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Abstract

Conditions are given for the continuity and differentiability of solutions of initial value prob-
lems and boundary value problems for the n'* order finite difference equation, u(m + n) =

f(m,u(m),u(m+1),...,u(m+n—-1)),me Z.

KEYWORDS AND PHRASES. Finite difference equation, initial value problem, boundary value

problem.

1980 AMS CLASSIFICATION CODE. 39A10, 39A12, 34B10.

1 Introduction

Let Z denote the integers, and given @ < b in Z, let [a,00) = {a,a + 1,...}, [a,b] = {a,a +
1,...,b}, [a,b) = {a,...,b - 1}, with (a,0),(a,b), etc., being similarly defined. In this paper, we

will be concerned with solutions of the n*® order difference equation,

u(m +n) = f(m,u(m),...,u(m +n —1)), (1.1)

where
(A) f(m,uy,...,u,) : Z x R® = R is continuous.
We will also assume in many settings the condition:
(B) g{:(m,ul,...,un) :Z x R™ — R are continuous, for 1 < i < n.

We will present results about continuous dependence and differentiation of solutions of (1.1) with
respect to initial values and certain boundary values. Also, given a solution u(m) of (1.1), we will

be interested in solutions of the linear equation,

z(m+n)= i %(m,u(m),. u(mtn—1))z(m+i-1). (1.2)

i=1
Equation (1.2) is called the variational equation along the solution u(m) of (1.1).
Many studies have been devoted to finite difference equations. Following Hartman’s [1] major
paper, a number of recent papers have appeared that are devoted to boundary value problems

for finite difference equations. For example, papers by Ahlbrandt and Hooker (2], Eloe [3], [4],
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Hankerson (5], (6], Hankerson and Peterson 7], Hooker and Patula [8], Ladas et al. [9], Peterson
[10] - [12], and Smith and Taylor [13] have dealt with disconjugacy or oscillation and nonoscillation
of linear difference equations, while the works by Eloe [14] - [16], Peil [17], and Peterson [12] have
also dealt with disfocality criteria for linear difference equations. For the nonlinear equation, (1.1),
Agarwal [18], Eloe [3], [4], Hankerson [5], [6], Henderson [19] - [21], and Peterson [12] have addressed
questions concerning boundary value problems.

As in several of the above cited works, the results obtained in this paper are motivated as
analogues of results from ordinary differential equations. In the case of initial value problems for
ordinary differential equations, Hartman [22] presents a theorem due to Peano in which solutions are
differentiated with respect to initial conditions. Subsequent to that, for boundary value problems
associated with ordinary differential equations, several authors have obtained results concerning
differentiation of solutions with respect to boundary conditions; e.g., see Peterson [10] - [12] and
Henderson [23], [24]. In fact, Brantley and Henderson [25] and Henderson [24] have given some
fairly complete analogues of the Peano theorem for certain boundary value problems for nonlinear
ordinary differential equations.

The primary motivation for this paper arises from the studies by Hankerson [5] and Peterson
[12], which are devoted to differentiation of solutions of finite difference equations with respect to

boundary values for “two-point” boundary value problems.

In Section 2, we state two results for solutions of initial value problems for (1.1). The first
result establishes that under condition (A), solutions of initial value problems for (1.1) depend
continuously on initial values. The second result states an analogue of the Peano theorem, in that,
under conditions (A) and (B), solutions of initial value problems for (1.1) can be differentiated with
respect to initial values.

In Section 3, we present the main theorems of the paper. We establish analogues of our results
obtained in Section 2, for conjugate boundary value problems for (1.1). The proofs in this section
depend on uniqueness of solutions of conjugate boundary value problems. We will assume at the

appropriate places that we have this uniqueness.

2 Differentiation of Solutions with Respect to Initial Values

The n** order difference equation (1.1) in conjunction with the conditions

umo+i—-1)=u; 1<i<n, (2.1)

where mg € Z,u; € R, 1 < i < n, is called an initial value problem. In this section, we state two
theorems regarding continuous dependence and differentiability with respect to initial values for
solutions of (1.1), (2.1). All that is required for the proofs of these theorems is a conversion of (1.1),
(2.1) to an initial value problem for a first order system, U(m+1) = F(m,U(m)),U(mq) = Up, and
then provide obvious modifications of proofs in Hartman [22]. For this reason, we will omit their
proofs. However, these two theorems will play a fundamental role in the results of the next section.

