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ABSTRACT. We give a characterization of reflexive Banach algebras involving the Arens product.
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1. INTRODUCTION.
Let A be a semisimple Banach algebra and A** the second conjugate space of A with the

Arena product o. If (A**,o) is semisimple and it has a dense socle, then we show that the following
statements are equivalent: (1) A is reflexive. (2) A** is w.c.c. (3) A is w.c.c. (4) A and A** have
the same socle. This is a generalization of a result by Duncan and Hosseinuim [1, p.319, Theorem

6(ii)]. We also show that if A**,o) is semisimple and A is 1.w.c.c., then A is Arens regular.

2. NOTATION AND PRELIMINARIES. Definitions not explicitly given are taken from Rickart’s

book [21
Let A be a Banach algebra. Then A* and a** will denote the first and second conjugate spaces

of A, and the canonical map of A into A**. The two Arens products on A** are defined in stages
according to the following rules (see [3] and [4]). Let z,u 6 a," a*, and r, a**.

Define fox by (fox)(y) f(xy). Then fox e A**.
Define Gof by (Gof)(x) G(fox). Then Gof e A*.

Define FoG by (FoG)(f) F(Gof). Then FoG A**.
Define xo’f by (xo’f)(y) f(yx). Then xo’f A*.
Define fo’F by (fo’F)(x) F(xo’f). Then fo’F e A*.
Define Fo’G by (Fo’G)(f) G(fo’F). Then Fo’G A**.

A** is a Banach algebra under the products FoG and Fo’G and :r is an algebra isomorphism of

A into (A**,o) and (A**,o’). In general, o and o’ are distinct on A**. If they agree on A**, then A is

called Arens regular.
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LEMMA 2.1. Let A be a Banach algebra.. Then, for all a.e A,f 6 A*, and F,G e A**, we have

(1) r(z)oF r(z)o’F and For(z)= Fo’,c(x).

(2) If {Ft} C A** and F F weakly in A**, then Frog FoG and Go’F Go’F weakly.

PROOF. See [3, p.842 and p. 843].
Let A be a Banach algebra. An element a A is called left weakly completely continuous

(1.w.c.c.) if the mapping L defined by L,,(:)= a:(X
_
A) is weakly completely continuous. We say

that A is 1.w.c.c. if each a A is 1.w.c.c. If A is both 1.w.c.c. and r.w.c.c., then A is called w.c.c.

In this paper, all algebras and linear spaces under consideration are over the field C of complex
numbers.

3. THE MAIN RESULT.
LEMMA 3.1. Let A be a Banach algebra. Then A is 1.w.c.c. (resp. r.w.c.c.) if and only (A)

is a right (resp. left) ideal of (A**,o).
PROOF. This result is well known (see [1, p.318, Lemma 3] or [2, p.443, Lemma]).
In the rest of this section, we shall assume that A and (A**,o} are semisimple Banach algebras.
THEOREM 3.3. Suppose that (A**,o) has a dense socle. Then the following statements are

equivalent:

(1) A is reflexive.

(2) A**is w.c.c.

(3) A is w.c.c.

(4) (A) and A** have the same socle.

PROOF.

(1) => (2). Assume that A is reflexive. Then A(4) A**= A; in particular, (A)** is a two-

sided ideal of A(4). Hence by Lemma 3.1, A** is w.c.c.

(2) (3). Assume that A** is w.c.c. Then (A**) is a two-sided ideal of A(4). As observed in

[1, p.319, Theorem 6(ii)], (A)is a two-sided ideal of A**. Hence A is w.c.c.

(3) (4). Assume that A is w.c.c. Then (A) is a two-sided ideal of A**. Let E be a

minimal idempotent of A**. Since EoA**oE=Eor(A)oE=CE, it follows that E_r(A).

Consequently, E is a minimal idempotent of (A). If e is a minimal idempotent of A, then

"(e)oA**C x(A) and so r(e)oA**=x(eA). Hence, x(e)oA**or(e)=’(eAe)’=Cr(e) and so r(e) is a

minimal idempotent of A**. Therefore, r(A) and A** have the same socle.

(4) = (1). Assume that r(A) and A** have the same socle. Since r(S) is dense in A**, it

follows that r(A) is dense in A** and so r.(A)= A**. Therefore A is reflexive. This completes the

proof of the theorem.

REMARK. It is well known that a semisimple annihilator Banach algebra A is w.c.c. (see [5]).
Also, A has a dense socle. Therefore, Theorem 3.2 generalizes [1, p.319, Theorem 6(ii)].

THEOREM 3.3. If A is 1.w.c.c., then A is Arens regular.
PROOF. Since A is 1.w.c.c., by Lemma 3.1, r(A) is a right ideal of A**. Let F and G e A**

and x A. Then

r(x)o(FoG- Fo’G) ’(x)oFoG- x(x)o(Fo’G)

=(z)oFoG-r(.)o’(]’o’G) By Lemma 2.1(1))
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r(x)ol"oC;-(r(x)oF)oG because r(x)oF E r(A))

=0

Hence r(A)o(FoG-Fo’G)= (0). Therefore, by Lenma 2.1 (2), we have A**o(FoG-Fo’G)= (0). Since

(A**,o) is semisimple, it follows that FoG-Fo’G=O and so Fog= Fo’G. Therefore, A is Arens

regular. This completes the proof.
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