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ABSTRACT. Coefficient bounds for mean p-valent functions, whose expansion in an

ellipse has a Jacobi polynomial series, are given in this paper.
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L. INTRODUCTION.

Let E = {z = cosh(so+it), 0 < 1< 2n, S, = tanh-l(b/a), a>b >0} be a fixed
ellipse whose foci are zl. Let also L a+b be the sum of the semi-axis of Eo. It
is known (Szego [1], Theorem 9.1.1], see also p. 245) that a function €(z) which 1is
regular in Int(Eo) (this means the interior of Eo) has an expansion of the form

L
- (a, B)
£(z) = | ap, (z) (.1

n=0
where here and throughout this paper a,B > -l. This expansion converges locally

uniformly in Int(Eo). In [2] the author has given some coefficient bounds for
functions mean p-valent and has an expansion in terms of Chebyshev polynomials
in Int(Eo). Such polynomials are generated by the special case a = B = -1/2 in Jacobi
polynomials. Other special cases of interest are the Legendre and the altraspherical

polynomials generated by a = B = 0 and a = B respectively [1, p. 80-89].

In this paper we generalize results given in [2] to functions of the form (1.1)
and mean p-valent in Int(Eo). In view of [2] we call f(z) mean p-valent in Int(Eo) if

R 2

WR,E) = (1/m) [ [ nCoelde,Ine(e ) pdpds < pr?
00

where 0 { R < = and n(pei¢,f,1nt(Eo)) denotes the number of roots of the equation f(z)
w in Interior Eo’ multiplicity being take Iinto account.

We first recall from [2]:
THEOREM A. Let f(z) be mean p-valent in Int(Eo). Then for z = cosh(s+i 1), exp(s)
=rand 1 <r < r, ve have
[£¢)| = 0(1) (1=r/r )77P
where 0(1) depends on a,b and f only.
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THEOREM B. Let f(z) be mean p-valent in Int(Eo) and M(r,f) < C(l-'l.'/rﬁ‘)"Y
where ¢,y > 0 and M(r,f) = max{'f(z)':z € Int(Eo)}. Set z = cosh(s+it), exp(s)=r,
1<r<r and

o

2n
I(r,£') = (1/2m | |£' (cosh(s+i )| |sinh(s+i)|de.
0

Then as r » ro we have

o) (1-r/r )77, (> 1),
L = o) (/e ) Pr0g1/ e ), (v = /D),
o)) (1-e/e )72, (v < 1/2),

where 0(1) and o(1l) depend on a,b,y and f only.
PROOF OF THEOREM B. Using Schwarz's inequality we have

2n
Il(r,f') < [(1/2%) f lf'(cosh(s+1‘r)|2|f(cosh(s+i1'))'kzlsinh(sﬂt)lzdt)1/211/2
0
Zm 2-x, .\ 1/2,1/2
x [(1/27) [ |£(cosh(s+i )| a0/ 4]
0

where 0 < XA < 2. Theorem B now follows in the same way as estimating inequality (14)
of [2] by using [2, Lemmas 3 and 4].

We now need a suitable‘goefficient formula.

LEMMA 1.1. Let f(z) = anpn(a’s) (z) be regular in Int(E ) and
n=0

E = {z = cosh(s+i1), 0 < T < 2w}. Then for a fixed s so that 0 < s < s, ve have

a, = WO @By gy [ 1) (n >0, (1.2)
E z
gnrarpra = @ FLED R BLBDy Gy (EE g @y )
E z
where Kﬁa,B) - 2n+a+8+lP(n+a+l)r(n+3+l)/r(2n+a+ﬂ+2) and

h‘(la, B)_ ,atBtl

T(n+atl) T(n+Bg+1)/(2n+atp+l) I(n+1) I(n+atp+l).
We note here, using Stirling's formula from Titmarsh [3, p. 57], that
k (B8 L o1y,1/20 L6

as n + =, where 0(1) depends on a,B only.
PROOF OF LEMMA. We have from [1, p. 245] that

s = (@0 ! 1% (2+1) %ol B (2)e (21 (1.5)
where n = 0,1,2,... .
We now see from [1, Theorem 4.61.2], (see also Erdelyi, Magnus, Oberhettinger and
Tricomi [4, p. 171], and Freud [5, p.44] that

® 1
(z-l)u(z+l)80“(a’ B)(z) = (1/2)k2:0 ji:l Il(l-t)a(lﬂ)stkpl(‘“’ B)(t)dt

- xn‘“' B) g1, (1.6)



POLYNOMIAL EXPANSION OF MULTIVALENT FUNCTIONS 445

(a, B)

where K is as defined above. In connection with this, see the argument used in

the proof of formula (4.3.3) of [l, p.67].
Using (1.6) in (1.5) we immediately deduce (1.2).

