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Abstract

The non-decreasing functions which are star-shaped and supported above at each point
of a non-empty closed proper subset of the real line induce an ordering, on the class of distri-
bution functions with finite first moments, that is strictly weaker than first degree stochastic
dominance and strictly stronger than sccond degree stochastic dominance. Several charac-
terizations of this ordering are devcloped, both joint distribution criteria and those involving
only marginals. The latter are deduced from a decomposition theorem, which reduces the
problem to consideration of certain functions which are star-shaped on the complement of

an open interval.
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1. Introduction

In their study of selective risk aversion at a point z € R, Landsberger and Meilijson
[1] introduced the concept of a non-decreasing utility function which is star-shaped and
supported above at this point . More generally, they also considered non-decreasing utility
functions which exhibit selective risk aversion at each point of an arbitrary non-empty closed
proper subset C of R, i.e., utility functions which are star-shaped and supported above at
each point of this set C. Note that each such class of star-shaped function is contained in the
class of non-decreasing functions, which induces the ordering known as first degree stochastic
dominance on the collection of distribution functions (of probability measures on the Borel
subsets of ). Moreover, each such class of star-shaped functions contains the class of non-
decreasing concave functions, which induces the ordering known as second degree stochastic
dominance on those distribution functions with finite first moments. Consequently, each of
these classes of non-decreasing functions, star-shaped and supported above at each point
of C, induces an ordering on the distribution functions with finite first moments that is
strictly weaker than first degree stochastic dominance but strictly stronger than second

degree stochastic dominance.
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In this paper we study thesc orderings, giving several necessary and sufficient conditions
for two distribution functions to be so related to each other. We also consider additional
hypotheses under which the necessary and sufficient condition can be simplified, simpler
conditions which are sulficient but not necessary for the ordering to hold, special instances
when the simpler suflicient conditions become necessary, and some examples to show that
certain results cannot be improved.

2. Some Special Classes of Star-shaped Functions and their Properties

Let U : ® — R be non-decreasing, star-shaped and supported above at a point p € R.
That is, U(t) — U(u) = (t — u)S(¢), where S(t) > 0 for all t € R, S(t) is non-increasing on
R, but (¢t — p)S(¢) is non-decreasing on R. Let IT be the collection of distribution functions,

of probability measures on the Borel sets of R, with finite first moments.

A. Let v = (p,v;&;a,8,7,6), where p <€ <vand 0 < a < 3 <y <4. Let a and b satisfy

bla—pu)+BE—a)=7(-p)
(=€) +a(v — b) = B(v - §),

sothat u<a<é<b<w.

Define

S(t—p), t<a
8la—p)+Blt—a), a<t<E
8la—p)+BE—a)+(t—€), E<t<b
§(a—p) + BE —a) +4(b—€) +a(t—b), t 2 b.

U.(t)

Properties of U,:

i) U, is strictly increasing of ®, star-shaped and supported above at every point of

(—o00, 4] U [v,00) and at no point of (u,v).
ii) U, is uniformly continuous on ®, with |U,(t2) — U,(t1)] < 8tz —tal, and U,(t)/(1 +1t])

is bounded on R.
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Notes: if we relax the strict inequality 0 < a and allow a = 0, then U, is still non-decreasing
on R and retains the other properties. If we allow equality in any of the other strict inequal-

ities o < B < v < 4, then U, becomes concave on R.

Lemmal. Let p < 2 < v, Y ~ G € I, and suppose that E(U,(Y)) < U,(z) for all
v = (p,v;€,a,8,1) where, £,a,/3,7 are rational, p < § < v,and 0 < a < f < v < L
Then, in fact, E(U,(Y)) < U,(z) for all v = (g, v; 250, B,7,8), where a, 8,7, are real and

0 <a< fB<q<4,orequivalently |
b ) a T
" / (1 - G(t))dt + o /b (1 - Gt < 6 / G(t)dt + 8 [ Gty

for all real a,3,v,6 with 0 < a < 3 < v < 6 and a, b chosen to satisfy §(a — p) + B(x — a)
= v(z — ), 7(b— ) + a(v — b) = B(v — z). Another one of the many equivalent forms
is (v — ) [[1 — G(B)dt < (6= B) [*,, Gt)dt + (v — @) [°[1 — G(t)]dt + Blz — E(Y)] for
0<a<p<y<dwith (6—B)a=p) = (v-B)(e—p) and (y—a)(b—z) = (B—a)(v - 2).
Proof:

First note that for any v = (¢, v;€,,8,7,6), where § € (p,v) and 0 < a <<y <4,

a direct calculation shows that
E(UY) - V) =7 | -Gl +a [T -Gl -5 [~ God-5 | ‘G,

where a, b satisfy §(a— )+ B(E —a) = v(€ —u), 7(b—&)+a(v—>b) = B(v—§). For emphasis,
write v(§) = (p,v;€;0,8,7,1) and v(z) = (u,v;7;0,8,7,1) where £, a, B, are rational,
£ €(p,v)and 0 < @ < B < v < 1. Observe that for fixed a,8,7,6, with0 < a < 8 <7 < 6,
a and b are continuous functions of £. Moreover, |Uyg)(z) — Uye)(€)] .< 8lz — €| — 0 as

¢ — z. Consequently,

E(Uu(r)(y)) - (Ju(z‘)(m)

Im[E(Uye)(Y)) = Uu (6]
im(E(Uye)(Y)) = Une)(2)]
0,

IA

under our hypothesis. To conclude the proof, note that if E(U,(Y)) < U,(z), then for any
6 > 0 the function éU, still satisfies this inequality. Finally, for fixed z € (g, v), the functions
a and b defined by 6(a — p) + B(x — a) = y(x — p), ¥(b—z) + a(v — b) = B(v — z) for
0 < a < f < v < 6 remain well defined and continuous as long as either 0 < a < B <y <6
or0<a<pB<v<$é Thecases 3 =7 =268 and a = B = 7 are independent of a and b

respectively and can be verified directly.y
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B. Consider the iterated limit l:ll':;l lilmU.,(t). Since v T oo implies b T oo, we can denote this
I Vi

limit by U,,(t). where vp = (p:6;7.6) for p < € and 0 < v < 8. Thus

b(t—p), t<a
Uty =14 bla—p), a <t <E

Sla—p)+(t=§), t2¢,

where a satisfies §(« — ) = (€ — p). In other words, vg = (p;&; %%:—“35,6) for p <a<¢
and 6 > 0.
Properties of U,,:

i)U,, is non-decreasing on R, star-shaped and supported above at each point of (—oo, ]

UVRU)

and at no point of (y,00).
ii) U, is uniformly continuous on R, with |U,,(t2) — Uyz(t1)| < 8|tz — t41|, and
U,n(t)/(1 + |t|) is bounded on R.

