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SOME PROPERTIES OF THE FUNCTIONAL EQUATION

(x) i’(x) + | g(x,y,(y)) dy
0

LI. G. CHAMBERS

School of Mathematics
University College of North Wales
Bangor, Gwynedd, Wales LLS? IUT.

(Received February 7, 1989 and in revised form April 9, 1990)

ABSTRACT. A discussion is given of some of the properties of the functional

Volterra Integral equation

Ax
O(x) fCx) + I gCx, y,O(y)) dy

0

and of the corresponding multidimensional equation. Sufficient conditions are

given for the uniqueness of the solution, and an iterational process is provided

for the construction of the solution, together with error estimates. In addition

bounds are provided on the solution. The results obtained are illustrated by

means of the pantograph equation.
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i. INTRODUCTION.

A certain amount of attention has been paid to functional differential

equations [I] but it appears that very little attention has been paid to

functional Volterra Equations such as

Ax
(x) f(x) + I g(x,y,(y)) dy 0 < 0 < x (1.1)

0

The first remark which may be made is that if A > there may not be

uniqueness. For consider the equation

x

Differentiation shows that this integral equation is equivalent to the

differential equation problem

@’(x) a @(Ax) (l.2b)

with

(o) (1.2c)
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and it is well known that the problem defined by (1.2b) and (1.2c) does not have a

unique solution [2].

In this paper, only values of A such that 0 < A K will be considered.

Sufficient conditions will be obtained for the solution of the integral equation

(I.I) to be unique, a number of bounds will be found for the solutions of the

equation and an iterational process, with error analysis, will be given for the

construction of the solution. These results will be valid provided f(x) and

g(x,y,z) obey certain conditions as follows. The relevant conditions will be

mentioned before each piece of analysis.

A) Ig(x,y,z 1) g(x,Y, Z2)l g P(x) Q(y) Iz z21 P(x) Q(y) > 0 (1.3)

In part of the analysis

P(x) px Q(x) y p > 0 2:0 2:0 (1.4)

(In some places an alternative condition on = + # + > 0 is used.)

The equation (I.I) may be rewritten as

Ax Az
f(x) + r g(x,y,o) dy + r [g(x,y,(y)) g(x,y,o)] dy (1.5a)(x)

0 0

AX
f (x) + [ g (x,y,#(y)) dy (l.5b)

0

Clearly it follows from the inequality (1.3) that

B) Ig (x,y,O(y))l P(x) Q(y) IO(y)l. (1.5c)

c) Ik(x)l < MA’xS ’ 2:0 8 2:0 M > 0 (1.6a)

where
Ax

k(x) r g(x,y,f(y)) dy (1.65)
0

If A the theory is that of the usual Volterra equation which is

well known.

2. UNIQUENESS

It may be shown that, if condition A holds there is uniqueness. For

suppose that A(x) CB(x) are two possible solutions

(x,y, (y) g(x,y (y) dy (2.1)
0

x @A< Ig(x,Y (y)) g(x,y,,B(y))] dy
0

P(x) Q(y)]OA(y) (y)] dy (2.2)

0
By using the processes similar to those involved in the proof of

Gronwall’s inequality [3], it follows that leA(X) B(X) vanishes and there is

thus uniqueness.
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3. BOUNDS ON THE SOLUTION

It is possible, using Gronwall’s inequaliy to obtain functions which bound

the solution of equation (].I).

a) Suppose that condition A holds.

The equation (I.I) can be rewritten as

Ax Ax
(x)- f(x)= r g(x,y,f(y)) dy + I {g(x,y,(y))- g(x,y,f(y))} dy

0 JO
Ax

k(x) + / {g(x,y,(y)) g{x,y,f(y)l} dy {3.11
0

It follows that
Ax

IC) fCx)l IkCx)l + IgCx, y,Cyi) -gCx, y, fCy)) dy
0

and using condition A it follows that

Ax
lCx) fCx)l IkCx)l + [ PCx) Q(y)lCy) fCy)l dy (3.2)

0
Let

IO(x) f(x) P(x) O(x) (3.3a)

Ik(x)J P(x) h(x) (3.3b)

