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ABSTRACT. Let X be a real Banach space and (Q,u) be a finite measure space and ¢ be a
strictly increasing convex continuous function on [0,®) with ¢(0) = 0. The space
L,(u,X) is the set of all measurable functions f wirh values in X such that

¢

| ¢(||c—lf (t)")du(t) { » for some c > 0. One of the main results of this paper is:
Q

"For a closed subspace Y of X, L (u,Y) is proximinal in L (u,X) if and only if

Ll(u,Y) is proximinal in Ll(u,;YH As a result if Y¢is reflexive subspace of X,
then L¢(¢,Y) is proximinal in L¢(u,x). Other results on proximinality of subspaces
of L¢(u,X) are proved.

1. INTRODUCTION.

Let ¢ be a convex Orlicz function, i.e. ¢ is a continuous, strictly increasing
convex function defined on [0,») with ¢(0) = 0 and let (Q,p) be a finite measure. For

a real Banach space X, let
L¢(u,X) = {measurable function f: Q » X: é ¢(||c_lf(t)|‘)du(t)  »
for some ¢ > 0. Define a norm on L¢(u,x) by
el = tnf € > o: {2¢<||c‘1f<c)||)du(:) <1

A subspace Y in a Banach space X is called proximinal if for each x € X there is
at least one y € Y such that I'x - yll = d(x,y)=inf {'lx-h", h e Y}. The element y
is called best approximant of x in Y. Set P(x,Y) = {y € Y: d(x,y) = llx-yll}.

In this paper we prove that for a closed subspace Y of a Banach space X,
L¢(u,Y) is proximinal in L¢(u,x) if and only if Ll(u,Y) is proximinal in Ll(u,x). In
[1] Deeb and Khalil, have shown the same result for the 1linear metric

space L, (yu,X) with ¢ modulus function and some Banach space X. As a consequence, if Y

¢
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is a reflexive subspace of a Banach space X then L¢(u,Y) is proximinal in L¢(u,x).
The proximinality of some closed subspaces in X are discussed. Throughout this
paper Q will be the unit interval [0,1], ¢ convex, strictly increasing with
$(0) = 0, ¢(1) =1 and X is a Banach space. See Deeb and Khalil [1,2,3], Light and
Cheney [4], and Khalil [5] for more details about proximinality and related topics.

2. PROXIMINALITY IN L¢(u,X).
LEMMA 2.1. 1If ¢ is coavex, then L¢(u,X) < Ll(u,X)-
PROOF. Let f ¢ L¢(u,X), then
1 -1
[ o] ]e f(t)'|)du(t) <M for some c and some M
0

By Jensen's Inequality, [6]

1 1
o e ecer|fauced) < [ o¢||e e ||rauce) < u
0

or
1 -1
8¢ g [l ecer || duce) < .
Hence
Lo »
({ [leT o) || duce) < o7 ).
Therefore

1
[ @] faue) < c 47 < =
0

Hence f ¢ Ll(u,x).

LEMMA 2.2. Let Y be a subspace of X, then for each f ¢ L, (u,X)

¢
! -1
dise(f, L (u,Y)) = {nfie > 0: [ ¢f e dise(£(),V)|du(e) < 1}.
0
PROOF. For any g ¢ L¢(u,Y) we have,
1
lle=el|, = tnic > 0: | Ale™eece) - geN|]duce) < 13
0
1
> tnf {c > 0: [ ¢(fc latse(E(t), 1) )duCe) < 13.
0

By taking the infimum over g ¢ L¢(u,Y) we get

1
dsE(E,L (1, 1)) > dnf {c > 0: [ o(|c atse(e(e),1)])doCe) < 1)
0
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Conversely, let € > 0 and let f' be a simple funcrion in L¢(u,X),suuh that
n
Hf—f'“¢ < €. Write f' = 121 X1 Xqo where X; € X and x; are the characteristic

functions on A; which are disjoint measurable sets in [0,1). It is clear that

f' e L¢(p,x). Select hi € Y such that
¢(c—lei - hil') < ¢[c—‘dist(xl,Y) + €], for some c > O.

n
Let g = 12 xghy» then

O —

n —
o} @) | auce) = L sl e | Pua) < =
i=
Hence g € L¢(u,Y), then
HNegll, = He-er v e - gl], <ev |l -ell,
But dist(f, L (u,Y)) < l'f—g'|¢
1
<e+nf {e>0: [ o ] |E (®0)-g(®) | duce) < 1}
0
n 1 -1
=e+1nf {c>0: ) [ ot ||xmn | Pauce) <13
=1 0
T
= ¢ + taf{c > 0: § o(c llxi-hi||) u(a;) <1}
1=1
< e+ inf {c > O: % ¢[c-ldist(xi,Y) + €] u(Ai) <1}
i=

1

= e+ inflc > 0: [ ofc 'dist(£'(£),Y) + eldu(e) < 1}

Ce+infle > 0: [ oe taise(£(e),Y) + |[£CE) - £'(e)|[+e)au(e)<1}.