Note that if either of the strict inequalities 0 < v < é becomes an equality, then U, , becomes

concave on R.

Lemma 2. Let p < 2, ¥ ~ G € II, and suppose that E(U, (Y)) < U,g(z) for all vg
= (p;€;7,1), where £,7 are rational, p < £, and 0 < 7 < 1. Then, in fact, E(U,.(Y))

< Uyp(x) for all vg = (p;x;7,8), where 74,6 are real and 0 < 4 < §, or equivalently,
7/°°[1 _G)dt < 5/" G(t)dt

for all real 4,6 with 0 < v < § and a chosen to satisfy 6(a — p) = v(z — p). Another
L"’l;—_iundt < oo G0t

equivalent form is <
a-p

foru<a<czorevenp<a<z.
Proof: For any vg = (y;€;7,68), where p < € and 0 < v < 4, either a direct calculation or

two applications of the dominated convergence theorem to the iterated limit

lim i {B(U(1) — Uu(€)]
shows that E(U,,(Y)) = U.e(€) =7 [£°[1 = G(t)]dt — 6 [°.. G(t)dt, where a satisfies §(a — p)

= (€ — p). The rest of the argument proceeds along the lines of the proof of Lemma 1.4
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C. Next, consider the iterated limit
lim lim [U.(t) = U.(»)] = lim lim [U,(t) — v(é — ) — B(v = €)].
al0 pl-~ a0 pl-cc

Since g | —oco implics @ | —oo, we can denote this limit by U, (t), where vy, = (v;&;8,7)
foré <vand0< <.
Hence
Blt—v), t<¢
Uy () =9 (1 =0b), E<t<h

0,t>0,

where b satisfies y(b— ) = B(v — €). In other words, v;, = (v;§; 8, =4 3) for £ < b < v and

®=¢)
B>0.

)

Properties of U,, :
i) Uy, is non-decreasing on R, star-shaped and supported above at each point of [v, 00)
and at no point of (—o0,v).
ii) Uy, is uniformly continuous on R, with |U,,(t2) — Uy, (t1)| £ 7|tz — t1], and
U,,(t)/(1 + |t]) is bounded on R.

Note that if either of the strict inequalities 0 < § < v is allowed to become an equality, then

U,, becomes concave on R.

Lemma3. Let ¢ < v, ¥ ~ G € II, and suppose that E(U,,(Y)) < Uy, (z) for all
v = (v;€;1,7), where £,y are rational, € < v,and v > 1. Then, in fact, E(U,,(Y)) < U, (z)

for all vy = (v;z;8,7), where 3,7 are real and 0 < f < 7, or equivalently,
b T
v [i-Gene<s [ G

for all real B,y with 0 < 8 < 7 and b chosen to satisfy y(b— z) = B(v — z). An-
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orz < b< vorevenz < b < v

b, X
. . 1-G(1)}d LGt
other equivalent form is L! b_:”“ < Lo Gt f

= V1

Proof: For any v; = (v;&;8,7). where € < v and 0 < B < 4, either a direct cal-
culation or two applications of the dominated convergence theorem to the iterated limit
lim lim {E{U,(Y) = Us(v)] = [Uu(&) = Uu()]} = lim lim [E(U)(Y) = 7(€ — p)] shows that
EWU, (Y)-U,. (&) = vfé’[l — G(t)|dt — 3 5 G(t)dt, where b satisfies v(b— £) = B(v — £).

The remainder of the argument again lollows the lines of the proof of Lemma 1.4

D. The final limiting form is cl,ill;lU""(t) = li& la”l](} ullil_lla[U,,(t) — (€ = p) = Blv — €)]. Since
v T oo implies b | £, we can denote the limit by U,,, (t), where vpp = (g; &; B) for £ < v and
0 < B. Thus

Bt —v), t2¢

0,t>¢

U, (1) =

Properties of U,, , :
i) U,,, is non-decrcasing on R, star-shaped and supported above at each point of [v, c0)
and at no point of (—oo, ).
i) U,,, is discontinuous at f, although left continuous there, but continuous on the rest

U,

veL(t)

of R. It is still true that U,,,(t)/(1 + |t]) is bounded on R.

Note that if we allow 8 = 0, then U,,, becomes concave, in fact constant, on R.

Lemmad. Let + < v, Y ~ G € II, and suppose that E(U,,, (Y)) < U, () for all
vr = (v3€;1), where £ is rational, ¢ < v. Then, in fact, E(U,,,(Y)) < Uy, (z) for all
vrr = (v; z; B), where 3 is real and 0 < 3, or equivalently, B(v — z)[1 — G(z)] < B [Z,, G(t)dt
for all real B > 0. Other equivalent forms are [1 — G(z)] < %& or [Z (t —v)dG(t)
<z-v.

Proof: For any vy = (v;&; ), where £ < v and 0 < B, either a direct calculation or an
application of the dominated convergence theorem to litrg[E(UvL(Y)) — U,,(€)] shows that
E(U,,, (Y)) = Uy, (€) = Bv — &)1 = G(£)] — B [%, G(t)dt. We can now proceed as in the

proof of Lemma 1, except that we must approximate a by rational £ > x, since G is only

right continuous at 2 and, for vry = (v;€;1), Uy, () = Uy (x) =€ —x for £ > 24
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3.Characterization of Distributions \Which are No More Desirable than Certainty

Let C be a non-empty closed proper subset of R. Define S¢ to be the class of all non-

decreasing functions on R which are star-shaped and supported above at every point of C.

Proposition 1. Let Y ~ G € IT and x+ € R. Then the following conditions are necessary and
sufficient that E(U(Y)) < U(x) for all I/ € Sc.
HlfzeC: E(Y)<u

ii) If « € (. v) which is a bounded component of C¢ (the complement of C):
b o a z
- G(t))dt — Gt < t t)dt
1[-Glt+a [Tn-Gulass [ cwa+s [ 6w
for all real a,/3,7,6 with 0 < a < # < v < ¢, where a and b satisfy

6la — p) + B(x — a)

I

V(x —p),
Ab=-r)+a(r-0) = Bv-z).
iil) If ¢ € (p, 00) which is the component of C¢ unbounded above:

[l = Gl _ 2, Glt)de

r—p - a-—p

forp<as<u.
iv) If z € (—o0,v) which is the component of C° unbounded below:

E(Y)<zand [1 - G(z)] < M

V-

Proof: We begin with necessity. Since every non-decreasing concave function on R belongs to
S¢, E(U(Y)) < U(x) for all U € S¢ certainly implies E(Y) < z. Note that this condition

is implicit in cases ii) and iii), taking @ = 8 = v = § > 0 and a = z respectively. if
v = (uv;2;0,8,7,6), where ¢ € (g,v) and 0 < a < B < v < 4§, then the function U,,
being non-decreasing, star-shaped and supported above at every point of (—oo, s] U [v, ),
certainly belongs to Sg. Since the condition of ii) is equivalent to E(U,(Y)) < Uy(z) for
such a v, it must be necessary. Similarly, if vg = (p;2;7,6), where g < z and 0 < v < 6,
then U, ., being non-decreasing, star-shaped and supported above at each point of (—oo, p,
belongs to Sc. But the condition of iii) is equivalent to E(U,x(Y)) < Uyg() for all such
vR, and hence must be necessary. Finally, let v, = (v;z; 8), where z < v and 0 < B. Then

U,,, , being non-decreasing, star-shaped and supported above at all points of [v,00), belongs
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to Sc. Since the condition of iv) is cquivalent to E(Y) < 2 and E(U,,,(Y)) < Uy, (2), it
also must be necessary.