Using the relations (3.3a), (3.3b) and (2.3b), the inequality (3.2) may be

rewritten as

whence

Ax
U(y) @(y) dy (3.4a)

x
O(x) K h(x) + U(y) O(y) dy (3.4b)

0
The inequality (3.4b) is in a form suitable for the application of Gronwall’s

inequality. Multiplying by U(x) and writing the result as a first order

differential relation for

x
@Cx) / UCy) @(y) dy (3.4c)

0

it follows that

r u(y),(y)dy r h(y) Y(y) U(z) dz dy (3.51
0 0 y

It follows from the inequalities (3.4a) and (3.5) that

O(x) h(x) + [ h(y) U(y) U(z) dz dy (3.6)
0

whence there follows the bounding inequality

I(x) f(x) Ik(x) / P(x) [ I(y)l Q(Y) exp PCz) Q(z) dz dy.
0 y

(3.7a)

In the special case P(x) p Q(y) and I (x)l s differentiable the

right hand side of (3.7a) becomes
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d (Ax-y)IkCx) -IkCx} + IkCo)lJx+ IkCY)lep dy. (3 7b)
0

b) Suppose that condition B holds. Then, using the relations Cl.5b) and

(1.5c), it follows that

Ax
ICxl I Cxl /; CxC Icl . c.

It will be noted that if f (x) is zero the inequality (3.8) implies that

@(x) vanishes.

By exactly the same process as the inequality (3.7a) was deduced from the

inequality (3.2), it follows that

]#Cx)] K ]f (x) + PCx) ; ]f (yl] QCy) PCz) QCz) dz dy C3.9a)
0 y

and in the special case mentioned above, the right hand side of this becomes
, ePAX Ax dIf Cx)l- If Cx)l + If CO)I + If (y)lepC’x-y) dy C3.9b)

o @
A simplification occurs Lf P(x) when

#(x) K If (x) + f If (y) QCy) QCz) dz dy C3. lOa)
0 y

which can be rewritten as

ICx)l If Cx)l- If Cx)l + If Co)I exp QCz) dz
0

+ If (y) exp Q(z) dz dy (3. lOb)
o - y

if If (x) is dtfferentiable.

4. CONSTRUCT ON OF SOLUTIONS BY AN TITIVE PROCF.SS

a) It wii1 now be shown that, if conditions A B and C are satisfied, the

sequence of functions #n(X) defined by

Ax

#n+ICx) fox) + gCx, Y, On(y)) dy n > 0
0

(4.1a)

@0(x) f(x) (4. Ib)

converges to the solution #(x) of equation (I.I). It is also possible to use

this sequence to obtain a further bound for l#(x) (In fact it is possible to

start with an arbitrary #o(X) in which case there wil be slightly different

results.

Let

n(X) ]#(X) @n(X)l
XnCX) may be regarded as the error involved in stopping at the nth

iteration.

Then

,Ax

n+iCx) J {gCx, y,(y)) g(x,Y,@n(y))} dy
0

(4.2)

(4.3a)
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Now

x

px= y n(y) dy (4.3b)

Suppose that the range of interest is 0 K x K c Then it follows that,

using the inequality (3.7a),

Zo(X) k + P [ Q(Y) PCz) dz dy (4.4a)
max max

0 y

where k P are respectively the maximum values of Ik(x)l and P(x)
max max

over 0 x c

C(c) say (4.4b)

Look for a solution of the recurrence inequality (4.3b) of the form

s t

Xn(X) C A n nx (4.5)
n

Substitution of the inequality (4.5) in the inequality (4.3b) Eives
Ax s t

(x) f px y C A n n
n+l

0
n

y dy (4.6a)

s x tn+
pC A n

x
n

y dy

t +6+1s n
n tAX)

pC A x (4.6b)
n t + +

n

The form (4.5) will be preserved if
pC

n (4.7a)Cn+l t + +
n

tn+ tn + = + + (4.7b)

Sn+ Sn + tn + + (4.7c)

Comparison with the relation (4.4b) gives

CO
C (4.8a)

to 0 (4.8b)

so 0 (4.8c)

