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Abstract

Conditions are given for the continuity and differentiability of solutions of initial value prob-

lems and boundary value problems for the nth order finite difference equation, u(m + n)
/(-, u(.), u(. + 1) u(, + n- 1)),- Z.
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1 Introduction

Let Z denote the integers, and given a < b in Z, let [a, oo) {a,a + }, [a,b] {a,a +
,b}, [a,b) {a,...,b- 1}, with (a, oo),(a,b), etc., being similarly defined. In this paper, we

will be concerned with solutions of the nth order difference equation,

where

u(m + n) f(m,u(m),...,u(m + n- I)),

(A) f(m, ul,..., u,.,) :Z x R R is continuous.

We will also assume in many settings the condition:

(B) Tu,(rn, ul,..., u,)" Z R It are continuous, for _< <_ n.

(1.1)

We will present results about continuous dependence and differentiation of solutions of (1.1) with

respect to initial values and certain boundary values. Also, given a solution u(m) of (1.1), we will

be interested in solutions of the linear equation,

z(m + n)

_ ...(m, u(m),..., u(m + n 1))z(m + - 1). (1.2)

Equation (1.2) is ced the ,a,ator,a equation mon te soh,Uor, ,(m) o.f .1).
Many studies have been devoted to finite difference equations. Following Hartman’s [1] major

paper, a number of recent papers have appeared that are devoted to boundary value problems

for finite difference equations. For example, papers by Ahlbrandt and Hooker [2], Eloe [3], [4],
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Hankerson [5], [6], Hankerson and Peterson [7], Hooker and Pztulz [8], Lzdas et al. [9], Peterson

[10]- [12], and Smith and Tylor [13] hve dealt with disconjugzcy or oscillation and nonoscillation

of linear difference equations, while the works by Eloe [14]-[16], Peil [17], and Peterson [12] have

also dealt with disfocMity criteria for linear difference equations. For the nonlinear equation, (1.1),
Agrwal [18], Eloe [3], [4], Hankerson [5], [6], Henderson [19]-[21], and Peterson [12] hve addressed

questions concerning bound;ry vMue problems.

As in several of the bove cited works, the results obtained in this paper re motivated as

nalogues of results from ordinary differential equations. In the case of initiM value problems for

ordinary differential equations, Hzrtm [22] presents & theorem due to Pc&no in which solutions are

differentiated with respect to initial conditions. Subsequent to that, for boundary vlue problems

ssocited with ordin3.ry differentiM equations, severM authors h&ve obtained results concerning

differentiation of solutions with respect to boundary conditions; e.g., see Peterson [10]- [12] and

Henderson [23], [24]. In fact, Brntley nd Henderson [25] and Henderson [24] hve given some

fairly complete analogues of the Peano theorem for certain boundary value problems for nonlinear

ordinary differential equations.

The primary motiv&tion for this paper rises from the studies by Hankerson [5] and Peterson

[12], which are devoted to differentiation of solutions of finite difference equ&tions with respect to

boundary values for "two-point" boundary vMue problems.

In Section 2, we state two results for solutions of initial value problems for (1.1). The first

result establishes that under condition (A), solutions of initiM value problems for (1.1) depend

continuously on initial vlues. The second result states zn nzlogue of the Pezno theorem, in that,

under conditions (A) nd (B), solutions of initial vlue problems for (1.1) c be differentiated with

respect to initial values.

In Section 3, we present the main theorems of the p.per. We establish anMogues of our results

obtained in Section 2, for conjugate boundary vlue problems for (1.1). The proofs in this section

depend on uniqueness of solutions of conjugate boundary vlue problems. Ve will asume &t the

zppropri&te plces that we hve this uniqueness.

2 Differentiation of Solutions with Respect to Initial Values

The nth order difference equation (I.i) in conjunction with the conditions

u(mo + i- 1) ui, < < n, (2.1)

where mo fi Z, ui fi 1, 1 < < n, is ca/led an initial value problem. In this section, we state two

theorems regarding continuous dependence and differentiability with respect to initial values for

solutions of (1.1), (2.1). All that is required for the proofs of these theorems is a conversion of (1.1),

(2.1) to an initial value problem for first order system, U(m+ 1) F(m,U(m)),U(mo) Uo, and

then provide obvious modifications of proofs in I-Iartman [22]. For this reason, we will omit their

proofs. However, these two theorems will play a fundamental role in the results of the next section.