For sufficicncy in case i). we actually prove a slightly stronger result. Suppose E(Y')
< p < 2 for some p € C. Then, letting ¢ = p— E(Y) > 0, we have E(U(Y)) < E(U(Y +¢))
< U(p) < U(x) for every U € Sc, since such a U is non-decreasing on ® and supported
above at = E(Y + 2).

For case ii), suppose & € (y,») and U/ € S¢. Let a be the slope of a support line for
U at (v,U(v)), 8 = U(%ﬁym v = l(%ﬁ’(“) and 8 be the slope of a support line for U
at (u,U(p)). Then 0 € a £ 3 < 4 < 4. since U is non-decreasing on R and star-shaped
and supported above at both s and v, and, hence, letting v = (g, v; z; @, 8,7,6), we have
U(t) — U(p) < Ut) for all t € R with equality for u,z, and v. But the condition of case
i) is equivalent to E(U7,(Y)) < U7,(x) and, consequently, E(U(Y)) < U(p) + E(U,)(Y))
SUp) + Uy(a) = Ulr).

In case iii), supposc & € (i, 00) and {7 € S¢. Let v = 4—3'—”(“— and 6 be the slope of a

support line for U at (y.U(p)). Then 0 < v < §, since U is non-decreasing on ® and star-
shaped and supported above at g, and if we let vg = (p;2;,7,6) we have U(t)—U(p) < Uyi(t)

for all t € R with equality at x4 and x. Since the condition of case iii) if equivalent to
E(Un(Y)) < Usg(a), we have E(U(Y)) < U(k) + E(Upg(Y)) < U(g) + Unn(2) = U(2).
Finally, for case iv), suppose 2 € (—oo,v) and U € S¢. Let a be the slope of a support
line for U at (v,U(v)) and B = Y=V Then 0 < a < B, since U is non-decreasing on
R and star-shaped and supported above at v. Let v, = (v;z;8 — a) and observe that
U(t) - U(v) S U, (t) + a(t — v) for all t € R with equality for  and v. But the condition
of case iv) is equivalent to E(Y) < x and E(U,,,(z)) < U, (z). Therefore, we have

EUY)) SUW) + EUy,, (Y)) + E(a(Y —v)) SUW) + Uy, (2) + oz — v) = U(z)4

Corollary: Let Y ~ G € Il and = E(Y'). Then the following conditions are necessary and
sufficient that E(U(Y)) < U(z) for all {7 € Sc.
i) if z € C : the inequality holds for all such ¥ and U.
ii) If € (i, v), a bounded component of C¢: any of the following holding for all a, b
such that y<a < <b<w.
a) ozl 2 G(t)dt < E23 2 G(t)dt + =8 o[ - G(¢))dt

b) {e=mde=b) roor) _ g))de < L=M 0 Gt)dt + =8 (21 - G(t))dt

(r—p)(v—r) (v—z) (z=n)

C) (a=u)(v—b) f_r G(t)dt + i“__ﬂ"_"’l_{“"[l — G(t)]dt

(v-z) (x=u)
< Lehllec) fu Gty + Lestllsn) ) — G(1))dt

) (a—p)(v=b [fr G(t dt + .(“_M.L[l — G(t)]df

(v-z) (z—u)

(=)

< (v (:)!:)—a fa G(t)dt + (a=u)(b=p) fb'x’[l — G(t)]dt
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i) If € (p. 00), the component of (™ unbounded above: any of the following

IO G
a) =

non-increasing on (y1, ]
< .
« G(t)dt

b)G(a-) <

a=qp
c) Either P(Y =w)=1or E(Y'|Y <) <p.
iv) If 2 € (=00, 7). the component of (*“ unbounded below: any of the following

°°1 G(t .
a) u——— Jru-c “] non-decreasing on [, v)

b) 1— G(I) < [l G(t))dt

c) Either P(Y =a)=1lor E(Y'|Y <2) > v

Proof: i) If E(Y) = x € C, the nccessary and sufficient condition of Proposition 1 is satisfied.

i) If E(Y) =z € (p.v), then

e=bt [ Gl
/_\ G(t)dt + [ G(t)dt — /,bll - Gl

/bw[l — G(t))dt

so the necessary and sufficient condition of Proposition 1 becomes
b a T
(r-a) [[1-Gwldt < (6-a) [* Gyt +(B-a) [ Gtyat

or (v = B) /_; G(t)dt < (6 — 5)/; G(t)dt + (v — @) /b°°[1 — G(t))dt

for 0 < a < B < v <6 where ¢ and bsatisly (§—a)(a—p)+(B—a)(x—a) = (y—a)(z—p)
and (y — a)(b—x) = (8 — a)(v — 2). By continuity, we can assume # < ¥ and in this
case there is a one-one correspondence between % and 7=, on the one hand, and @ and b,

where ¢ < a < 2 < b < v, on the other hand. In fact, the solutions are

fra____feabon __,0-e (0= ) - 2)
b—a (a—p)v—2a)+(z—a)(r—-20>) (a—y)(u—x)+(z—a)(u—b)

Substituting these expressions into the last form of the inequality gives

@-w=-b [ coat<@-pw-4[ cndt+@-ww-z [ 1-Gw,

which is equivalent to a) above. The other forms follow from a) by simple manipulations

and the relation [Z  G(t)dt = [°[1 — G(t)]dt.

JZ. Gyt < J2. Gt

T—p - a—p

iii) If E(Y) = z € (p,00), the condition of Proposition 1 becomes

for a € (4, z]. But the function f“"“ ( =

(u=p)G(u~)- f:wc;(:)d: f_w(t—u)dG(t)
(u—n)? (u=—n)?