We also remark that solutions of initial value problems, (1.1), (2.1), are unique on [mg, o), mg € Z.
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THEOREM 2.1. (Continuous dependence on initial values) Suppose (A) is satisfied. Let
u(m; mo, u1,u2,...,un) be the solution of(i.l), (2.1) on [mo, +0), where mg € Z, uy,u2,...,u%n €
R. Then, given € > 0, k € N, there ezists a §(¢, mo, k,uy,uz,...,n) > 0, such that if |u, — v,| <
6, 1 < i< n, then |u(m;mo, u1,ug,...,us) — u(m;mo,v1,v2,...,Vn)| <¢ for every m € [mo, mo +

k).

We now state our analogue of Peano’s theorem in Hartman [22] for the scalar initial value
problem (1.1), (2.1).

THEOREM 2.2. Assume f satisfies (A) and (B). Let mo € Z, and uy,u2,...,4n € R be
given. If u(m) = u(m;mo,u1,...,u,) denotes the solution of the initial value problem, (1.1), (2.1),

then, for every 1 < j < n, given vy,...,v, €K,

i
ﬁ](m) = 6_1:‘;(7"; mo, ¥1,... 1”")

ezists and is the solution of the variational equation,

LAY
By(m+n) = Za—;(m,u(m;mo,vl,...,v,.),u(m+l;mo,vl,...,v,.),...,
1=1 s

u(m+ n—1;mo,vy,...,0,))0(m +i-1),

and satisfies
Bi(mo+i—-1)=6;j,1<i<n.

3 Differentiation of Solutions with Respect to Boundary Values

In this section, we prove analogues of Theorems 2.1 and 2.2 for conjugate boundary value problems

for (1.1).

DEFINITION 3.1. [21] Given m; < ... < my in Z and uy,...,u, € R, a boundary value
problem for (1.1) satisfying

u(m;) =ui, 1 <i<n, (3.1)
is called a conjugate boundary value problem.

Conjugate boundary value problems for (1.1) (both nonlinear and linear cases) have received
much recent attention. Much of this attention has arisen from the paper by Hartman [1] in which he
gave conditions characterizing disconjugacy for linear difference equations in terms of generalized

zeros.

DEFINITION 3.2. [1] Let u: Z — R. We say that u has a generalized zero at mg provided,
either u(mq) = 0 or there is a k € N such that (—1)*u(mq—k)u(mo) > Oand if k > 1,u(mo—k+1) =
..=u(mg-1)=0.

DEFINITION 3.3. [21] The nonlinear difference equation, (1.1), is said to be disconjugate
on Z provided that whenever u(m) and v(m) are solutions of (1.1) such that u(m) — v(m) has n

generalized zeroes at m; < mz < ... <Ma €Z, it follows that u(m) — v(m) = 0 on [m,, ).
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To be complete, we formulate Definition 3.3 as Hartman did for the case when (1.1) is linear,

say, for the equation,

v(m+n)= zn: a,(m)v(m+1i-1), (3.2)

=1
where a,:Z - R, 1< i< n.

DEFINITION 3.4. [1] The linear equation, (3.2), is said to be disconjugate on Z provided

there is no nontrivial solution u of equation (3.2) which has n generalized zeros on Z.

For the remainder of this chapter, we adopt the following notation to distinguish boundary
value problems from initial value problems. For m; < ... < m, in Z and uy,...,u, € R, let
u(m) = u(m;my,..., My, uy,...,u%,) denote the solution of the boundary value problem, (1.1),
(3.1). And, for mg € Z and c,...,cn € R, we will let v(m) = v(m;mg,cy,...,c,) denote the
solution of the initial value problem, (1.1), (2.1), (i.e., v(mo+i—1) =¢;, 1 <i < n).

The results of this section are patterned somewhat after those in Hankerson [5]. Following that
route, we obtain analogues of Theorems 2.1 and 2.2 for conjugate boundary value problems (1.1),
(3.1). We will have need of disconjugacy assumptions on (1.1) and on the variational equation,
(1.2). Our results on continuous dependence make use of the Brouwer Theorem on Invariance of

Domain which we state here for convenience.

THEOREM 3.5. IfU is an open subset of R*, n dimensional Euclidean space, and ¢ : U —
R" is one to one and continuous on U, then ¢ is a homeomorphism and ¢(U) is an open subset of
R".

THEOREM 3.6. (Continuous dependence on boundary values) Suppose condition (A) is sat-
isfied and that (1.1) is disconjugate on Z. Let y(m) be a solution of (1.1) on [my,00), and
let my < my < ... < my in [my,00) be given. Then, there ezxists an ¢ > 0 such that, if
TyY2y---0Tn € R, with || < €, i = 1,2,...,n, then the boundary value problem for (1.1) sat-

isfying
‘ll-(m,') = y(mt) +7i11 < i <n,

has @ unique solution u(m;my,...,my,y(M1) + 71,...,¥(Mn) + Yn). Furthermore, as ¢ — 0, the

solutions u(m;my,...,mu,y(Mm1) + 71,--.,¥(Mn) + 1n) converge to y(m) on [m,, ).