Solution of the recurrence relations (4.7) with the initial conditions (4.8)

gives the following results

C
pnc

(4.9a)
n n-1

1-1" +" + ’1
.--0
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t n( + + 1) (4.9b)
n

n(n I)
s ( + + I) + n( + I) C4 9c)
n 2

and thus the error in stopping at the nth approximation has been defined by (4.5)

and (4.9). These results hold for x g c In particular they hold for x c

and so it follows that
s t

n n n

XnCC), < p A c C(c)
n-1

1-r +" + ’}
,’-0

c however is arbitrary and can be replaced by x and so

s t
n n n

n(X
p A x C(x)
n-I

1-1"
.--0

where C(x) is defined by the relations (4.4). It can easily be verified

that if A K and = + + > 0 the sequence Xn(X) converges to zero.

The sequence functions can also be used to determine a bound for l#(x)
Consider the sequence

where

and

n

n+lCX) lCX) + [ @mCX)
m=l

(4.9d)

(4.9e)

(4.1On)

@m (x) #m+l(X) #m(X}(4. lOb) (4. lOb)

g(x,y,f(y)) dy (4.10c)

f(x) + k{x) (4.10d)

Then

If the series

n

converges, it dominates the series

n

n

ml @m(X)

which must also converge. Therefore the sequence #n+l(X) converges and it

follows from the relation (4.1a) that the limit is the solution (x) of equation

(I.I). It follows from the inequality (4.10d) that there is a further bound to

l#(x) namely

Following the analysis of equations (4.3) it can easily be shown that
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and so

x

@o(X) #l(X) #o(X) #l(X} f(x)

Ax
I g(x,y,f(y)) dy k(x)
0

l@o(X) K M AT x
S

In exactly the same way as previously consider the inequality sequence

u v

l@n(X)l Mn A n x n

Using the relation (4.12a) in the same way as the relation (4.6a) was used

pMnM
n+l v +6+

Vn+l vn + + +

+v +6+1.Un+ Un n

The initial relations are now

(4.12a)

(4.12b)

(4.12c)

(4.13)

(4. 14a)

(4.14b)

(4.14c)

Thus

M
0
=M

Vo=S
Uo=

(4. 15a)

(4. 15b)

(4. 15c)

n
M p M
n n-1

=0

v n(= + + 1) +
n

n(n I)
u (= + + I) + n( + + I) +
n 2

It is not now difficult to see that the series

(4. 16a)

(4.16b)

(4. 16c)

lm(X) converges for 1.

It is possible to use the results (4.15) to obtain a simpler bound by using

further inequalities.
n+l n+l

p M p M
Mn+l n n

"" [v + /3 + 1] (. + 1] N {(( + /3 + 1) + / + I}

=0 =1

n+l
p M

( + 1)( + + 1)n n

(n 1) (n)
( + + 1) + (n + 1)( + + 1) +Un+l 2

(4.17a)

> n( + / + I) + (n + 1)(,8 + B + 1) + ’
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Thus

where

Thus

n(= + 26 + B + 2) + (6 + + + I)

Vn+ n( + } + 1) + ( + + S + 1)

(4. 17b)

(4.17c)

p M A+;+8+I x=++S+ll#m+l(X)l <
6 + gn(X) (4.18a)

//{(z + + 1)
gn {x)

{pk+2++2 x++l }n
nl

(4.18b)

m[=1 lm(x)l PM
6 + A++8+I x=+++I (4.19)

exp {pAa+2++2 xa++(++l)}
and from this a bound can be obtained using the expression (4.10d). It may be

noted that, even if f(x) Is zero and there Is no free term in the integral

equation (1.1) it is possible if the equation is non-llnear to rewrite the

equation in the form (3.1) and proceed as indicated. If a relation of form A

holds however, the only solution possible, when the free term is zero, is the zero

solution.