Now differentiating (1.1) we see from equation (4.21.7) of [1] that

(aﬂ 8"'1)( ).

£'(z) =} —(n+c+e+1) o

n=1

Agalin, as in the proof of (1.2), we deduce from this and [l, p. 245] for n > 1, that

(atl, B+ -1 I(z-l)"”(z+1)°”0(°“'Bﬂ)(z)f'(z)dz

1 -
-2-(n+<r0-8+l)an {m h -1 n-1

(K("” 8+l)/h(c¢+l 8+l))(1/2n) If'(:) 4
E z

where we have used the equation (z-1) (z+l)8+l (a;-l B‘H)( ) = (c{.l'sﬂ)/hn

which is deduced as in (l1.6). This is equation (1.3) and the proof of the lemma is

now complete.

2. MAIN THEOREM.

L]
THEOREM 2.1. Let f(z) = ): anPr(l"’ B)(z) be mean p-valent in Int(Eo) and
n=0

M(r,f) < C(l-r/ro)-Y where C, y > 0 and M(r,f) is as defined above. Then, as

n + = we have

o(1)n Y12, (y < 1/2),
la | = )" 0(1) (log n), (v = 1/2),
o(1), (y < 1/2),

where 0(1) and o(l) depend on a,b,a,B,Y and f only.
PROOF OF THEOREM 2.1. From (1.3) and Theorem B we deduce, using the bounds

'sinh(s+it)| > sinh s, Icosh(s+11’)| < cosh s and (1.4), that

(or"l Bﬂ)/h

—(n+c0-8+l)|a I < (K ‘(:II’BH)(cosh Il(r,f')/sinhns)

< (Kif;l,wl)/ t('alu B+l))(2n11(r’f,)/tn(l_l/r))

O(I)nrllz, (y> 1/2),
la | =" 0(1)(logn), (y = 1/2),

o(1), (y < 1/2),

where we have chosen r = ((l'l--l)/n)ro and provided that l-n/(n—l)ro > 0. This completes
the proof of Theorem 2.1.

COROLLARY 2.1.  Let f(z) = Za P("" B (2) be mean p-valent in Int(E.). Then,

as n + owe have n=0 *
o(1)a2P"1/2, ® > 1/4),
Ianl = r;n 0(1) (log n), (p = 1/4),

o(1), (p < 1/4),
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where 0(1) and o(1) depend on a,b,a,B,p and £ only. In view of Theorem A, the proof of

Corollary 2.1 follows by setting y = 2p in Theorem 2.1.

a0
COROLLARY 2.2. TLet f(z) = Z anPﬁa’B) (z) be univalent in Int(EO). Then as
n + o we have n=0
_ 3/2_-n
|an| = 0(1)n r,

where 0(1) depends on a,b,a,B and f only.

This corollary follows upon setting p = 1 in Corollary 2.1.
REMARK. Using the formula (4.21.2) of [1] and the argument used in [2, Remark 2]
we see by setting z = £ cosh s where lEI = lcos T+ 1 tanh Sy sin 1' <1 that

cosh s

I(2n+atptl) 7> = 1/cosh s )"

a |
n!T(n+atptl) “n |

o0
f(E cosh so) =]
n=0
n-1 n
+ cl(i 1/cosh so) +...+cn/cosh so}

=3 ;;fﬁc,B)(E)

where n=0
’“(G, B) - _ n - n-1 n
P (&) = (£ - 1/cosh so) + cl(E 1/cosh §,) *t...tc /cosh s,
and

En = I‘(2n+u+8+l)ancoshnso/ZnI‘(nH)I‘(n+a+ﬁ"l)-

Using this and Stirling's formula and letting r, * @ ve see that Theorem 2.1 and

Corollaries 2.1 and 2.2 correspond to analogous results for the unit disk (see Hayman

[61).

REFERENCES

1. SZEG&, G., Orthogonal polynomials, Amer. Math. Soc. Colleq. 23, (1939).

2. ELHOSH, M.M., On mean p-valent functions in an ellipse, Proc. Roy. Soc. Edinb.
924, (1982), 1-11.

3. TITMARSH, E., The Theory of Functions, Oxford University Press (1939).

4, ERDELYI, A., MAGNUS, W., OBERHETTINGER, F. and TRICOMI, F., Higher
Transcendental Functions, II, MacGraw-Hill (1953).

5. FREUD, G., Orthogonal Polynomials, Pergamon Press (1971).
6. HAYMAN, W.K., Coefficient problems for univalent functions and related function
classes, J. London Math. Soc. 40 (1965), 385-406.




