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ABSTRACT. A decompostion of a superadditive process into a difference of an additive
and a positive purely superadditive process is obtained. This result is used to prove

an ergodic theorem for weighted averages of superadditive processes.
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1. INTRODUCTION. Let (X, u) be a probability space and let Lp(x, JH), 1€p<= be
the classical Banach space of real valued functions f with | Iflpdu = "f": < =,

Let T:Lp * Lp be a linear operator. A family of Lp functions F = {Fn}n>l is called a
T-superadditive process if

> > .
Flon? E ¢+ TnFm, for all n, m » 1, (1.1)

and F is called a T-additive process if equality holds in (l.1). Notice that if we

n-1
= -] > = N = .
let fi Fi+l Fi' for 1?0 we have F 1:0 fi’ where Fo 0, for all n > 1 Consider

a sequence A = {an}n>0 of complex numbers and a T-(super) additive process F. We

n-1
define a family of Lp-functions (F,A)s{anfn}n)o, and set Sn(F,A) -120 anfn. If A is
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the constant sequence 1=(1,1,....), then Sn(F,A) = Fn.
In the following, we observe that the weighted and subsequential ergodic theorems
for T-superadditive processes are direct consequences of their T-additive

counterparts.

2. THE DECOMPOSITION OF F.

In this section a decomposition of a T-superadditive process F into a difference
of a T-additive process G and a positive, purely T-superadditive process H (that is, H
is a positive T-superadditive process that does not dominate any non-zero positive T-
additive process) is obtained.

CASE p=1. Let T be a positive Dunford-Schwartz operator i.e., T is an
Ll—contraction with ‘|T||m < 1. We will also assume that T is Markovian, that
is f Tf du = ff du. In this case, if s:f-% I‘Fnl'l < », then the decomposition
n

result is

obtained by M.A. Akcoglu and L. Sucheston [l]. Namely, they obtained that for

all n> 1,

Fn = Gn - Hn (2.1)

n-1 1 n-1 i

where G_ =) T § for some 8L , and H =) h withh, =f_ -T 8. Using this
n 1 n D 4 i i

i=0 i=0

result they showed that lim % Fn exists a.e., and moreover it is a consequence of
n+ >
the same result that lim l-H =0 a.e.
nroB D

CASE 1 < p < ®. In this case we let T be a positive Lp—contraction and F a T-

n
superadditive process with 1lim inf Ilﬁ' z (Fi-TF

)|| < ®, .Under these
n+® i=0 P

i-1

conditions B. Hachem [2] showed that 1lim l-Fn exists a.e. by reducing the problem to
n >

a problem in an appropriate Ll—space and employing Akcoglu-Sucheston's result in case

p=1 above. Here we observe that the same technique can be applied to yield to a

decomposition result similar to (2.1).

Using a result of M.A. Akcoglu and L. Sucheston [3] one can decompose X uniquely
into disjoint union of sets E and ES where:
+
(1) E is the support of a T-invariant function heLp, and supp g< E for all T-

invariant geL;.

(i1) LP(E) and Lp(Ec) are invariant subspaces for T.
Then the following results are obtained [2,3]:
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IEc [;&) + 0 a.e., so one can assume that X=E. (2.2)
. T(fh)
The operator P.Lp(m) > Lp(m) defined as Pf = - fel..p(m), is a

(2.3)
positive Lp(m)-contraction and Pl=1, where m=hP.u.

+
In particular, f Pfdm = f fdm for all feLP(m). So P can be extended to a Markovian

operator on Ll(m). Consequently F'={h-1Fn} is a bounded P-superadditive process [2]
in Ll(m)' Now by applying the Akcoglu-Sucheston's result [1] we can decompose F'
into a difference of a P-additive process and a positive, purely P-superadditive

process as hthn=Gn—Hn, n ? 1. Also we see that:

lim 1 (h_lF ) exists ma.e. and lim 1 H =0 ma.e., (2.4)
n+ew n n n+ o n
so F = hGn-th, and that G=(hGn} and H={th) are T-additive and T-superadditive
processes respectively by (2.3). Consequently (2.4) gives that

lim L F exists p-a.e. X and
n +> @ o

(2.5)
ln L1 H =0 u-ae. X
n+ o n n

by (2.2) and (2.3)

3. WEIGHTED AVERAGES.

Given a linear operator T on Lp, 1 < p<® and a sequence A-{an}n>0 of complex
numbers 1f
1 n-l
lim Py ), a ka exists a.e.
n+® k=0

for all fSLP, then we say that A is a good weight for T (4], or (A,T) is Birkhoff [5].

R. Sato [6] showed that the uniform sequences are good for 1<p<{®». C. Ryll-
Nardzewski [7] proved that the bounded Besicovitch sequences are good for T induced by
1 This
result combined with the remarkable theorem of J. Baxter and J. Olsen [5, Theorem

a measure preserving transformation ¢:X + X by Tf(x)=f(¢(x)) for any feL

2.19] imply that bounded Besicovitch sequences are good for Dunford-Schwartz

operators.

Now we observe the following: Let T be an operator on Lp and F be a T-

superadditive process. If Fn-Gn-Hn, then for any sequence A

Sn(F,A) - S“(G,A) - Sn(H,A) 3.1)

Also
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Also
0<1lin sup— [S(AM)] <M - 1lin sup~H
SR n '"n n> e n n
where M = sup 'a '. Therefore if lim 1 H =0 a.e., lim 1 S (A,H)=0 a.e. for
n n n n ‘n
n?1 n *»» n -

any bounded sequence A. We summarize this discussion as
THEOREM 3.2. Let T be a positive Dunford-Schwartz operator on Lp’ 1 < p<® and

F be a T-superadditive process. Assume also that

(i) T is Markovian and sup ”-I-F “l < » when p=1,
w1 'mm

n
(11) lim  inf || % Lo(rpmtr D], <= (7 20) when 1<p¢e.
1=1

n*»

If A is a bounded sequence such that (A,T) is Birkhoff, then

1im L S (F,A) exists a.e. (3.3)
n n
n > o
REMARK 3.4. The limit in (3.3) exists a.e. when A 1s a uniform sequence or a
bounded Besicovitch sequence of Ae:_ﬁ4 [5]. 1In particular the subsequence theorem [S,

4) i1s valid for superadditive processes.
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