We also remark that solutions of initial value problems, (1.1), (2.1), axe unique on [too, oo), m0 Z.
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THEOREM 2.1. (Continuous dependence on initial values} Suppose (A) is satisfied. Let

u(m; too, ul, u2 u,) be the solution of (1.1), (2.1) on [m0, +oo), where mo E Z, ul, u2 u,

Then, given > O, k IN, there ezists a (,mo, k, ut,u,...,u,) > O, such that if lu, v,I <

< < n, then lu(m; too, u, u= u,) u(m; too, v, v2 v,)l < , for every m [m0, mo +

Ve now state our analogue of Peano’s theorem in Hartman [22] for the scalar initial value

problem (1.1), (2.1).

THEOREM 2.2. Assume f satisfies (A) and (B). Let mo Z, and ul, u2 u, R be

given. If u(m) u(m; too, ul,..., u,) denotes the solution of the initial value problem, (1.1), (2.1),

then, for every < j < n, given vl v, R,

fl(r) (,;,o, =,...,

ezists and is the solution of the variational equation,

and satisfies

flj(rno + i- 1) ij, _< < n.

3 Differentiation of Solutions with Respect to Boundary Values

In this section, we prove analogues of Theorems 2.1 nd 2.2 for conjugate boundary value problems

for (1.1).

DEFINITION 3.1. [21] Given ml < < m, in Z and ul,...,un R, a boundary value

problem for (1.1) satisfying

u(mi) ui, < < n, (3.1)

is called a conjugate boundary value problem.

Conjugate boundary value problems for (1.1) (both nonlinear and linear cases) have received

much recent attention. Much of this attention has arisen from the paper by Hartman [1] in which he

gave conditions characterizing disconjugacy for linear difference equations in terms of ’neralized
zeros.

DEFINITION :i.2. [1] Let u" Z R. We say that u has a generalized zero at mo provided,

either u(mo) 0or there is a k N such that (-1)ku(mo-k)u(mo) > 0 and if k > 1, u(mo-k+ 1)

u(mo- 1) 0.

DEFINITION :1.3. [21] The nonlinear difference equation, (1.1), is said to be disconjugate

on Z provided that whenever u(m) and v(m) are solutions of (i.I) such that u(m) v(m) has n

generalized zeroes at ml < m2 < <mn IE Z, it follows that u(m) v(m) 0 on Imp, oo).
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To be complete, we formulate Definition 3.3 as Hartman did for the case when (1.1) is linear,

say, for the equation,

(, + ) ,(,)(, + - ), (3.)

where,, "Z--R, 1_< i_< n.

DEFINITION 3.4. [1] The linear equation, (3.2), is said to be disconjugate on Z provided

there is no nontrivial solution u of equation (3.2) which has n generalized zeros on Z.

For the remainder of this chapter, we adopt the following notation to distinguish boundary

value problems from initial value problems. For rn < < rn, in Z and u,...,u, E R, let

u(m) u(m;ml,...,mn,ul,...,u,) denote the solution of the boundary value problem, (1.1),

(3.1). And, for m0 E Z and cl,...,en R, we will let v(m) v(m;m0,c,...,en) denote the

solution of the initial value problem, (1.1), (2.1), (i.e., v(m0 / i- 1) ci, _< _< n).

The results of this section are patterned somewhat after those in Hankerson [5]. Following that

route, we obtain analogues of Theorems 2.1 and 2.2 for conjugate boundary value problems (1.1),

(3.1). We will have need of disconjugacy assumptions on (1.1) and on the variational equation,

(1.2). Our results on continuous dependence make use of the Brouwer Theorem on Invariance of

Domain which we state here for convenience.

THEOREM 3.5. If U is an open subset of R’, n dimensional Euclidean space, and " U

R is one to one and continuous on U, then is a homeomorphism and (U) is an open subset of
1

THEOREM 3.6. (Continuous dependence on boundary values) Suppose condition (A) is sat-

isfied and that (1.1) is disconjugate on Z. Let y(m) be a solution of (1.1) on [m,o), and

let rn < m2 < < rrtn in [m,oo) be 9iven. Then, there exists an > 0 such that, if
7,72,.-.,7n R, with I%1 < , 1,2,...,n, then the boundary value problem for (1.1) sat-

isfying
u(mi) y(mi)+ 7i,1 < < n,

has a unique solution u(m;m,...,mr,,y(ma) + 71,...,y(m) + 7)- Furthermore, as O, the

solutions u(m;ma,...,m,,y(m) + 7,---,y(m,) + 7-) converge to y(m) on Imp, oo).

PKOOF. Let ml < m < < m fi [ma,oo). Define b" R R by (c,c,...,en)

(v(mx), v(m2),..., v(m,)), where, as fro.m above, v(m) v(m;mt,ct,...,e,,)is the solution of the

initial value problem for (1.1) satisfying

v(ml-{-i- 1) ci, l <_ <_

We claim that b is one to one.