PROOF. Let m; < mp < ... < m, € [my,00). Define ¢ : R* — R™ by ¢(c1,¢32,...,¢n) =
(v(m1),v(m3),...,v(m,)), where, as from above, v(m) = v(m;my,c1,...,¢q) is the solution of the

initial value problem for (1.1) satisfying

vim+i-1)=¢,1<i<n.
We claim that ¢ is one to one.
Suppose ¢(c1,...,¢n) = ¢(c},...,¢c,). Then,
(v(ml;mlrcl)'"1c'l)1v(m2;mlycl"'wc‘n)v"'r‘v(mﬂ;mlych'-',cn))

= (v(my;my,cl,...,h), v(me;mi,cl, ... ch), ..o, 0(Ma;mu,cl, ..., ch)).

By the assumed disconjugacy of (1.1) on Z, (in particular, by uniqueness of solutions to (1.1),

(3.1)),
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v(m;my,c,...,60) = v(mymy,cl,...,ch), for every m € [m;, +00).

Asa consequence,

v(my +i-1;my,c,...,60) = v(my + i = 1;my,c),...,c5),1<i< n.

In particular, (¢1,...,¢q) = (¢},...,¢,). Hence, ¢ is one-to-one.
Now, we claim that ¢ is continuous. Suppose {(cf,c},...,c4)) converges to (c1,¢2,...,¢n) a8
{ — oo. By continuous dependence on initial conditions, given by Theorem 2.1, v(m; my,c, ..., %)

converges to v(m;my,cy,...,¢y), for every m € [m;, +00), as £ — oo. In particular,

. ¢ ¢ .
lhgv(m,-;ml,cl,...,cn) = v(m;;my,01,...,60),1 <1< .

Therefore, (¢(ci,...,ct)) converges to ¢(c,...,¢,) as £ — o0, and ¢ is continuous.

By the Brouwer Theorem on Invariance of Domain, ¢ is a homeomorphism onto the range,
#(R"™), and ¢(R") is open in R™. Now, with y(m) the solution in the statement of the Theorem,
(y(m1),y(m3),...,y(my)) € #(R™). Since ¢(R™) is open, there exists an ¢ > 0, such that if
lil <€ i=1,2,...,n, then (y(m1) + 11,¥(m2) + 72,...,¥(mn) + 7n) € H(R™). Now, there exists
a unique (rq,...,7,) such that

#(r1,---5mn) = (¥(m1) + 11, 9(m2) + 12,- - -, ¥(Ma) + 7n)-

But by definition,

11,y ) = (v(mysmy, ., m), v(me My, TRy e V(Mg My, Ty, e, ),

where v(m;m,,ry,...,r,) is the solution of the initial value problem for (1.1), satisfying

vim+i-1)=r,1<i<n.

Hence,

(y(m1) + 1, 9(m2) + 72, - -, (M) + 1a)

= (”(ml;mlyrlv' .. 1rﬂ))v(m2; my,T1,... vrﬂ)y-- . 1v(mn;ml)7"11" '1ru))1

i.e., v(m;my,r1,...,7s) is the solution of (1.1) satisfying

v(mi;ml>rly'“,rn) = y(ml)+7nl < i <n.

For each j € N, consider

(¥(m1) + 75, 9(m2) + 7, ., y(ma) +72) € HR™),
where '
hil<e1<k<n,
and
Jim (y(m) + 2, 9(ma) + 1) = ()., y(min).

For each j € N, let
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4y (m) = w(mimy,...,mu,y(m1) +791,..., y(ma) + 7).

Now, ¢! : ¢(R") — R" is continuous. Therefore,

Jli.rgoga'l(uj(ml),u](mg),....u_,(m,.))
= Jlim ¢7!(y(m1) + 7, y(m2) + 73, ¥(ma) + 73)
= 47 (lim (y(m1) + 7, 9(ma) + -, ¥(ma) + 7))

= ¢—l(y(ml)) y(mZ)v [RRE} y(mn));

i.e., the initial values of u;(m) converge to the initial values of y(m). By Theorem 2.1, ui(m)
converges uniformly to y(m) on each compact subset of [m,,c0). It follows that the solutions in
the statement of the Theorem, u(m; my,...,mn, y(m1) +71,...,y(Mmn) + 7n), converge to y(m), as
€ — 0. The proof is complete.

