(-klx 1)

EI(_Z) e--{- dt, [arg(z) < w exponential integral.
-z

Therefore, for w+ > O,

I k exp(-klx I) {El-(klX l) + ri}

It is to be noted here that for w+< 0 the contour will be as follows:

(3.20)
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Thus

k

K=k+ I /4

Figure 3: Closed contour for w, <0

I k exp(-klXl) {El(-klXl) ’rl} (3.21)

Also, for w+ 0,

I klexp(-klXl) {El(-klX I) + i} (3.22)

which is obtained using the following definitions (see Abramowitz and Stegun [9] 1965,

p. 228).

E l(-x+lO) (P V e
-E--dt i, E1(-x-lO) (P.V.) J -- dt +wle

such that for w+ 0

I klexp(-k2Xl) {El(-klXl)+ z’l] (3.23)

Similarly, we can calculate the other integrals. Thus summing up the situation,

we get for w+ ) 0 or I (-klX) ) 0
m

I k exp(-klXI) {E l(-klxI) + i}

and for w+ < 0 or I (-k xI) < 0
m

I klexp(-kIxI) {Z l(-kIxI) -1)

Similarly,

12 klexp(-klX2) [El(-klX2) + I], for Im(-klX2) > 0

klexp(-klX2) [El(-klX2) I], for Im(-klX2) < 0

13 k2exp(-k2xI)[El(-k2xI) I], for Im(-k2x I) > 0

k2exp(-k2xI)[El(-k2xI) + I], for Im(-k2xI) < 0
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14 k2exp(-k2x2)[El(-k2x2) i], for Im(-kzX2) ) 0

k2exp(-k2x2) [El(-k2x2) + i], for Im(-k2x2) < 0

15 k3exp(-k3xI) [E l(-k2xI) + i], for Im(-k3Xl 0

k3exp(-k3xI) [E l(-k3xI) i], for Im(-k3Xl < 0

16 k3exp(-k3x2) [E l(-k3x2) + i], for Im(-k3x2) ) 0

k3exp(-k3x2) [El(-k3x2) i], for Im(-k3x2) < 0

17 k4exp(-k4x I) [E l(-k4xI) + i], for Im(-k4Xl ) 0

k4exp(-k4x I) [E l(-k4xI) i], for Im(-k4Xl < 0

18 k4exp(-k4x2) [E l(-k4x2) + i], for Im(-k4x2) ) 0

k4exp(-k4x4) [El(-k4x2) i], for Im(-k4x2) < 0 (3.24)

Now adding the terms in G
4

and G
5 given by

respectively, we obtain

the equations (3.17) and (3.14),

12
+ 12 13 14 + i (Iii + 112 + 121 + 122)}d8G

4
+ iG5 {I

+ .I_ i [(I 5 + 16 17 18 + i (131+ 132 141 142)}d8 (3.25)
w
/2 ,/I-4cos8

where

lij k
i exp(-kixj) j 1,2,3,4; j 1,2.

Thus, if we combine the corresponding integrands of G
4
+ iGs, we obtain

First Integral
1 J2 klexp(-kIxI)

,/1-4 cos 8
[E (-k x )+2 ri ]d 8, for I _(-klx I) > 0

m

1 2 klexp(-klX
-f ,/1-4 cos8

E (-klX )d 8, for I (-k x I) < 0
m

Second Integral I__ 2 k exp(-k x2

( ,/I-4 zcos8
[E (-kIx2 )+2 z-i ]d e, for I __(-klX2) )0

m

__l 2 klexp(-klX 2)- ,/1-4 zcos 8
E (-klX2)d 8, for I (-k x2) < 0

m
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Third Integral _I 2 k2exp(-k2xI)
,/I-4 Tcos 0

--[-E (-k2x )+2 ri ]d O,

I J2 k2exp(-k2x I)
, ,/I-4 Tcos

El(-k2Xl)d 0,

/2 k2exp(-k2x2)Fourth Integral - y ,/1-4 cos O
[-E (-k2x2)+2 ]d 0,

z’2 k2exp(-k2x2)-- ’ ,/1-4 cos 0
E (-k2x 2)d O,

Fifth Integral _..1 i k3exp -k3x

/2 ,/1-4 cos0
[E (-k3x )+2 ri ]d O,

1 i k3exp(-k3x2)
/2 ,/I-4 zcos0

E (-k3x )d 0,

k3exp(-k3x2)Sixth Integral - /2 ,/I-4 Tcos 8
[E (-k3x2 )+2 i ]d 0,

1 i k3exp(-k3x2)
/2 ,/I-4 zcos0

E (-k3x2)d O,

Seventh Integral=
1 i k4exp(-k4Xl
w
/2 ,/I-4 zcosO

[-E (-k4x )-2 rl ]d 0,

1 i k4exp(-k4x4)
/2 ,/1-4 zcos8

[E (-k4x )d 0,

Eighth Integral
1 i k4exp(-k4x2
/2 ,/I-4 cos O

[-E (-k4x2 )-2 ri ]d O,

k4exp (-k4x2)
E (-k4x2)d 8,

,/1-4 Tcos O

for Im(-k2xI) ) 0

for Im(-k2x I) < 0

for Im(-k2x2) < 0

for Im(-k2x2) < 0

for I (-k3x) )0
m

for Im(-k3xI) < 0

for Im(-k3x2) < 0

for Im(-k3x2) < 0

for I __(-k4xI) )0

for I __(-k4xI) < 0
m

for I (-k4x2) )0
m

for Im(-k4x2) < 0

(3.26)

Therefore, for Case I, we can evaluate the Green’s function given in equation

(3.15).

To evaluate the Green’s function for Case II given in equation (3.16), we need to

express the G
3

term in exponential integrals as given below:

k ek[(z+c) + i(x-a)cosO]cos[k(y_b)sln 8G
3 dk

0 0 gk (w + kUcosS)
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where

/ (J + J2 J3- J4 )d@i
0 4 cos 0-I

kl
I- i kl

exp(-kx2)dkJl exp(-kx l)dk, J2 -Z-f

k
2

k
2

(3.27)

(3.28)

and k and k
2

are the complex roots of

2
gk (m + kUcos0) 0.

Using the contour in Figure 2, it can be easily shown that

Jl klexp(-klXl)El(-klXl Im(-klXl) 0

klexp(-klXl) [El(-klXl) 2ff] Im(-klXl) < 0

J2 klexp(-klX2) El(-klX2) Im(-klX2) 0

klexp(-klx2) [E 1(-klx2) 2i] Im(-klX2) < 0

J3 k2exp(-k2Xl) El(-k2Xl) Im(-k2Xl) ) 0

k2exp(-k2Xl) [E l(-k2xl) -2ri] Im(-k2Xl < 0

J4 k2exp(-k2x2) [El(-k2x2) + 2J. Im(-k2x2) > 0

-k x E (-k x

Thus, with this information, we can evaluate the Green’s function for Case II

from equation (3.16).

4. RESULTS AND CONCLUSIONS.

The present form of Green’s function is equivalent to that used by Wu and Taylor,

but in a different form. The terms GI, G
2 and G

3
are all identical to those used by

Chen et al [8]. However, in the present study, we have combined the G
4 and G

5 terms

to correspond with the form of Wu and Taylor. It appears that our studies are quite

similar to those of Wu and Taylor, and Chen et al.

The double integral arising in the evaluation of Green’s function has been

replaced by a single integral with the use of complex exponential integrals. The

present work has provided an alternative form but similar to that of Wu and Taylor,

and has been found to be efficient for the analysis of the three dimensional potential

problem of ship motion with forward speed.
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