[°. Gl
u—p

is continuous on (g, z] with a left-hand derivative

there given by . Since [*_(t — u)dG(t) is non-decreasing

n (u,z], we see that is non-increasing on (g, z] (which implies the condition of
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Proposition 1) if and only if its left-haund derivative is non-positive at z (which is implied
by the condition of Proposition 1). That is, if and only if (z — u)G(z~) < [* G(t)dt or,
equivalently, [*__(t — u)dG(t) <0, i.c. cither P(Y = z) = 1 or E(Y|Y < z) < u. Hence,
conditions a), b) and c¢) are equivalent to each other and to the condition of Proposition 1.
iv) If E(Y) = 2 € (—o0, ), the condition of Proposition 1 becomes 1 — G(z) < I‘N[—:w,
which is our condition b) for this case. The function L‘”[T_Lu(t)wt is continuous on [z, r) and

has a right-hand derivative there given by

—(v )1 - G(u)] + [7[1 = G())dt _ [°(t — v)dG(t)

(v —u)? (v —u)?

Since [;°(t — v)dG(t) is non-decreasing on [v,r), we see that L”—[l‘—}_ci(Lw is non-decreasing
on [z,v) if and only if its right-hand derivative is non-negative at . That is, if and only
if [°[1 = G(t)]dt > (v — a)[l — G(2)] or, equivalently, [°(t — v)dG(t) > 0, i.e. either
PY=z)=lor E(YY >z)>v.y

Comments and Supplements:

A IfY ~ G €Il and 2 € I, where [ is an open proper subinterval of ®, then the proof of
Proposition 1 shows that E(U(Y)) < U(z) for all U € Say if and only if E(U(Y)) < U(z)
for all U € Sje. For if C = 31 then I is one of the components of C¢ and the necessary and
sufficient conditions of Proposition 1 are equivalent to E(U(Y)) < U(z) for certain functions

U € S Ic.
B. Conversely, the fact that S¢ C Sg, for every n € C gives sufficient conditions on

Y ~ G € 1l and 2 € R to satisfy E(U(Y)) < U(z) for all U € Sc, namely the condi-
tions necessary and sufficient for Sg,). For example:

1. It is sufficient that for some p € C, with u < z, condition iii) of Proposition 1 is
[ n-Gt)at . 2. G
z—p

satisfied; that is < == forp<a<z.

2. Similarly, it is sufficient that for some v € C, with < v, condition iv) of Proposition

1 is satisfied; that is E(Y) < x and [1 — G(z)] < &==50%

3. In particular, if € (g, ) which is a bounded component of C°, then either of these

two conditions is sufficient.

4. In case E(Y) = z, the corresponding versions of these sufficient conditions can be

written as in Landsberger and Meilijson [1]: Let J, = {z} if P(Y = x) = 1, otherwise
let J, be the interval [E(Y]Y < 2). E(Y|Y > z)]. Then E(U(Y)) < U(z) for all U € Sc
provided that J, NC # ¢.

C. However, if 2 € (1, v) which is a bounded component of C¢, there are situations in which

these sufficient conditions are necessary as well.
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1. If P(Y < p) = 0. condition iv) is necessary.

Proof: Starting with the necessary and sulficient condition ii) of Proposition 1 and as-

suming G(t) = 0 for { < p. we let & T oc which implies a | g and gives

b oo zr
7/, I -G(t)]dt+n/b (1 — G(t))dt 55/_00 G(t)dt,

where 0 < o < /3 < 4 and b satisfies (b — @) + a(v — b) = B(v — ). Next, let o | 0 so that

for 0 < B3 <y with 4(b— ) = 3(v - )

Y /_bll ~Glae<p [ G

Finally, if we let 4 1 oo, which implies b | x, we get

T t)dt
- G < F= 002

Since E(Y) < z was already necessary from condition ii), we see that condition iv) is also
necessary in this situation. Note also that if E(Y) = z as well as P(Y < p) = 0, the
corresponding version of condition iv) follows directly from version b) of condition ii) in the
corollary to Proposition 1, after dividing by @ — u and letting a | ug

2. If E(Y)=a and P(}" > v) = 0, condition iii) is necessary.

Proof: Again start with version b) of condition ii) in the corollary to Proposition 1, but
this time divide by » — b and then let b T v. 4

3. Combining the last two remarks, we see that if E(Y) =z and P(p <Y <v) =1,
then for = € (i, v) we have E(U(Y)) < U(x) for all U € Sc if and only if P(Y = z) = 1.

Proof: If E(Y') = & € (g, v) with both condition iii) and condition iv) holding, the only
possibility is P(Y = 2) =1. 4
D. To show we cannot go beyond the above situations with respect to necessity of conditions
iil) and iv), we conclude with two examples.

1. There exists a Y ~ G € Il and an interval (g, v) with E(Y) = z € (u,v) such that G
satisfies condition ii) but does not satisfy either condition iii) or condition iv).

Proof: For convenience, we take —u = v > 0 = 2 and let Y be uniformly dis-
tributed on [—L, L], where L € (v,2v). For such an L, we see that on the one hand
P(Y < p) > 0and P(Y > v) > 0 while on the other hand E(Y|Y < 0) = —52’ > —v = pand
E(YlY >0)= % < v, so that neither condition iii) nor condition iv) is satisfied. Because of

all the symmetry in this example, version d) of condition ii) in the corollary to Proposition
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1 reduces to

(a + y)/u(j(t)dl <(v- a)/_" G(t)dt

for —v < a < 0. Since G is the uniform distribution on [—L, L], we get

h(a) = (a + l/)/‘;o(,.'(t)dl —(w —u)j:; G(t)dt = L(“: v) _ "("2’2")2.

The maximum value of this quadratic function of a occurs at the point ag = —L(M Since
L € (v.2v) we sce that ay € (—w. —%u) c (=v,0). The maximum value
h(ag) = :m[(L — 4r)? — 81?). Thus h(ay) < 0 as long as L € (v,2v) is sufficiently close
to 2v, namely 2v — L < #l/. Conscquently, for any such value of L, G satisfies condition
i). g

2. There cxists a Y ~ G € Il and an interval (g, v) with g < E(Y) < £ < v such that
P(Y > v) =0 and G satisfies condition ii) but does not satisfy condition iii) or iv).
Proof: Again we let —g = v > 0 = x, but this time let ¥ be uniformly distributed on
[-L,v), where L € (v.2v). For such an L we see that on the one hand, P(Y > v) = 0
and E(Y) = ”"L € (—%,0) C (—».0). On the other hand, we see that for such a uniform
distribution condition iv) is certainly not satisfied for L € (v, v/2v) since

Gydt v L? s
-0 v+l 2w(w+L) 2wv+Ll)

(L -Gy - = 0.

