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ABSTRACT. In this paper a common fixed point theorem for two sequences of self-mappings from
a complete metric space M to M is proved. Our theorem is a generalization of Hadzic’s fixed point

theorem([1].
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1. INTRODUCTION.

Banach’s fixed point theorem has been generalized by many authors. Among such
investigations there are several, interesting and important studies[2]. Particularly, K. Iseki[3]
proved a fixed point theorem of a sequence of self-mappings from a complete metric space M to M.
We are interested in fixed point theorems of a sequence of self-mappings since they pertain to the
problem of finding an equilibrium point of a difference equation z,, , , = f(n,z,) (n=1,2,...).

Recently O. Hadzic proved the existence of a common fixed 'point for the sequence of self-
mappings {4,}(j =1,2,..), S and T where A, commutes with S and T. His result is as follows:

THEOREM 1. Let (M,d) be a complete metric space, S,T:M — M be continuous,
A;M — SMNTM(j=1,2,..) so that A, commutes with S and T and for every i,j(i= = j,i,j =1.2,..)
and every z,y € M:

d(A,z,Ay) < qd(Sz,Ty), 0<g<l1 (1.1)

Using Theorem 1, he gave a generalization of Gohde’s fixed point theorem and extended

Krasnoseliski’s fixed point theorem.
In this paper we shall present a generalization of Hadzic’s fixed point theorem.
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2. MAIN THEOREMS.
Let N denote the set of all positive integers. In this section we shall prove the following

theorem.

THEOREM A. Let (M,d) be a complete metric space and let {4} {B} (P, e =1,2,...), be two
sequences of mappings from M to M.

Suppose that the following conditions are satisfied; for all m,n € N and all z,y e M,

(a) there exists a constant k (0 < k < 1) such that

d(A2n - lz’A2ny) S kd(B2n —1% B2ny)'
d(Agyz, Agpn 4 1Y) < kd(Byz, By 4 w), for allm>n> 1,

(b) AnBym = BypAgy and Ay By =By 1 Agn 1y

(¢) BypBym = ByymBy, and By, 1By 1= Bop 1By — 1

(d) A2n - I(M) C BQn(M) and A2n(M) c B2n + I(M)

If each B (¢=1,2,..) is continuous, then there exists a unique fixed point for two sequences
{4,} and {B}(p,q = 1,2,..).

PROOF. Let z; be an arbitrary point in M. By condition (d) there exists a point z, € M such
that A;zy = B,z;. Next we choose a point z, € M such that 4,z, = Byz,. Inductively, we can define
by condition (d), the sequence {z,} such that

Agn _1%an— 2= ByaZyn g and Ayzy, =By, 4125, nEN. (2.1)

First of all we shall show that {B,z, _,} is a Cauchy sequence. By (2.1) and condition (a), we
obtain that for all ne N

d(Byp —1%2n — 20 Ban®an — 1) = (A2 — 2T30 — 30420 —1%20 2 2)
< kd(Byy, — 972 — 30 Bap — 1720 — 2) = kd(Ag, _ 3Z2, — 45 Az — 920 — 3)
< Kd(By, _ 373 — 4 Bap — %3 — 3) < o < K" 7 2d(By 20, By2y)
and similarly that
d(BynZyn — 10 Ban +1%20) = A(Azn — 1220 — 20 A2nTan —1)

< kd(B,, _1Z3p — 23 BonZon — 1) € v < k2" T 1d(B,z¢, By2,).
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Since 0 <k <1, this implies that the sequence {B,z,_,} is a Cauchy sequence. Thus {B,z, _,}
converges to some point v in M because M is complete. Now since each B (g € N) is continuous, we
obtain that

Byt = By (im By, 4 123,) = W (ByBsy, 4 1%20)

= nli-gloo(Bz"‘Az"zz" )= nligloo(AZnBZmJZn -1

and similarly that B,,,,v=lim (4y, 4 By 41%2,) and By, _qv=lm_ (A, _Byy 1730 2)-
Hence by condition (c), we have

d(B2mv’ B2m + lv) =,p§ Odo (AZnB'lmx2n - l’Azn + 1B2m + lz2n)

< lim kd (ByBymTyn — 11 Ban + 1Bam + 1%20)

= kd(Byp¥ By 4 1%)
and d(B,,,v, B,,, _ v) < kd(B;,,v, By, _1v) (m€ N) in like manner, which implies that B, v=B,_ v
for all m>1. Next we shall show that A4,v=B,v for all n<1. By (2.1), conditions (b) and (c), we
have

d(Byy + 1Bom + 2%2m + 10 A20?) = d(Agm 4 1820 + 122 A2n?)
< kd(Byn 41820 +1%2m Baa?)

= kd(By,, 4 1Bam + 1%2m Bynv)

Thus letting m — oo, we obtain that d(B,, , v, 4;3,v) < kd(By, 4 v By,v) from which it follows that
Ayv=B,, v foralln>1. And since

d(Agp _ 19, Agnv) < kd(By,, _ v, By,0) and d(A,, 4 (v, Apv) < kd(By, 4 19, Bayv),
we obtain that A,v=A4, , ,v=B, ;,v=B,vfor all neN. Furthermore, for all n € N, we obtain
d(Agpv, Ay 1 Agn 4 1v) < kd(Byv, By _ 1Az, 4 19) = kd(Agyv, Agy 1Ay 4 10)
and d(Ay, _ 19, AyyAgy 4 19) < kd(Byy _ 10, BynAgy 4 1v) = kd(Agy _ 19, AgpAy, 4 1v)-

Therefore we obtain u = A ,(u) = B,(u) for all p > 1 setting u = A,v because 0 <k < 1.
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Now we shall prove that u is a unique common fixed point of {4,} and {B,}. If there exists

another point w such that w= A w=B,w for all p > 1, then
d(u,w) = d(A,,, _ u, A, w) < kd(B,,, _ 4, By, w)
< kd(u, w),

which is a contradiction since 0 <k <1. Therefore u is a unique common fixed point of two
sequences of self-mappings {4,} and {B,}. This completes the proof.

If S=B,,_, and T =B,,(n=1,2,..), we obtain Theorem 1 as the corollary of Theorem A.
Next we obtain the following theorem which is a generalization of Theorem 1 in [4].

THEOREM B. Let (M,d) be a complete metric space and let {T,} (p = 1,2,...) be a sequence of
mappings from M to M. Suppose that the following conditions as satisfied for all m>n>1 and
,yeM

(e) there exists a constant h (h>1) such that
d(T,, — 12, T3,y) > hd(z,y) and d(T,,z,T,,, +1Y) 2 hd(z,y),
fy T T,=T,T p,q are even or odd respectively).
pla= " q'p

If every T,, is continuous on M and T, (M) = M(n = 1,2,...), then there exists a unique fixed point
for T,.

PROOF. Set A4,=1I (I is the identify map from M to M) in Theorem A. The proof is
complete.

REMARK 1. We remark that the mapping f: X — X in Theorem 1 of [4] is continuous from

the condition of the theorem.
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