We now establish our analogue of Theorem 2.2 for conjugate problems.

THEOREM 3.7. (Differentiation of solutions of (1.1) with respect to boundary values) As-
sume that f satisfies (A) and (B), that (1.1) is disconjugate on Z, and that the variational equation

(1.2) is disconjugate along all solutions of (1.1). Let u(m) = u(m;my,...,mp,uy,...,u,) be the so-
lution of (1.1), (3.1) on [my,00). Then, for1<j < n,%, erists on [m;,), and z;(m) = %(m)

is the solution of the variational equation, (1.2), along u(m) and satisfies,

z(m;) = 65,1 <i<n.

PROOF. We consider ?ﬁ’ for fixed j,1 < j < n. Let € > 0 be as in Theorem 3.6. Let

0 < |h| < € be given and consider the quotient,
1
zjp(m) = E[u(m;ml,...,m,.,ul,ug,...,uj +h,...u,)
—u(m;my,...,Mp, U1, Uy,...,Un)]

It suffices to show that lim,_.¢ zja(m) exists on [my, +00).

Observe first that,

zjn(mi) = §;,1 < i <m,
for every h # 0.

For 2 < i < n,let a; = u(mj +i— 1;my,...,Mn,%1,...,%), and & = €(h) = u(m, +
i—1;my,...,Mp,U1,...,u; + R,..., %) — &;. Note that u(mj;my,...,mns, u1,...,%,) = u; and
u(mj; my,...,Ma,t,...,8; + R,..., %) = u, + h. By Theorem 3.6, €,(h) converges to zero, as h
converges to zero, for 2 < i < n.

Recalling our notation, v(m; mg,v1,...,vn) denotes the solution of the initial value problem for
(1.1), satisfying
v(mo+i-1)=v,1<i< n
Then, by using a telescoping sum,

1
zja(m) = E[u(m;ml,...,m,.,ul,...,uj+h,...,u,.)-u(m;ml,...,m,.,ul,...,u,.)]
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1

= E[v(m;m,,u,+h,ag+ez,...,a,.+e,.)—v(m;m,,u,,ag,...,a,.)]
1

= E—[[v(m;m,,u,+h,a2+eg,...,a,.+c,.)—v(m;m,,u,.a2+eg,‘..,a,.+e,.)]
+o(mymy,uy, 02 + €2,...,an + €) = v(M;Mj, uy,a2,a3 + €3,...,0n + €n)]

+...+{v(mimy,uj,02,. .., 001,00 + €) — ¥(M; My, u5,Q0, ..., A1, )]

Now, by Theorem 2.2, solutions of (1.1) can be differentiated with respect to initial values; i.e.,
b= i"—’, B = ?rv';,..., B, = gul],..., Bn = 3”"—"“ exist. Hence, by Theorem 2.2 and the Mean Value

Theorem, we have that

1 -~
Zjp(m) = Z[pl(m; v(m;m,,u, + h,ay + €2,...,0n + €,))h
+/32(mv v(m; mj,u;, 03 + €,...,an + ‘n))‘?

+ ...+ Ba(miv(m;my, uy,02,. .., @no1, 00 + En))en),
where,

. . 7 3 C . 'y
Bi(m;v(m;my,u, + h,as +€2,...,an + €,)) = ﬁ(m,mj,u, +h,a2+€2,...,0, + €,),

Ba(m;v(m;m,,uy,02,. .., 0n_1, 00 + &) = E2(m;mj, uj,02,...,an + &),

and where % is between 0 and k, and & is between O and ¢;, fori = 2,...,n. That is, fy(m;v(m;my,u,
+h,az+¢€2,...,an+€q)) denotes the solution of the variational equation, (1.2), along v(m; m;, u, +
h,az+e€3,...,an+¢€n) and satisfies, Bi(mj+i-1) = 61,1 < i < n. Similarly, 82(m; v(m; m,, u;,a+
€@,...,an + €,)) denotes the solution of the variational equation, (1.2), along v(m;m,,u,,a; +
@,...,an+6n), and satisfies, fy(m, +i—1) = §,2,1 < i < n. Continuing, B.(m;v(m; mj,u,,aa,...,
Qn_1,an+&,)) denotes the solution of the variational equation, (1.2), along v(m; m,, u;,az,...,an+

