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ABSTRACT. Our main objective in this note is to prove the following. Suppose R is a
ring having an idempotent element e (e#0, e#1) which satisfies:

(Nl) xR=0 implies x=0.

(MZ) eRx=0 implies x=0 (and hence Rx=0 implies x=0).

(M3) exeR(1-e)=0 implies exe=0.

If d is any multiplicative derivation of R, then d is additive.
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1. INTRODUCTION.

In [1], Martindale has asked the following question : When is a multiplicative
mapping additive ? He answered his question for a multiplicative isomorphism of a
ring R under the existence of a family of idempotent elements in R which satisfies
some conditions.

Over the past few years, many results concerning derivations of rings have been
obtained. In this note, we introduce the definition of a multiplicative derivation
of a ring R to be a mapping d of R into R such that d(ab) = d(a)b + ad(b), for
all a,b in R. As Martindale did, we raise the following question : When is a multipl-
icative derivation additive? Fortunately, we can give a full answer for this question
using Martindale's conditions when assumed for a single fixed idempotent in R.

In the ring R, let e be an idempotent element so that e # 0, e # 1 ( R need not
have an identity). As in [2], the two-sided Peirce decomposition of R relative to the
idempotent e takes the form R = eRe(:)eR(l-e)(:)(l—e)Re(:)(l-e)R(l-e). We will forma-
11y set e=e and e,= l1-e. So letting Rmn= emRen ; myn = 1,2, we may write R = Rll(j
RIZ(:)RZI(:)RZZ' Moreover, an element of the subring Rmrl will be denoted by Xint

From the definition of d we note that d(0) = d(00) = d(0)0 + 0d(0) = 0. Moreover,
we have d(e) = d(ez) = d(e)e + ed(e). So we can express d(e) as all+ a12+ a21+ a5,
and use the value of d(e) to get that a)] = a5y, that is, a; = 0= a5, Consequently,
we have d(e) = ajp * 2y

Now let f be the inner derivation of R determined by the element aj, - a21,that

is f(x) = [x,a for all x in R. Therefore, f(e) = [e,a12 - a21] =a, + ay;.

12 - 3!
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In the sequel, and without loss of generality, we can replace the multiplicative
derivation d by the multiplicative derivation d - f, which we denote by D,that is,
D=4d - f. This yields D(e) = 0. This simplification is of great importance, for, as
we will see, the subrings Rmn become invariant under the multiplicative derivation
D.

2. A KEY LEMMA.

LEMMA 1. D(Rmn)(::Rmn, m,n = 1,2,

PROOF. Let X1 be an arbitrary element of Rll' Then D(xll) = D(exlle)=eD(xll)e
which is an element of Rll’ For an element X19 in RlZ' we have D(xlz) = D(exlz) =
eD(xlz) = blI + b12' But 0 = D(0) = D(xlze) = D(xlz)e = bll’

which belongs to RIZ' In a similar fashion, for an element X1 in R21. we have D(le)

hence D(x12) = b12

belongs to R21' Now take an element X9 in R22' Write D(xzz) = c11+c12+021+c22. So,
0= D(exzz) = eD(x22) = + €12 whence €51 =¢10 = 0. Likewise €y < 0, and thus
D(x22) =cy which is an element of R22. This proves the lemma.
3. CONDITIONS OF MARTINDALE.

In his note [1], Martindale has given the following conditions which are imposed
on a ring R having a family of idempotent elements {ei: ie I} .

(1) xR = 0 implies x = O.

(2) If ein = 0 for each i in I, then x = O (and hence Rx = 0 implies x = 0).

(3) For each i in I, eixeiR(l-ei) = 0 implies e xe, = 0.

In our note, we find it appropriate to simply dispense with conditions (1), (2)
and (3) altogether and instead substitute the following conditions :

(Ml) xR = 0 implies x = 0.

(M,) eRx = 0 implies x = O (and hence Rx = O implies x = 0).

(M;) exeR(1-e) = 0 implies exe = 0.
4. AUXILIARY LEMMAS.

LEMMA 2. For any Xom 1P Rmm and any X0 in qu with p ¥ q, we have

D(xmm + qu) = D(xmm) + D(qu).

PROOF. Assume m = p = 1 and q = 2.
Consider the sum D(xll) + D(xlz). Let Y
have [D(xj;) + D(xjp) ]y, = DOxpdty = Dlxpyty ) = xpy Dty ) = DICxyy + xpp)ty 1 =

be an element of R, . Using Lemm 1, we
n .In

xpDCey ) = DOxyy + xpo)e + (xpy + x )Pty ) = xp D(ty ) = DOxpy + xp5)t) o Thus,

[DCxp)) + D(xpp) = Dlxyy + xpp) ey, = 0.
In the same fashion, for any t2n in R2n’ we can get the following

[D(xll) + D(x12) - D(xll + xlz)]t2n = 0.
Combining these results, we have [D(xll) + D(xlz) - D(xll + le)]R = 0. By condition
(Ml)' we obtain
D(x11 + x12) = D(xll) + D(xlz).