Turning to condition iii) we require

h(a) = (a + u)/ow[l —G()dt — u/_; G(t)dt = [a+v)—(a+ L)} <0

2(v +L)

for —v < a < 0. In this case we find that the maximum value of M for —v < a < 0 occurs
at ag = —(2v—L) € (—v,0) for L € (v,2v) and this value is given by ;&—4_—3 = gy (Ov —4L).
Therefore the maximum is positive and hence condition iii) is not satisfied if L € (v, 2v).
Finally, writing condition ii) in the form (v — b)h(a) < (a+ v)k(b) for ~v <a<0<b< v,
where k(b) = v [{°[1 - G(t)]dt + b0 - E(Y)] = %((ﬁ); +3(L —v), we claim it will be satisfied
for L € (v,3v) which are sufficiently close to 2v. To see this, we find that the minimum
valueof—ufor0< b < v occurs at by = v — /IZ =2 € (0, W CcOw)ifL e (niv).
This minimum is given by \/E [)u - M] But then -(—1 < —(—1 means
v(5v —4L) < VI? =2 [‘211 - \/L"——Tﬁ], or equivalently (2v — L)? < 2v/L? — »? and such

inequalities clearly hold for L € (v, 2v) which are close enough to Sv.



STOCHASTIC ORDERINGS INDUCED BY STAR-SHAPED FUNCTIONS 651

4.0rderings of Distributions with Respect to Star-shaped Functions

Let S¢ denote the functions which are non-decreasing on R, star-shaped and supported
above at each point of (., a non-empty closed proper subset of . Let Sc C Sc consist
of the identity function /(1) = t and the following additional functions. For any bounded
component of C°, say (p.r), include the class of all U, for v = (g, v;¢;a,8,7,1), where
¢, a, B, are rational, £ € (yt,7), and 0 < a < 8 < v < 1. If C° has a component unbounded
above, say (p,00), include the class of all U, for vg = (p;€;7,1), where £, are rational,
u <€ and 0 <5 < 1. If C° has a component unbounded below, say (—oo, v), include the
class of all U,, for vy, = (v;€;1,7), where £,4 are rational, £ < v, and 1 < 4. Note that
since C° has at most a countable number of components, Sc is countable. Furthermore, each
U € Sc is continuous and has the property that U(t)/(1 + |t|) is bounded on R.

IfY ~G and X ~ F, where G and I belong to I, we say that G is not more desirable
than F with respect to Se, written G <¢ F. if and only if E(U(Y)) < E(U(X)) for all

U e Sc. Ifr € R and ¢, is the probability distribution concentrated at x, let

I, = {G ell: G <¢ 6,}.

Given a Markov kernel T : ® x B — R, where B is the Borel subsets of R, let G(t)
= T(z,(—00,1]) for (x,1) € R? and for each + € R let Ty be a random variable with
distribution function G,. Then 7" will be called an Sc-dilation if and only if G, € II, for all

z € R, i.e. G, has a finite first moment and E(U(T;)) < U(z) for every z € R and U € S¢.

Theorem 1: For a Markov kernel T', with i, € 11 for all z € R, the following are equivalent:
a) T is an Sc¢-dilation
b) For each 2 € R, G, satisfies the appropriate condition of Proposition 1.
¢) E(U(T,)) < U(x) for every z € ® and U € S¢.

Proof: Since S'c C S¢, we immediately have a) = c). If we assume c) then, since the identity

function belongs to Se. E(T;) < 2 for all x € ®. Consequently, for each z € R G satisfies
the appropriate condition of Proposition 1 because of Lemmas 1, 2, and 4, after observing
that the hypotheses of Lemma 3 imply (by letting v T co) those of Lemma 4. Finally, if b)
holds then the sufficiency half of Proposition 1 gives a). g

In order to proceed, we need to make use of a version of a theorem from Strassen’s [2]
important 1965 paper, a fundamental work with many interesting applications. First the
terminology: Let #(z) = 1+ || for 2 € R and &(x,t) = d(z) +9(t) for (z,t) € R%. Let C3(R)
be the set of all continuous functions v defined on ® such that v/? is bounded. Similarly,

let C;(R?) be the set of all continuous [unctions w defined on R? such that w/& is bounded.
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Then C3(R) and ('5(R?) are Banach spaces with norms [|o|l; = sup{Jv(z)|/#(z) : z € R} and
|lwllz = sup{|w(a.t)|/&(a,t) : (@, 1) € R?}. Letting II;, ¢ = 1,2, be the natural projections
from R? onto R, it turns out that v € (3(R) if and only if v o II; € C5(R?). To see this,
note that if v € Ci(R), then |v(x)| < |lv|hid(x) < |[v]hd(a,t) for all (z,t) € R?, so that

voll; € Cy(R?) and [Je o TLJ; < ||v]li- Conversely, if v o II; € C;(R?), then
|e(2)] < oo T;|],éx(a,0) < 2|jv o I;]|20(x)

for all z € R, so that v € Cyx(R) and ||v||; < 2||v o II;]|z. Thus, in fact, the norms of v in
C;(R) and voll, in C5(R?) are equivalent. Now let IT? be the set of all probability measures
P on the Borel scts of ®2 such that [@dP < oo, i.e. [(|z| + |t|)P(dzdt) < oo, equipped
with the topology 7 generated by the [unctionals P — fwdP for w € Cz(R?) (in other
words, the relativized weak—x topology when I1? is considered as a subset of the dual space
of C;(R?)). Note that if P € TI? then the marginals P, = PolI;? € II, the Borel probability

distributions on R with finite first moment.

Strassen’s Theorem 7. Let A be a non-empty, T-closed, convex subset of I1? and let F and
G belong to II. Then a necessary and sufficient condition for the existence of a probability
measure P in A with marginals F and G, i.e. with F =P, = POII{'l and G = P, = Poll;?,
is that [v(z)F(dz) + [u(t)G(dt) < sup{f[v(x) + u(t)]Q(dzdt) : @ € A} for all v and u in
Ci(R).

We can now combine Strassen’s Theorem with our Theorem 1 to yield the next result.

Theorem 2: For probability distributions F and G in II, the following are equivalent:
a)G<c F
b) There exists an Sc-dilation T with TF = G (i.e. [ T(z,A)F(dz) = G(A) for all
A € B)
c) On some probability space there are random variables X ~ F and Y ~ G such that
for every U € Sc, E(U(Y)|X) < U(X) holds almost surely.

Proof: Since b) = c) and c¢) = a) are clear, it suffices to show a) = b). So assume G <¢ F
and define A = {Q € 1% : [[U(t) — U(x)Jv(2)Q(dzdt) < 0 for all U € S¢ and all bounded,
continuous, v > 0}. We claim that A is preciscly the set of probability measures Q for which
there exits a regular condition distribution (Markov kernel) T, related to the marginals of @

by TQ; = Q,, which is an S¢-dilation. These measures certainly belong to A since

J@ - UeeQud) = [{ [0 - U@)G.(dt)}o(a)@i(da) < 0
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for all U € Sc and bounded. continuous, non-negative v. Conversely, if @ € A, with
marginals Q; and Q. and 7" is any regular conditional distribution with 7'Q; = Q2, then
TG (dt) < o0, @, almost surely. and for cach U/ € S¢ we have [ U(t)GL(dt) < U(z), @x
almost surely on the sct where G’ has finite first moment. Since Sc is countable, there is

a @ null set N such that for a ¢ N we have [|¢|G%(dt) < oo and [U(t)G,(dt) < U(x)
for all U € S¢. Consequently, if we define T(x,A) = T'(z,A) for ¢ ¢ N and A € B, with
T(z,A) = I4(z) for + € N and A € B, we sce that T is an Sc-dilation (by Theorem 1) and
TO:) = Q2.

