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1. INTRODUCTION.

Let S be the class of normalized functions regular and univalent in the unlt disc

D z z < and S the subclass of starlike functions. Denote by P(), the

class of functions which are regular in D and such that for h P(B), h(O)

and Re h(z) > 8 for z D. We write P P(O).

Bazllevlc [I] showed that the class of normalized regular functions f with

representation

f(z) =f p(t) g(t) = t
-I dt) = (I.1)

,
when > O, g S and p P for z D forms a subclass of S. We denote this class of

functions by B(). See also [2].

Let > 0. Then it follows easily from (I.I) that f B() if, and only if,,
there exists g S such that for z D

Re z f’(z) > 0. (1.2)
fCz)-gCz)

In [3], Singh considered the subclass Bl(e) of B(s) obtained by taking g(z) z in

(1.2). Thus f BI() if and only if, for > 0 and z D
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I- of
Re z (z) > O.

(z)

We extend this class of functions as follows:

DEFINITION. Let f be regular in D with

f(z) z + n=E2 anzn (1.3)

Then if > 0 and 0 B < I, f e BI(,) If, and only if, for z D

-uf
Re z ’(Z)_ > B. (,.4)

(z)

We note that BI(I,O) R, the class of functions whose derivative has real part [4].

BI(I,) was considered in [5]. Zamorskl [6] and Thomas [7] solved the coefficient

problem for f B(), in the case when N is a positive Integer. In [7], sharp

distortion theorems were obtained for f BI() for > 0. The object of this paper

i5 to extend these results to the class BI(,8). The class BI(,B) has also recently

been considered in [8].

2. RESULTS.

Distortion Theorems

THEOREM I. Let f BI(,). Then for z re D, O r < I,

(f) Q2(r) If(z) Ql(r)
(ii) if 0 <

ra-1 Q2 (r)
a (l-r)(l-B)(1+r) + B) (]f’(z) ’ r Q1

and if

(r) = (+r)(-B) B)(l-r) +

r Q1 (r) (l-r) (l-B) (-1 (x

(l+r) + B] If’(z)l r q2 (r) (l+r) (l-B)
(-r) + )

where

and
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Equality holds in all cases for the function f defined by

f (z) af t
’I ((l+tei)(l-B) + B)dt)

(l-te 10)

where 0 or

(2.1)

PROOF.

(i) Since f BI(,8) and it follows from (1.4) that

l-f(l-[)p(z) z ’(z)
l-af(z)

for z D and p P.

Thus

f(z)a $ a-Ia t (p(t)(1-8) + 8)dt (2.2)

l+r
for z D, (see eg. [9])and since p(z)l l-r

Q1 (r)

To obtain the left-hand inequality in (i), write

h(z) z ’(z) (2.3)
I-4f(z)

Then (1.4) shows that h p(). Thus from, [5] (Theorem with c=1-28 and n=l), we

obtain

(l-r) (1-3)
(1+r) + I lh(z)l (i+r)(1-1)

(l-r)
+ S (2.4)

Hence from (2.3) and (2.4) we have

d." f(z) (1+r)
(2.5)

f(zl )a, it follows that since f is univalent, the llne segment from 0Writing

to lles entirely in the image of D. Let be the pre-lmage of then by (2.5)
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which is the left-hand inequality in

i8
From (2.1) we have for z re

(2.6)

if 0 < a I, the inequalities follow at once from (2.6), (2.4) and

If a ) I, (1) gives

1-a -a

ql (r) If(z)ll-e Q2 (r) (2.7)

Applying (2.4) and (2.7) to (2.6) gives the required result. Equallty is attalned in

and (i) for f0 and In (II) for f0 when 0 < and for f when a I.

The following shows that as a 0 the bounds In Theorem are asymptotic to the

distortion theorems for starlike functions of order 8 > 0 (see eg. [9]).

THEOREM 2. For 0 r < 1, let Ql(r) and Q2 (r) be defined as in Theorem I. Then

as a+O

r(I) Ql(r)a~ 2(I-)(l-r)

(Ii) Q2(r) (1+r)2(I-)
(Ill) Ql(r)~ Qz(r)~ 1.

PROOF.

We prove (i), since (l i) and (111) are similar.

As c*+O

-2(l-8)log(1-r) r
re 2(i-)(l-r)

COROLLARY.

Suppose that f(z) for z e D, then
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PROOF.

Let a > O, and be a point on the boundary of f(D) closest to the origin.

Let L denote the straight llne from 0 to and L its pre-lmage in D.

once, Theorem (i) gives II Q2(r) =
Thus Theorem 2 (li) gives

as o. O.

3. A COEFFICIENT THEOREM

n n
Notation: n=E0 n z (( n0 gnZ means Inl I%1 for n O.

THEOREM 3. Let f e BI(, and be given by (1.3) where N is a positive integer.

Suppose also that for z D,

fo(Z) z + 0= YnZ
n

where fo(Z) is given by (2.1).

Then (i) f(z) (< f0(z),

and

PROOF.
N n

z
n jm %znl m

Write p(z)= + k=Zl pkzk Then (2.2) gives

Thus

f(z)N z a-1 k=: fo t [[I + kl Pkt (1+8) + ]dt

k4
’:k z

=’" [S(l.-Ig)zN + (I-13) k=| + gNzN
k+N

k

1 + (I-B) Pkz
z N kl)

(k+S)

(! -8)f(z) z(:+ N
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and s l,ce p P, we have Pkl 2 [6]. Hence

k

f(z) z(l+ (1-) PkZ N
(( z[l+N k=l (k)

(li) Puttlng a = in (2.1), we have

k2z N
fo(Z).

Let

n

f0(z) z + nZ2 Tn zn z[l +- 2(I-8)N n=El(R)
(n +z )I

n

v N n (n +W)

N

n

1" n v Dn (V)zn (v 0, I, 2, 3 .... ).

Thomas [7] proved that D
(v) v -I

n
(log n) as n and so this gives

2(I-8) IN (N) (log n)
N-1

as n -.
N n
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