5. THE SPECIAL CASE OF A LINEAR EQUATION

In this case

g{x,y,#{y}} K(x,y) #{y) (5. I)

and equatlon (1.1} ls of the form
Ax

f(x) + / K(x,y) #(y) dy (5.2a)(x)
0

The alternatlve form corresponding to equatlon (3.1) Is

Ax
#(x) f(x} k(x) + I K{x,y} {#(y) f(y)} dy (5.2b)

0

k(x) + G{x} say (5.2c)

where
Ax

k(x) [0 K(x,y)f(y)dy (5.2d)

If A and condition A holds, that is

IK(x,y}l P(x} Q(y} (5. zf)

the solution will be unique, and evldently if f(x} is zero, the solution

will be the zero solution. Furthermore the whole of the theory of section 3 and

section 4 remains valid.

The relation {3.7a}, which is a bounding inequality for l#(x) f(x) still

holds, and, by analogy, it follows from equation (5.2a}, on taking modull and

applying the Gronwall inequality that

If(x)l + P(x) [ If(Y)l Q(y} P(z) Q(z) dz dy (5.3)l(x)l
0

The Iteratlve solution is given by
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@n+l K{x,y) @n{y} dy n > 0
x

(x) fCx} + |
0

#o(X) f(x)

amd it can be shown that

bn(X)

n _mx
#n(X) f(x) + Z ,[ Km(x,y) f(y) dy

m=l 0

is of the form

(5.4a}

The values of A and K may be obtained by substituting the relationm m
(5.4c} into the Right Hand Side of equation {5.4a}.

@(x} f(x) + r K(x,z) f(z} +
m

Km(z,y
0

m=l
0

Ax n AA x
f(x)+ K(x,y) f(y)dy + Z [ m

0 m=l 0
f(y)

(5.4b)

Let

[5.4c]

dz 5.5a

YA-I
K(x,z) Km(z,y) dz dy

m

(5. Sb)

The reversal of the order of integration is in fact valid for fairly wide

conditions on K and f It can be seen that the Right Hand Side of the

equation {5.5b} can be rewritten as

provided that

n+ _AmX
f(x) + Z Km(x,y) f(y)dy

m=l 0
(5.5c)

A Am (5.6a)
m

m > (5.6b)

and the K are defined by the iterative sequencem
Ax

Km+l(x,y) ] K(x,z) K (z y) dz
-I m

yA
m

and

Kl(X,y) K(x,y) (5.6c)

and thus the solution of equation (5.1), if the appropriate conditions hold is

Ax

f(x) + Z f Km(x,y} f(y) dy (5.6d)
m=l 0

The error in stopping at the nth term is given again by the relations (4.5)

and (4.9).

Consider now how the theory of sections 3 and 4 can be applied when K(x,y)

and f(x) obey the fairly loose condition of boundedness.
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IK(x,y) < p (5.7a)

If(x)l (S. Tb)

It follows immediately that

Ik(x)
x

K(x,y) f(y) dy
0

pkx (5.7c)

and the C defined in (4.4b) is given by

C < p,c + p e
p (Ac-y)

dy pAc e
xpc

(5.7d)
0

G(x) as defined by equation (5.2c) now obeys the inequality
Ax

IGCxI < p I e
p(Ax-y) dy [epx- 1] (5.7e)

0

Thus, the bound given by equation (5.2b) becomes

l(x) f(x)l < pkx + [epkx I] (5.8a)

and the bound given by the inequality (5.3) becomes

I (x l l (x)l + }
The following results follow for the various quantities defined in equations

(1.4) and (1.6)

o: 0 (5.9a)

3 0 (5, 9b)

’I’ (5.9c)

I (5.9d)

M p (5.9e)

The relevant results from equations (4.9) become

n CpAeApcc p (5.10a)
n n-1

t n (5. lOb)
n

2n(n I) n + n
s + n (5.10c)
n 2 2

giving
n+l

C < p CAeAPC (5. lOd)
n n!

and the error involved in stopping at the nth member of the sequence in the

iterative solution is given by

[n2+n]
Xn(X) g PI!AeApc An! C(px) n (5. fOe)

The bound given by (4.10) can also be obtained. Equation (4. lOc) gives
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g(x,y,f(y)) dy

K(x,y) f(y) dy

K (I + pax) (5.11a)

and equation (4.19) gives

giving a further bound

l(x) p + pAx + p2A3x2 e
pA3x

(5. Iic)

6. MULTIDIMENSIONAL EQUATION

The theory outlined above may easily be extended to multidimensional systems

of equatlons.