€,) and satisfies Bn(m, + 1 — 1) = §ia,1 < i < n. Note especially that

Pa(m;) = ... = Pa(m,) =0.
Simplifying our previous expression for z;;(m), we have
zin(m) = Bi(m;v(m;mj,u; + k02 + €2,...,0n + €))
+B2(m;v(m;my,uj,as + €,...,an + c,.))%
+ ...+ Ba(m;v(m;my,uj,aq,...,an-1,an + ?,.))%'—.
Thus, to show lim,_.o zj,(m) exists, it now suffices to show that limj_.o ¢ exists, for i = 2,...,n.
Now, recall that zja(my) = ... = z;n(mj=1) = zja(my41) = ... = zja(ma) = 0. From our last
expression for zj,(m), we can thus write,
—Bi(mi;v(m;mj,uj + haz + €2,...,0n0 + €1))
= %ﬂg(m;;v(m; my,uj,az + €,...,0n + €))

€,
+...+ fﬂn(mi; v(m; m;, U, Q2,...,Q0n-1,0n + z‘n))'

for1 <i<j—1and j+1 < i< n. This gives us a system of n — 1 equations in the n — 1 unknowns

By Cramer’s rule, (and suppressing the variable dependency in v(-)),
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=Bi(mi;v(r))  Ba(ma;v()) ... Ba(mu;v(c))

=B1(m;-1;v(:)) Ba(mj_1;v(-)) ... Bn(mj-1;v(-))
=Bi(my41;v(:)) Ba(mye15v()) ... Ba(mjsr;v(-))

“Bi(maio())  Ba(maio()) .. Ba(maio() | Dy(h)
B(h) =D(hy

B
]

Ba(mi;v()) oo Baa(mrie(s))  =Bi(mu;i(c)

Ba(my—1;0(:)) .. Ba—r(my—13v(r)) —Bi(my-1,9(+))
B2(mjs1;v(:)) ... Br-i(mjsr;iv(d)) —Bi(mjtr;v(+))

e _ | Ba(maiv()) - Ba-a(maivn())  —Au(maiv()) | _ Da(h)

h D(h) ~ D(h)’
provided that

Ba(ma;v(r))  Ba(maiv()) ... Ba(miiv())

ﬂ‘z(mj—u”(')) Ba(mj_q;v(-)) ... ﬂn(mj—l;v('))

0# D(h) =
B2(mje1;v(-)) Ba(my4r;v()) ..o Bal(mjsa,v(-))

Ba(mn; () Ba(mn;v(-)) ... Ba(mjsr;v(-))

To see that, for h small, D(h) # 0, consider the determinant,
Ba(mr;v(mimy, uj,02,...,00)) ... Ba(mijv(mimj,uj,aq,...,a5))

Ba(mj—1;v(m;my,u5,a2,...,an)) ... Ba(Mj_1;v(Mm;m,,u,,as,...,a,))

S ]
n

ﬁ?(mj+1;v(m; mj,u,,az,... 1an)) cee pn(mj-i»l; v(m;mjrujvaﬁv .o 9an))

ﬂ?(mn; v(m; mj7“j1°2y'~~ra'n)) s ﬂn(mn; v(m; mjvuj9a2v"-1°n))

Now, if D = 0, then there exists a nontrivial linear combination, for some rz,...,r, not all zero,
¥(m) = r2f2(m;v(m; mj,uy,as,...,a)) + ... + Tafa(miv(m; mj,uy, a2, ,an)),

which is a solution of the variational equation, (1.2), along v(m; mj,u;,az,...,a,), and which also
vanishes at m = my,...,mj_1,Mj41,...,ma. It follows as before that, B2(m,) = ... = Ba(m;) =0,
so that y(m) also vanishes at m;. Specifically, 9(m) is a nontrivial solution of (1.2) that has n
zeros, which is a contradiction.

Thus, D # 0, and so by continuity, for A sufficiently small, D(h) # 0. As a consequence, for

every 2 < i < n, we have that lim,_.o % exists. Say,

. € .
Aj_lg;':k;ﬂﬁzﬁn.
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As a result,

zj(m) lim 2,(m)
= fi(m;v(m;mj,uj,a,...,a,))
+kaf2(m; v(m;mj, uj,aa,...,an))

+... 4+ knBa(m;v(m;m,, uj, az,...,a,))

exists. That is, g:ﬂ’-(m; my,..., My, U1,...,U,) exists, and specifically, zj(m) = %"‘;(m). Moreover,

since f,(m;v(m;m;,u,,as,...,a,)),1 < i < n, are all solutions of the variational equation, (1.2),

along v(m;mj, u;,az,...,a,) = w(m;my,..., M, u;,...,U,), we have that z,(m) = g%(m) is a

solution of (1.2) along u(m;m,,...,mp,u;,...,u,). Also, by earlier observations,

z,(m;) = }‘I_I‘% zja(m;) = 85,1 < i < n.

The proof is complete.
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