<e+infle > 0: [ ¢(c NdIst(ECE),Y) + 2e)du(e) < 1}.

Ot OV = O

Since € is arbitrary, we have
.
dist(f,L¢(u,Y)) < inff{c > 0: [ ¢(c ~dist(£(t),¥))du(t) < 1}.
0
REMARK 2.1. For f ¢ L¢(u,x),
1
||f||¢ = tnf{c > 0: [ ¢(ll£%5211)du(:) <1}=c,
0

1
such that | ¢¢Ll£é£lll)du(c) = 1.
0 o
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COROLLARY 2.1. Let Y be a closed subspace of X. To an element f of L¢(u,x), g
of L¢(u,Y) {s a best approximant of € in L¢(u,Y) if and only if g(t) is a best
approximant of f(t) in Y.

PROOF. Let g(t) be a best appoximant of f(t) in Y. This means that

Ilf(t) - g(t)|' < ||f(t) - y" for all t and for all y ¢ Y.

It follows that for any h € L (u,Y)

]
[lEce) - go)|| < [|£¢e) - ne)|| for a1l .
Since ¢ is increasing, we have
s o) - g | < o |£e) - n(e)||) for any ¢ > o.
Then
1 -1 1 -1
[ o™ ||ECe) - ge)|auce) < [ a7 |ECe) = n(e)||rduce).
0 0
Therefore
1 -1 1 -1
inf{c > 0: [ ¢ ||£Ce) - g(&)|]) duCe) < 1} <inf {c > 0: [ o™ ||E(e)
0 0
—h(t)] |du(t) <1}
or

||€ - 3||¢ <) - h||¢ for a 1l h e L (u,Y).

Conversely, let g be a best approximant of f in L¢(u,Y), then
dis:(f,L¢(u,Y)) = "f-g||¢. By Lemma 2.2 and the previous remark, we have

1
‘lf—g‘l¢ = inf{c > O: f ¢(c_ldist(f(t),Y))du(t) <1} = <, such that
0
1 1
[ oLECIE®Iy ey = [ o LSEECE Dy ey -y,
0 o 0 co
1
Hence [ [o(c;!|£C)-g(0)||) = oCe  dist(E(e), 1) 1duce) = 0
0

since ¢ is strictly increasing and ¢(c;l||f(t)~g(t)|‘) > ¢(c;ldist(f(t),Y))
then 'If(t)—g(t)" = dist(f(t),Y).

Now we prove the main theorem of this paper.
THEOREM 2.1. Let Y be a closed subspace of X, then the following are equivalent:
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(1) L¢(u,Y) is proximinal in L¢(u,x)
(ii) Ll(u,Y) is proximinal in L‘(u,X)-

PROOF. (i1) » (1). Let f € L¢(u,X), then by Lemma 2.1 f ¢ Ll(u,x). By the

assumption, there exists g € Ll(u,Y) such that
le=gll, < |l£-n]|, for every n e Li(u,m.
By lemma 2.10 [3], we have
[1£e) - ge)|| < ||£Ce) - y|| for all t and for all y € Y.

Hence by Corollary 2.1 it follows that g is a best approximant of f in L¢(u,Y).

Conversely: (i) » (ii). Define a map

LX) % where Fny < 8T ULFO )
J:5,X) = Ly X) by J() = F where fi =21 A s

if f(t) # 0, and zero otherwise. Then for c = 1

1 " 1 -1
I o) | TLECed| rauce) = | ¢<]L—$i-rf¥{§§fflll £(0)| auce)
0

o} e | rauce) < =

O~

for all f € Ll(p,x). Hence J(f) € L¢(u,x). Since ¢ is strictly increasing, it
follows that J is (1-1). To show that J is onto, let g € L¢(u,x), then take

leCe)])

£(e) = g(t)

g(t)

if g(t) # 0 and zero otherwise. Clearly f ¢ Ll(u,X) and

-1
I(E) = fizg ) £(e)
~1
) (ffl!g(f}¥ll g(";(c)'l)
o([TaCt g(t) g(t)
= g(t).