Clearly, A is non-empty and convex. Moreover, if U € Sc then U is continuous with
U(t)/(1 + |t]) bounded on R. Thus if we let w(z,t) = [U(t) — U(z)]v(z) for U € S¢ and
v bounded, continuous, and non-negative, then w € C;(R?). In other words, A is also a
T -closed subset of I12. By Strassen’s Theorem, it remains to prove that for v and u in C3(R)
we have [vdF + [udG < sup{[[v(z) + u(?)]Q(dzdt) : Q € A}.

Given u € C3(R), let A, = {U € S¢: U > u}. If A, = 0, let uy = +o00. Otherwise,
let uo(t) = inf{U(t) : U € A,} for cach t € R. In any case, up > u. We claim that if
A, # 0, then uo € Sc. To show wg is non-decreasing, let ¢; < t;. Then for every U € A,
uo(t1) < U(ty) < U(ty), so that wug(t;) < ug(t;). To show ug is supported above at any
point u € C, let t; < p < t; with @ € (0,1) chosen so that at; + (1 — a)t; = u. Then
for every U € A, aue(t1) + (1 — a)ug(tz) € aU(t) + (1 — a)U(t2) < U(n), so that
aug(ty) + (1 — a)ug(tz) < ug(p). Finally, to show g is star-shaped at any point p € C, let
t# p and a € (0,1). Then for every U € A,, auo(t) + (1 — a)uo(p) < aU(t) + (a — a)U(p)
< U(at + (1 — a)u), and hence aug(t) + (1 — a)uo(p) < uo(at + (1 — a)u).

Therefore, if v and u belong to C';(R), we have

/ vdF + / udG < / odF + / wodG < / vdF + / uodF,

since G <¢ F and either ug € S¢ or vy = +00. Thus,
/vdF+ /udG < /[v + uo)dF < sup{v(z) + up(z) : € R}.

So suppose we choose any r < sup{v(z) + uo(z) : = € R}. Strassen’s condition will be
satisfied if we can find a Q € A (depending upon r) such that r < [[v(z) + u(t)]Q(dzdt). To

find such a @ we need another function which dominates u € C3(R).
Recall that for z € R, we defined I, = {H € II: H <¢ ¢€,}. Therefore, for u € C;(R) and
z € R, let uy(z) = sup{fudH : H € I1,.}. Since ¢, € II,, we have u;(z) > u(z) for all z € R.

Now suppose z; < z,. Since U(z;) < U(z;) for every U € S¢, we see that €, <¢ €,,. Since
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the relation <¢ is trausitive, we have Il,, C I,,. But then for any H € 11,,, [udH < uy(z2)
and hence u(x,) < uy(r,). Next, let 4 € € and 23 < p < z, with a € (0,1) chosen so
that az; + (1 — a)r, = p. Since all(x;) + (1 — a)U(xz) < U(p) for all U € S¢, we have
aéy, + (1 — a)er, <¢ ¢y and thus all,, + (1 — o)1, C I,. Therefore, if H, € I, and
H; € I,, we sce that o [udlly + (1 — a) fudll; < wuy(u) and hence that au,(z)
+(1—a)uy(az2) < uy(p). At this point we can see that if uy (i) < oo for any point ¢ € C, then
uy(z) < oo for all € R, v, is non-decreasing on R, and u; is supported above at all points
# € C. Finally, let p € ¢, * # p. and a € (0,1). Since aU(z) + (1 — a)U(p)
< U(az + (1 = a)p) for every U € Sc. we get ag; + (1 — a)e, <¢ €art(1-a)s- Thus
oll; + (1 — a)ll, C Niig(1-a)u- Therefore, if H € T, and K € II,, we have o fUdH
+(1—a) fudK < uj(ar+(1—a)p) and hence awy(2) + (1 — a)uy(p) < wy(az + (1 — a)p).
We can now see that if u;() = +oo for some p € C, then u;(z) = 400 for all z € R. Thus
we either have u; = 400 or u; € Se-. But in the sccond case, this means A, # @ and hence
ug € S¢ with u; > ue. In any event, we certainly have uy > uo.

Now if r < sup{v(a)+ug(x) : » € R}, then for some s € R, r < v(s)+up(r) < v(s)+u,(s).
Since the inequality r < v(s) 4 u;(s) is equivalent to r—v(s) < uy(s), there exists an H € II,
such that » — v(s) < [ udl] or, equivalently. r < v(s) 4+ fudH. Now let Q = ¢, x H. Then
Q € A (taking T'(s,A) = H(A) and T'(z, A) = I4(z) for = # s, A € B, for example) and
To(e) + w(t]Q(dxde) = v(s) + [ udH. y

5.Further Conditions Necessary and/or Sufflicient that G <¢ F:

If C is a non-empty closed proper subset of R, ¥ ~ G and X ~ F', with G and F inII, then
we would like further characterizations of the relation G <¢ F, i.e. E(U(Y)) < E(U(X))
for all U € Sc. We begin with a decomposition theorem which reduces the problem to
considering U € Sjc, where I is a component of C°. The basis for this theorem is the

following lemma.

Lemma 5. Suppose IV € S¢ is lincar on cach component of an open set (possibly empty)
J C R. Let I be a component of C¢ such that I NJ = @. Then there exists functions U and
V such that U € S;. is linear on each component of I¢, V € S¢ is linear on the components
of IUJ,and W = U + V. Moreover. if I is bounded below with u = glb I, then the slope
of U on (—oo, p) is U'(yt).
Proof: If I = (g, 00) is unbounded above: let

(). t>p

U(t) =
W(p)+6(t—p), t<p
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and

. t>p
1 (t) =
W) =W () =6t = p), t<py

where 6 = W/(u%) is the smallest support line slope for W at p.

If I = (—o0,r) is unbounded below: let

t>v
Wy =wWwy—a(t-v), t<v
and )
(), t>v
v <] T >

Ww)+at—v), t<v,

where a = W/(v*) is the smallest support line slope for W at v.