Suppose k(c,...,c,)= b(,...,c,). Then,

By the assumed disconjugacy of (1.1) on Z, (in particulax, by uniqueness of solutions to (1.1),

(3.1)),
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v(m;m],cz,...,c.) v(m;m,c] c,), for every m E [m],+oo).

As a consequence,

v(m + i- 1;m,e] e,) v(m + i- 1;m,c],...,c,),l

_
_< n.

In particular, (c],... ,on) (c,...,c:). Hence, b is one-to-one.

Now, we claim that b is continuous. Suppose ((c,c,...,c)) converges to (c,c2 cn) as

l oo. By continuous dependence on initial conditions, given by Theorem 2.1, v(m; m],c,..., c)
converges to v(m;m,c] ,c,), for every m E [m, +oo), as l oo. In particular,

Therefore, ((c,...,c)) converges to cl,...,c,) as e- oo, and is continuous.

By the Brouwer Theorem on Invariance of Domain, is a homeomorphism onto the range,

(R"), and @(R’) is open in Rn. Now, with y(m) the solution in the statement of the Theorem,

(y(m),y(m2),...,y(n)) (R’). Since (Rn) is open, there exists an > 0, such that if

lTil < e, 1,2,...,n, then (y(m) 4- q,l,y(m2) 4- 72 ,y(m,,) 4- 7,) b(R"). Now, there exists

a unique (rl,..., r,) such that

(,...,) (y() + ,(2) + 2,..., y() + ).

But by deflation,

,) ((;, "),(;,, ) C;,’ ,)),

where v(m;m,r r) is the solution of the initi vMue problem for (1.1), stisfying

v(mx + i- 1) ri,1 _< < n.

Hence,

i.e., v(m; m], r] r,) is the solution of (1.1) satisfying

For each j 6 N, consider

v(mi;m,r r,) y(mi) + 7i,1 < < n.

where

and

For each j N, let

((r.,) + 71, (r.) + "d,"-, (m.) + V’.) e (R"),

lim (y(ml) + 7 ...,y(mn) + 7) (y(ml) y(m,)).
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U3(171) U(Trt; 7/11 171n’ /(1Tll)+ /’"""’ /(7/ln)+ n)"

Now, b-1 (R") R" is continuous. Therefore,

lim -X(u./(ml), %(m2),...,
lim 4-(y(rnx) + 3’ y(m2) + 7,--- y(m,,) +

O-l(ili_m(v(rn,) + 7,v(rn2) + 7,--. ,v(m,) + 7))

-’(v(m),v(),...,v(m,));

i.e., the initial values of ui(m) converge to the initial values of y(m). By Theorem 2.1, ui(m)

converges uniformly to v(m) on each compact subset of [rnl,oo). It follows that the solutions in

the statement of the Theorem, u(m; m,..., m, v(rn)+ 71 v(rn,,)+ 7,), converge to v(m), as

0. The proof is complete.

We now establish our analogue of Theorem 2.2 for conjugate problems.

THEOREM 3.r. (Differentiation of solutions of (1.1) with respect to boundary values) As-

sume that f satisfies (A) and (B), that (1.1) is disconjuaate on Z, and that the variational equation

(1.2) is disconjugate alon9 all solutions of (1.1). Let u(m) u(rn; ml,... ,rn,,, ul,..., u,,) be the so-

8ulution of(1.1), (3.1) on [mx,oo). Then, yor <_ j < n, 7.,, eists on [rnl,oo), aria zj(m) =_ 7,(m)
is the solution of the variational equation, (1.2), alon u(m) and satisfies,

za(mi) ij,1 _< _< n.

PROOF. We consider 0-, for fixed j, < j < n. Let > 0 be as in Theorem :1.6. Let

0 < Ihl < be given and consider the quotient,

|

.() [.(m;, ,.,,.,...,. + h ,..)

-u(m;m m,,u,...,% u,)].

It suffices to show that limh-.o zfl(m) exists on [rex, +oo).
Observe first that,

zh(mi) $i, < < n,

for every h 0.

For 2 < < n, let mi u(m + i- 1;m,...,rn,,ux,...,u,t), and i i(h) u(rn +
i- 1;rnx,...,rnn, ul,...,uj + h,...,u,) ai. Note that u(rnj;rn rn,,, u u,) uj and

u(mj;m,...,rnn,u,...,uj + h,...,u,,) % + h. By Theorem 3.6, ,(h) converges to zero, as h

converges to zero, for 2 < < n.

Recalling our notation, v(m; too, v,..., v,) denotes the solution of the initial value problem for

(1.1), satisfying

v(mo + i- 1) vi, <_ <_ n.