Thus J 1is onto. Now let f ¢ Ll(u,X), then f ¢ L¢(u,x). By assumption there
exists g ¢ L¢(u,Y) such that
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I€ - g|‘ <)f - l¢ forallh € Ly,
then by Corollary 2.1 we have

"E(t) - g(t)|| < 'lg(t) - y|| for all y € Y or

lfecer - LU AIs@ID oy « fecer - 2HEOIL_j o,
Iecolls™ decol o leol|
all y e Y. Putr w(t) = ||f(t)" 0 (||8(tlll
e ¢ <Hf<c>|l>
Using the facts that ||g(t)'| < 2"f(t)'| since 0 € Y and
¢~l(2ilf(c)‘|) < 2(¢_1('|f(:)‘l)) we can show that w ¢ Ll(u,Y) as follows

Hweo]| - [Jf(t)|! ol D
(Hf(t)“)

Jlf(t)ll o lelliolb
WULAIIE

ol o tdleelD
IR

= 2f|eof].

Now take any h ¢ Ll(u,Y) then

-1
s fiE; ) h(t) e Y for all t.

Hence

-1
ey - weo]| < |Jecor - HE@IL_emdlelly oy

RGIEGIHE £

= llf(t) - h(t)" for all t and for all h e Ll(u,Y), so Ll(u,Y) is
proximinal in L (y,X).

As a corollary.
COROLLARY 2.2. If Y is a reflexive subspace of X, then L¢(u,Y) is priximinal
in L¢(u,X).
PROOF. It follows from the main theorem and Theorem 1.2 in Kahalil [5].
THEOREM 2.2. Let Y be a proximinal subspace of X. Then for every simple function
f e L (uX), P(f, L¢(u,Y)) is not empty.

¢
n
PROOF. Let f =) Xy X; be a simple function in L (u,x), where A, are disjoint
i=1 i

measurable sets in [0,1]. Set g =
i

e s

. XYy where ¥y € P(xi, Y). Let h be any
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element in L¢(u,Y), then

le-n}], = tafie > o: {l) o] [T ECe)-h(e)) | Pduce) < 13

o(| e ) = heen|rauce) < 13

i

s(| e ey meen | Duce) < 13

i

>inf {e>0: 3 [ o(f|e My -y Do) < 1y
i=1 A1

inf{c > 0O:

/

1A
tnf{c > 0: § |
A

=

—

= tnffe > 0: [ o()|c7HECe) - g(eN|auce) < 1}

o

"f - g|‘¢‘
Hence g ¢ P(f, L¢(u,Y)).

THEOREM 2.3. Let Y be a closed subspace of X. If L¢(u,Y) is proximinal
in L¢(u,X), then Y is proximinal in X. .

PROOF. From Theorem 2.1, L¢(u,Y) proximal 1in L¢(u,X) implies that L (u,Y) is
proximinal in Ll(u,X). By Theorem 1.1 [2] this also implies that L“ku,y) is

proximinal in L”(u,x). For x € X, define fx: Q+ X by fx(t) = x for all £t € Q. It
is clear that fx € L”(u,X) for every x € X, so there exists h ¢ Lw(u,Y) such that

e, - nll, < |lg, - w]| for every w e L7(u,1).
In particular take w = £, 5o
e, - nll, < e, - £ ||, for every y ¢ ¥
= ||x - y|| for everyy e .

But ||x - h(e)|| = fo(t) - h(o)]|

<Ileg - nll
<Aty - ]
= |'x - yl' for every y € Y.

Hence every t e [0,1] gives a best approximant of x in Y. Therefore Y is proximinal

in X.

The next theorem needs the following definitions:
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DEFINLTION 2.1. The subspace Y is called ¢-summand of x if there Is a bounded

projection Q: X » Y such that

¢('|x|‘) = ¢(||(Q(x).|)+¢(|‘(I-Q)(x)||) for all x € X. Where I is the identity map
on X.

DEFINITION 2.2. The subspace Y is called l-complemented in X if there is a closed
subspace 7Z in X rhat X = Y + 2 and the projection P: X » Z is a contractive
projection.

THEOREM 2.4. 1If Y is l-complemented in X, the L¢(u,Y) is proximinal in L¢(p,x).

PROOF. Letr X = Y& Z, P: X > Z be a contractive projection from X onto Z. Hence
x = (L-P)x + px), ||pto]] < ||x|]. For £ & L (u,X), ser £, = (I-Pdaf , ¢,
pof. Let P: LQ(u,X) > L¢(u,Z) and

p(f) = pof = f3 for all feLg(p X)-

fhen % Is a contracrive projection onto L¢(u,Z) and LO(U’X) = L¢(u,Y)¢$ L¢(u,Z)-
Hence L¢(u,Y) is l-complemented in L¢(u,x). By Lemma 1.6 [2] L¢(u,Y) is proximinal
in L¢(u,X).
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