Consider the n dimensional system of equations

Ax
Cx) (x) + | K(x,Y,(Y)) dy (6.1)

0
were

(x) (I @n
K satisfies the conditions

llg(x,Y,l) g(x,Y,2)ll K P(x) Q(y)ll1 211 (6.2a)

lla(x,y,a)ll R(x) S(y)IIII (6.2b)

and

where

llk_(x)ll MArxa (6.2c)

x
(x) | g(x, y,(y)) dy

0

II II denotes an appropriate norm.

In exactly the same way as previously it follows that

ll(x) (x}ll ll(x)ll + P(x) 0 llk(y)ll Q(y) exp P(z) Q(z) dz dy

Y

which corresponds to (3.7a) and

ll(x)ll ll(x)ll + R(x) ll(y)ll S(y) exp R(z) S(z) dz dy
0

which corresponds to (3.9b).

An iterative sequence function vector may be generated

Ax
n+l(x) f(x) + g(x,Y,n(y) dy n 2 0

0

(6.2d)

(6.3)

(6.4)

(6.5a)



38 LL. G. CHAMBERS

0(x) Cx)

The error in stopping at the nth iteration

(6.5b)

Zn(X) is defined as II(x) n(x}ll
and identical formulae to those of (4.4) to (4.9) are obtained, save that

IIk_(x)ll replaces Ik(x)l
Similarly

n

IIn+l(x)ll I1l(x)ll + IIm(x)ll (6.6a)
m=l

where

m (x) m+l(x) m(X) (6.6b)

giving

II(x)ll Ill(x) + k_(x)ll + [ IIm(x)ll (6.6C)
m=l

a bound or the infinite sum being given by the expression (4.19), when

P(x) p

For a iinear system, the set of equations assume the form

Ax
(x) f(x) + f l(x,y) (y) dy (6.7)

0
where K(x,y) is a matrix.

One bound is given by

II{(x) (x)ll < IIk(x}ll + S(x) (6.8a)

where
Ax

and G(x) is defined by {5.2c), f(y) being replaced by llf(y)ll and another

bound is given by

IIt(x)ll < II(x)ll + S(x) (6.8c1

The solution sequence becomes

Ax

n+l(x) f(x) + | K(x,y) {n(y) dy n > 0 (6.9a)
0

{o(X) (x) (6.9b)

and if

IIK(x,y}ll p (6. lOa)

II(x}ll (6. lOb)

the results of (5.7) hold, giving

II(x) -(x)ll pAx + {epax- I} (6.11a)

II(x)ll II(x)ll + {e
pax

I} (6.11b)

II(x}ll p + px + p2A3x2epA3x (6. llc)

It can easily be shown that for small x (6.11b) gives the tighter bound for

ll(x)ll but for large x (6.11c) gives the tighter bound.
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7. APPLICATION TO EXAMPLES

A) Consider now the generallsed pantograph equation

8’ (x) a 8(Ax} + b 8(x) (7. la

This equation has been discussed extensively [2], [4], [5].

Let

e(x) e
bx

#(x) (7. Ib)

Equation (7.1a) then assumes the form

#’ (x) a exp[b(A I)] #(Ax} (7. Ic)

and if e(O) #(0) this assumes the integral equation form

#(x) + ak
-1 Ax exp (b’y) (y) dy

0
where

(7. ld)

b" b(A 1) (7.1e)

b c + i b" c" + i" (7. lf)

The alternative form for (7.1d) becomes

(x) k(x) + aA-1 x exp (b’y)[#(y) I] dy (7.1g)
0

where

k(x) aA_l Ax exp (b’y) dy (7.1h)
0

Taking moduli, equations (7.1d) (7.1g) (7.1h) take the respective forms

ICx)l + I1 x- x exp (cmy)Icy)l dy C7.2a)

ICx) 11 Ik(x)l + lalX_l yx exp (c’y) I#(Y) 11 dy (7.2b)