Then, by using a telescoping sum,

l[u(m; rnx m. ux, u, + h, u.) u(m; rnx ux u.)]z ti rn - m
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Now, by Theorem 2.2, solutions of (1.1) can be differentiated with respect to initial values; i.e.,

5"t, /2 /s /% exist. Hence, by Theorem 2.2 and the Mean Value’,

Theorem, we have that

Z h m -[]31(m v rn m. tl -l- h, ot2 -1-2,...,n

+/32(m;v(m;mj,Us,O + 2 n + en))e2

+ + .(m;v(m;m,,us,a2 ,o,,_,. + .)).],

where,

#1 (m; v(m; ms, u + , a2 + 2, a. + .)) a5-.,(m;mj;% -!- h, a2 + 62,...,0n + Cn),

.(m;v(m;m,,%,a2 .-,. + n)) tin"a. ,m,u,a,.. a. + .),

and where h is betwn 0 and h, and is between 0 and i, for 2,... ,n. That is, g(m; v(m; mj,

+h,2 +2 .+ .)) denotes the solution of the variationd equation, (1.2), Mong v(m; m, uj +
,a2+2,... ,an+n) nd satisfies, (m+i-1) it,

W an + 6n)) denotes the solution of the variationM equation, (1.2), dong v(m;m,%,o +
% a. +.), and satisfies, (mz + 1) 6,2,1 n. Continuing, #.(m; v(m; m, %, 02,...,

a._, a.+.)) denotes the solution of the viationM equation, (1.2), Mong v(m; m, u, a2 a.+
.) and satisfies .(mj + i- 1) 6i.,1 n. Note espidly that

P2(m#) ..... #.(m) O.

Simplifying our previous expression for z.i,(m), we have

z./(m) l(m;v(m;m.i,u + ’,2 + 2,...,n + n))
2+2(; (m; ,,, + 2,...,, + ,.))

+... + .(m;v(m;m,u,o,...,a._,o + ,)).
Thus, to show lima_0 zja(m) ests, it now suites to show that ma sts, for 2,..., n.

Now, rec that zj(m) ..... z(mj_) zjh(m+l) ..... zjh(mn) 0. From our lt

pression for zja(m), we can thus write,

(mi;v(m;m,uj,a +z,...,a. +
+... + n(mi;v(m;mj,uj,a,...,a._,n + )),

for _< < j 1 and j + <_ < n. This gives us a system of n- 1 equations in the n- unknowns, ,,.
By Cramer’s rule, (and suppressing the vaxiable dependency in v(-)),
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2

provided that

D()

D2(h)
D(h)’

Dn(h)
D(h)’

&(;,,(-)) 3(,,’,;,,(.)) ,,(,,;,,(.))

(-;,(-)) 3(-;,,(.))... .(m_;(.))o () u
02(+;(’)) 33(+’(’))... 0.(+,(.))

(.;(-)) (;(-)) 0(+;(.))

To s that, for h smM1, D(h) O, consider the determiner,

[32(ml;v(ra;mj, v;j,oe2 an)) n(ml;V(m;mi, j,a2,...,an))

(m/_;(m;,,,...,,)) 3,(m_;(m;m,,,...,,))D
(+;(;,,,,...,,)) ,(+;(;,,,,...,,))

3(,;,(m;i,#, ,,)) 3,(.;(;m,#,a ,,))

Now, if D 0, then there ests a nontriviM finear combination, for mine ru,..., r,, not M1 zero,

which is a solution of the variational equation, (1.2), along v(m; mj, uj,a2 an), and which Mso

varnishes at m ml,...,mi_l,mj+l,...,mn. It follows as before that,/(m$) ..... 3n(mi) O,

so that 7(m) Mso vanishes at m1. Specifically, 7(m) is a nontrivial solution of (1.2) that has n

zeros, which is a contraAiction.

Thus, D y 0, ad so by continuity, for h sufficiently small, D(h) y O. As a consequence, for

every 2 _< _< n, we have that limh...o e.xists. Say,

lira i
n._o

ki, 2 < < n"
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As a result,

z.(m) =_ lim
h.-O

(m;v(m;m#,u#,a,...,a,))

+... + (m;(;,,a ,a))

sts. That is, (m;m, ,m,ul, ,u,) ests, and spedcMly, z(m) (m). Morver,

since ,(m;(m;m, u,a,...,a)), n, re M1 solutions of the ritionM equation, (1.2),

Mong v(m;m,u,a,...,a,) u(m;m,...,m,u,...,u), we have that z(m) (m) is a

solution of (1.2) Mong u(m; m,..., m, u,..., u). Also, by elier observations,

z,() i_ #(,) ,#, <_ < ,.

The proof is complete.
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