If I = (g, v) is bounded: let

0, t>v,

Uiy=3 wt)- W) -a(t—v), u<t<v
W(p) = W) ~—alt —=v)+8(t—p), t<p
and
W(t). t>v
V() =4 W) +a(t—w). p<t<v
W) = W) + W) +alt —v) =6t —p), t<p
where a = W/(v*) and § = W/(ut). Then it is casily checked that, in all cases, W = U + V

with U and V having the prescribed properties. g

Theorem 3. Let U € S¢ and let {[,1;,...} be the components of C°. Then there exist

functions {Uy, Uy, Us, ...} such that: Uy is non-decreasing, concave on R, and linear on the

components of C*; for cach component 1,, of C*, U,, € Sj and is linear on each component

of I—fn; and U = Uy + ZU,,,. Moreover, given a € R, the functions U,, for m > 1 can be
m>1

chosen so that U,,(z) =0 and hence Ux) = Up(a).

Proof From Lemma 5, with J = @, we know that U = U; + V;, where U; € SI; and is

linear on each component of I{, Vi € S¢ and is linear on I;. So suppose that for some

n
n > 1 we have U = Z Un + Vo, where U7, € Sy and is linear on each component of I for
m=1

m=12,...,n, ¥, € S¢ and is linear on cach component of U, _, I,,. If U, _, I, = C¢, we

stop. Otherwise, again by Lemma 3, this time with J = U}, _; In, we write V;, = Upy1+ Vay,
where U, 4, € Sie " and is linear on each component of f,‘,“, Va+1 € Sc and is linear on

n
Uzt I,.. Fixing z € R, we see that the decomposition U(t) = Y " Un(t) + Va(t) can be
m+1
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written U(t) = Z": [Un(t) = Uy ()] + [Va(t) = V() + U(2)], so we assume U = zﬂ:Um +Va,
where cach Um(27]= 0 and V,(x) = U(x). =

Now if C*¢ has only a finite number of components we are finished, since in this case the
last V;,, being lincar on the components of (** and belonging to Sc, is concave on ® and

hence we define Uy to be this V. If (" has an infinite number of components, we fix z € ®

and write U = ZU,,. + V,, with all U, (¢) = 0 and V,(z) = U(z), for every n > 1. But
m=1

for each t > a, the sequence (i l",,,(l)) of partial sums of non-negative terms is bounded
above by U(t) — U(x) and hcn?:lthc sequence (V,(t)) is non-increasing and bounded below
by U(z). Similarly, we sec that for each ¢ < x, the sequences (zn:U,,.(t)) and (V,(t)) are
also convergent. Letting Uy(t) = nll_l]l Vi, (1), we sce that Up is liI:;; on the components of
C*¢ and belongs to S¢, so that Uy is concave on R. Thus U = Up + 2 U, gives the stated
decomposition. g m

We now can see that the problem ol characterizing ¥ ~ G and X ~ F with G and
F in II for which G <¢ F.ie. E(U(Y)) < E(U(X)) for all U € Sc, can be reduced to
the corresponding problems for non-decreasing concave functions on R, where the result is
well-known, and, for eacli component I of (*, the functions in Sjc which are linear on the
components of I°. To complete the characterization in the case of bounded components
and the case of a component unbounded ahove, we need to expand the special classes of
star-shaped functions considered in section 2.

A.Suppose p <v,n>2,and 6 >6,>--->6,>21>2a1>2az > -+ > a, 2 0. Choose

the points p < a; <r; < ey <+ <y, L an L vsothat

Spr(vi =) ten(v —,)=v—p fori=1,2,---,n—1
and Sila; —p)+alv—a)=v—p fori=1,2,---,n.
Letting zo = —oo and z, = +00, we define U to be the piecewise-linear, continuous function

with value 0 at pu and with slopes §, on (z,-1,a,) for i = 1,2,...,n and o; on (a,,z;) for
i=1,2,...,n. In other words
(1) = §(t—p), t€ (o, i=1,2,...,n
ait—v)+(v—p), t€(a,z]i=12,...,n
Properties of U:
i)U is strictly increasing on R, star-shaped and supported above at every point of
(—m) "‘] u [V’ OO)
ii) U is linear on (—oo, 1) and on (v, o).

iii) The case n = 2 corresponds to the functions U, of section 2.A.
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U(t)

//t [ .‘l;l(l:z .'1'2‘ a3 v t

Lemma 6: f Y ~ G, X ~ F, with (¢ and I in II, then

BOY) - B0(X) = - 3o [ 16w - Pl - ijs,- [ 160 - Fat.

Proof:
BOW) - EG(X) =Y [l = v) + (v = w]ldG(t) — dF(0)]
i=1v%
+i/u.~ 8i(t — p)[dG(t) — dF(t)] = 2 ai(t — v)[G(t) = F@))I2 - z":a,. /f‘[G(t) — F(t))dt
=17 %=1 i=1 i=1 a;
H = W) Y60 - FOIE + 36t - (G0 - Flz, - Y& [ [60) - Foldt
i=1 i=1 i=1 Ti-y
= - [T16w - P - 306 [ G0 - Flod,
i=1 ai i=1 Ti—1

since

(= )[Glaa) = Fla)] = Jim (¢ = »)[G(H) = FB)] =0,
(20 = #)[G(x0) = F(xo)] = lim (¢ - w)G(t) = F(1)] =0,
Sir(ei = p) +oilv —z) = v —p
fori=1,2,...,n—1,and &(a; — p) + a;(v —a;)) =v —pfori =1,2,...,nq

B. If we start with U and successively let v T oo, which implies a, T 00, a; | 0, and then,
for normalization, divide by §;, we obtain a function U which is determined for n > 2 by
1=6>6,>--->6,>0and points u <@y < z; <az < -+ < @p_1 < Tpq such that

§;(a; — ) = 8;y1(x; — p) is non-decreasing for ¢ = 1,2,...,n — 1. Letting zo = —co and
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an = 400, we see that {7 is the piecewise-lincar, continuous function with value 0 at g and

with slopes &; on (w;_y, ;) fori=1.2..... nand 0on (¢, x;)fori =1,2,...,n—1. In other
words,
N Si(t — ), L€ (xim1, 4], 1=1,2,...,n
(1) = i( / 1 ]
bilai — ), t € (aiy)i=1,2,...,n— 1.
()

Properties of U:
i) U is non-decreasing on ®, star-shaped and supported above at every point of (—oo, u).
ii) U is linear on (—oo, st).

iii) The case n = 2 corresponds to the function U,, of section 2.B.

Lemma 7: fY ~ G, X ~ F, with ¢ and 7 in I, then

E(U(Y)) = E(U(X)) = — 25/ [G(t) — F(t))dt.