Ik(x)l lalA_l ;Xx exp (c’y) dy lal (Xc)- [exp (c’Ax 1)1 (7.2c)
0

In the special case of c zero, it can easily be seen from the inequality

(7.2c) that

IkCx)l lal x C7.2d)

and the inequality (7.2b) becomes

ICx) 1 Ilx / lal- x I(Y) 11 dy (7.2e)
0

and application of the Gronwald-Bellman-Reid inequality gives

I,Cx) 11 lal x + lalx_l [Xx laly [exp lalx (x y)l dy
0
Ax

I1 xcl x) + ; I1 exp 11- Cx y) dy
0

lalxCl x) + XCe lalx 1). (7.2f)

Clearly, because of linearity, the results for #(0) arbitrary can easily be



40 LL. G. CHAMBERS

obtained.

The bound given by (3. lOa) becomes, on uslng the inequality (7.2a),

I,cxl exp I1- exp (c’z) dz

or in the special case of c zero

(7.3a)

(7.3b)

Using the fact that

Iocxl jx I,Cxl (7.3c)

a bound for O(x) can easily be obtained.

The bound given by {3.7a) becomes, on using the inequalities (7.2b) and

(7.2c)

Icx zl Ilco’ -z txp co.xx z

lalCxc,)- [exp(c’Ay) l]exp(c’y)exp lal x-
Xx

exp(c’z)dz dy
0

(7.4a)

In the special case of c zero, the formula (3.7b) may be used, giving

Ic 1 [ell ,). c.
Ax

-/-/ I1 exll- C-IIlxCl
0

IlxC / <elal >. C.o

Slightly more complicated formulae will follow for the corresponding bound

for O(x}

B} Consider now the many dimensional 8eneralised pantograph equation

O’(x) AOClx) + Be(x) (7.5a)

where O is an n dimensional vector and A and B are constant complex square

matrices of order n An analytical discussion of this has been given in [6]

Bounds associated with this equation may be obtained by extensions of the

methods discussed previously.

Suppose that, first of all a suitable linear (possibly complex)

transformation has been made so that B is diagonal. If B is degenerate, all

that happens is that some of the diagonal terms will be zero.

Then equation (7. Sa) may be rewritten as

n
O’(x) a 8 (Ax) + b 8 (x) r n (7.5b)
r

s=l
rs s r r

with an obvious notation.

Let

8 (x) exp (b x) @r{X) (7.5c)
r r

The set of equations (7.5b} then assumes the form

n
exp (brX} #r(X} 2 mrs exp (bsAX) sCAX)

s=
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or

where

n

r(X) exp s(kX)
s=!

ars lrsX

If

=b -b/A
--FS S F

Cr(O) c
r

equatlon (7.5d) takes the form

n -I Ax

Cr (x) cr + [ ars A I exp (,rsY)#s(y)dy
s=l 0

The alternative form for equation (7.5g) is

n -I x#r(X) Cr kr(X) + [ ars A exp (rsY) {#s(y) cs} dy
s=l

where
n -I Ax

kr(x} I ars ; exp (rsY)cs
dy

s= 0

Let

max Re rs 1
r,s

Then equation (7.5g) becomes

n Ax

I,Cx)l Icl / 7. lasl - exp c.)I%C)1 d.
s=l 0

Let

max la a
rs r

Then the Inequality (7.6b) becomes

I(x)l Ic + a exp (y) I,s(Y)l dy.
r r

0 s=l

Let
n n n

[ a a [ Icl c [ I,cx)l ,Cx).
r=l

r
r=l r=l

Then it follows from the inequality (7.6d) that

(x) c + aA-I tax exp (BY) (Y) dy
0

It follows immediately that in the same way as previously

(x) < c exp aA-I exp (z) dz

A second bound follows from equation (7.5h).

Let

r(X) c
r @r(X)

(7.5d)

(7.5e)

(7.5f)

(7.5g)

(7.5h)

(7.5i)

(7.6a)

(7.6b)

(7.6c)

(7.6d)

(7.6e)

(7.6f)

(7.6g)

(7.7a)
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Then equation (7.5h) assumes the form

n Ax

r(x) =kr{x) +
s=1
[ ars A-1 0 exp (,rsY),s(y)sy.