In view of the symmetry resulting from condition (Ml) and the implication of
condition (M2), we can find that the other three cases are easily shown in a similar
fashion.

LEMMA 3. D is additive on R12'

PROOF. Let 19 and P be two elements in the subring R12' and consider the sum
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D(x12) + D(le).
(A) For an element ti, in Rln' we have [D(xlz) + D(y12)]tln = D(x12 + yl2)tln'
since each side is zero by Lemma 1, so
[D(x;,) + D(y;,) = D(xy, + y;p)1E, = 0.
(B) Consider an element t), in R, . We have (x12 + ylz)t2n = (e + x12)( ton t

Y12tan)+ Thus, DlCxyy + ¥yt 1 = Dle + xp,)(ty + yppty ) + (e + x),)D(ty + v t) )
=(DCe) + Dlxyp)) (kg # yyptyy) + (e + %)) (D(ty ) + Dlypty ) = D(xpp)ty + x),D(ty)
+ D(ylztzn), by Lemmas 1 and 2. Thus, D((x12 + ylz)tzn) = D(xlztzn) + D(ylztzn). But
(Dlx)) + Dly )ty = Dlxp)ty, + DUy o)ty = Dlxpoty ) + Dlyjoty )=(x )4y )D(ty )=
Dlxpg + y19)t9,) = (xpp + ¥1p)D(ty ) = Dlxj, + yyp)t, . Hence,
[D(x;,) + D(y;,) = D(x, + y;5)]t, = 0.
Consequently, from (A) and (B) we have
[D(x;,) + D(y;5) = D(xy, *+ ¥;,)IR = 0.
By condition (Ml), we have
D(x;, + y12) = D(xy,) *+ D(y;,).
LEMMA 4. D is additive on Rll’
PROOF. Let X1 and Y11 be arbitrary elements in Rll' For an element t1o in R12’

we have (D(x,;) + D(yy1))t)y = D(xy ey, + Dyppleyy = D(xgyty,) + Dyyty,) = (xpp+
yll)D(tIZ)‘ But X112 and y11t12 are in R12’ and D is additive on R12 by Lemma 3,

hence (D(x})) + D(y 1))y, = Dlxq ty, + ¥y t1,) = (xpp + ¥11)D(t) ) = D((xp %y )t )
= (xgp + oy PD(e,) = Dlxy, + ¥11)tqp- thus we have

[D(x;{) + D(y;;) - D(xyq * ¥q)1t;, = 0.
Therefore,
[D(x; ) + D(y;q) = D(xy; +y;) IR, = 0.

From Lemma 1, D(xll) + D(yll) - D(xll + yll) is an element in Rll’ hence the above
result with condition (M3) give
D(xpy + yqy) = D(xy) + D(yp )
LEMMA 5. D is additive on R,, + R eR.

1" 2T
PROOF. Consider the arbitrary elements X1 Y in R]1 and Xygs ¥qp in R12' So,

Lemmas 2,3,4 give D((x ; + x19) + Gy * Y1) = DUxyp + y ) + (x5 + ¥ ,))=D(x  +
Y1) * Dlxp, + ¥19) = D(xyp) + D(y;q) + D(x;,) + D(y;,) = (D(x;1) + D(xy,)) + (D(yyy)

+ D(le)) = D(x11 + x12) + D(yll + y12)' Thus D is additive on Ry + R12' This proves
the desired result.
5. MAIN THEOREM.
THEOREM. Let R be a ring containing an idempotent e which satisfies conditions
(Ml)' (MZ) and (M3). If d is any multiplicative derivation of R, then d is additive.
PROOF. As we mentioned before, and without loss of generality, we can replace d
by D. Let x and y be any elements of R. Consider D(x) + D(y). Take an element t in eR
= Rll + RIZ’ Thus, tx and ty are elements of eR. According to Lemma 5, we can obtain
t(D(x) + D(y)) = tD(x) + tD(y) = D(tx) + D(ty) - D(t)(x +y) = D(tx + ty)- D(t(x + v))
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+ tD(x + y). Thus, t(D(x) + D(y)) = tD(x + y). Since t is arbitrary in eR, we obtair
eR(D(x) + D(y) - D(x + y)) = 0. By condition (MZ)' we get
D(x + y) = D(x) + D(y),
which shows that the multiplicative derivation D is additive.
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