In the same way as before

A- x n

s--1

With an obvious notation, it follows that

(X) K k(x) + aA-I x exp (BY) (Y) dy

Thus, us the nequalty (3.6), follows that

(x) k(x) + Ax k(y) aA-1 exp (y) exp aA-1 exp (z) dz dy

0

and, if k(x) is differentiable, the relation (7.7e) can be written as

O(x) 0 k’(y) exp ak
-1

exp (z) dz dy

Clearly, if 0 these formulae simplify.

Let

(7.7b)

(7.7c)

(7.7d)

(7.7e)

(7.7f)

Alternative bounds, based on the results of section 6 may also be obtained.

(x) exp {Bx} (x)

where exp {Bx} is interpreted as

= BSxs
+ )

being the unit matrix of order n

It ls not difficult to see that equatlon (7.5a) assumes the form

(7.8a)

(7.8b)

’(x) exp {B(;t- l)x} (Xx) (7.8c)

This can be rewritten, using the initial condition as

kx

(x) (0) + AA- exp (B’y) (y) dy
0

where

-1B" B(1 X

(7.8d)

(7.8e)

It follows from (6.8) that

Ax
k(x) I AA-I exp (Bmy) (0) dy

0
x Z0 B’SysAA- ’s! (0) dy

s=

AA-1 Z B’S(Ax)S+1
s=0

(s + 1)! (01

(7.8f)

(7.8g)

Thus
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IIk(x)ll IIAII A-1 s=O IIB’llS(Ax)S+l(s+ 1)! -I1^11 IIB’I1-1 IItll(o)ll [expllB’llx>

(7.8h)

If x< c

IIk(x)ll < IIAII - exp {lIB IIc} IIt(o)ll dy

Thus the constants for the inequality (6.2c) are given by

IIAII ),- exp {llBllc II(0)II " 8

(7.)

(7.8j)

Comparing equation (7.8d) and equation (6.7) it can be seen that

f[x)= (0) (7.9a)

and

K[x,y) A A exp (B y] (7.9b]

Now

fiR A-I exp (B y)ll < llAll A exp {lIB fly} (7.9c)

and as

y K Ax K Ac (7.9d)

it follows that

IIK(x,y)ll IIAII X
-1 exp {IIB’II Xc} (7.9e)

Thus, the quantities p and defined in (6.10) are given by

p IIAII X-1 exp (IIB’II (7.9f)

and

IIC0}ll (7.9g)

Now the relations (6.11) will hold for x K c In particular, they hold for

x c

The inequality (6. lla) becomes

l(c) fCc)ll < pAc + [epAc 1] (7.10a)

The inequality (6.11b) becomes

IICc)ll < II_fCc)ll + [epXc 11 (7. lOb)

and the inequality (6.11c) becomes

IIt[c)ll K p + pAc + p2A3c2epA3c (7.10c)

where p is in fact a function of c defined by (7.9f). c however is

arbitrary and so the inequalities (7.10) give bounds for all positive c

8. DISCUSSION

Because of the way in which the bounds discussed in this paper have been

derived, namely by means of a generalisation of Gronwall’s inequality, they

involve exponentials with positive coefficients, associated with an increasing
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divergence from the initial values of the dependent variable as the independent

variable increases. Consequently, they would not be suitable, except near the

initial value of the independent variable for discussing problems such as that

defined by

dy
d-- y(x) y(O) (8.1a)

which is equivalent to the integral equation

y(x) A-1 lAX y(u) du (S. Ib)
0

Generally, where solutions are asymptotically stable, and converge to some limit

for large x the bounds discussed here will become irrelevant for large enough

x This would be equally true of multidimensional equations for which the

solutions are asymptotically stable.

If, however, the equations are such that solutions are unstable as would,

for example, be the case when all the elements of the A and B matrices of

(7.5a) are positive the bounds here will always be relevant. It may be noted

that sometimes one bound is better, sometimes another. For example, it can be

seen, without much difficulty that if c is near zero, the bound given by the

inequality (7.10b) is tighter than that given by the inequality (7.10c) whereas if

c is large, the reverse situation holds.
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