=1

Proof: We can either use the result of Lemma 6, along with the dominated convergence

theorem, or we can proceed directly. In the latter approach, we see that

n—1

E(U(Y)) - E(U(X)) = 25 ‘—/t)/ [dG(t) — dF(t)]

4308 [ (0= GO - dF0] = T 6 - wIGO ~ FOE

i=1 i=1

380 - Wi - PO, - 36 [ 1600 Fole

i=1

=—Z6/ — F(1)dt,

i=1 Ti- ’
since (an — p)[G(an) — F(an)] = lim (¢ — p)[G(t) = F(t)] = 0, (zo — #)[G(z0) — F(zo)]
= tlil_nw(t —p)[G(t) = F(t)] =0, and 64y (2; — ) = 8i(a; —p) for i =1,2,...,n— 14

Theorem 4. Let ¥ ~ G, X ~ F, where (¢ and F belong to I[I. Then G <¢ F, i.e.



STOCHASTIC ORDERINGS INDUCED BY STAR-SHAPED FUNCTIONS 659

EWU(Y)) € EU(X)) for all ! € Sc, il and only if all of the following conditions are
satisfied:
i) [Z,G(t)dt > [ F(t)dt for every @ € R.

i) For every bounded component of (| say (p, v), whenever
6 26>--20,2120202...20, 20,

n>2and —c0o=ag< p<ag < <ay < < apm1 €0y SV < Ty = 00 satisfy
Sp(ri—p)+a(v—u)=v—plori=1.2.... n—1, é(a,—p)+ai(v—a)=v—pfor
i=1.2,....n then 3 oy, /“"[(:(1) — P+ S8, /, [G(t) — F(1)}dt > 0.

iii) For the coxnp'():l:(‘nt- o‘f ¢ unbounded al):\'lc, sa;'_l(p, 00), whenever

1=6[Z522"'25n>0v

n>2and —c0o=ap < p < a3 <y <ay <-or <2y < ap = o0 satisfy 6,(a, — p)

1—1

= 8,41(x, — pt) is non-decreasing for i = 1,2...., n —1, then E&,/ ' [G(t) — F())dt > 0.
i=1 *

iv) For the component of C* unbounded below, say (—oo,v),

/;(t —)dG(1) < /;(t — V)dF(t) for all z < v.
Proof:

IfU € S, and H € 1, then [|U(t)|dFI(t) < oo if and only if fU(t)dH(t) > —oo. Fur-
thermore, in the decomposition of U/ given by Theorem 3 there is at most one term which
might not have finite expectation with respect to H. If C° has a component unbounded
below, then this term is the U, corresponding to that component. If there is no such com-
ponent, then this term is Us. In any case. even if C€ has an infinite number of components,
—oo £ fUdH = [UydH + Z /U,,,dll < oo. Consequently, fUdG < [UdF for every
UesS. ifand only if [ U,,,dGmélf U, dl for all l/,,, m=0,1,2,... of the type appearing in
the decomposition. We claim that conditions i) through iv) collectively are both necessary

and sufficient for all such inequalities to be satisfied.

t—z,t<«z
If we define, for each = € R, the non-decreasing concave function Ux(t) =
0, t>z,

then condition i) is equivalent to E(I/.(Y)) < E(U,(X)) for every x € . But this is the well-
known necessary and sufficient condition that E(U(Y)) < E(U(X)) for all non-decreasing

concave functions U/ on R.
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Condition ii) is certainly necessary, since it is equivalent, by Lemma 6, to the statement
that for every [/ € S, C Sc-. we have E(7())) < E(U(X)). We next show that this
condition is sufficient for E(1/(Y)) < L(I7(.X)) whenever U € S, U is linear on (—oo, )
and (v, 00), and the slope of U on (—oc. ) is {7/(pt). We can assume that fy = ﬂ‘—'EL—’M >0,

for otherwise U(t) = ['(;t) for all # € R. Lor cach m > 1, we define a U,. as follows. Start

. "t
with the points @p,, = p+ (v — /1)%. kb =1.2,...,2" — 1. Next, let ém = J_)Uﬁ: R
Ulrrm)=Utn) o " U(v)=Ulzim
6k+1,m = L((;:;:'lul)d(:) for b =1.2.....2" — 1. Y— ((:lsk::)kgo) for k = 1’2’ . ’2," _ l,
and azm , = -l-”;.%#l Obscrve that

61.m Z 62,01 Z LR Z 62”',;" 2 1 2 Qpom _>_ Qa2.m 2 ] Z 02"‘,": Z 0

and bxp1,m(Thm — 1) + (v —Tp ) = M;TU—M =v—pufork=1,2,...,2™ — 1. Therefore,
these parameters dcfine a function 0, which is readily seen to satisfy BoUm(t)+U(p) > U(t)
for every t € R with equality at the points x,,, k =1,2,...,2™—1, and on (—o0, p]U[v, 00).
Moreover, since U is continuous, we sce that as m T oo, ﬂo[/,,.(t) + U(p) | U(t) uniformly on
R. Since we assume that [ {7,,dC < [ O dl form=1,2,3,..., we get [UdG < [UdF as
required.

Condition iii) is also necessary, since it is cquivalent, by Lemma 7, to the statement that
for every U € S(c)c C Sc. we have E(U(Y)) < E(U/(X)). We now show that the condition
is sufficient for E(U(Y)) < E(U(X)) whenever U € S0, U is linear on (—oo, ), and
the slope &y of U on (—o0, ) equals U'(u*). We can assume that § > 0, since otherwise
U(t) = U(u) for all t € R. For cach m > 1, we define a I:J,,. as follows. Let x4 = p + 2—'.‘..- for

k= 12,...,m2" — 1. Then let &, = | and, for k = 1,2,...,m2™ — 1, let

— Ulzem)-U(n)
rrim = oo

. Observe that 1 = &, > b3m 2 ... > Smgmm > 0 and Skp1m(Zhm — )
is non-decreasing as k = 1,2,...,m2" — L. Therefore, these parameters define a function
U which satisfies 6oi/ (¢) + U(p) = U(t) for every t € R with equality at the points zim,
k=1,2,...,m2™ — 1, and on (—oc. ). Furthermore, since U is continuous, we see that as
m T oo, 60(}(t) + U(u) | U{t) pointwise on R (actually uniformly on subsets of ® which are
bounded above). Since we assume that [ l.;".,,dG < fl:/,,.dF form =1,2,3,..., we see that
JUdG < [UdF as needed.

Finally, condition iv) is necessary, since it is equivalent, by an easy calculation, to

EW,, (Y)) < E(U,,, (X)) for all v, = (v;x;1), where z < v, and these functions be-

long to S(_e,)c C S.. We conclude by showing that this condition, along with condition
i), is sufficient for E(U(Y')) < E(U(X)) whenever U € S(—eo ), U is linear on (v, ), and

JUdG > —oco. We write U(t) — U(r) = S(t)(t — v), where S is non-negative and non-
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increasing on ® with S(/) = ("(v*) for all t € (v,00). For x € R, define H(z)
= [* (t = v)[dG(t) = dI'(1)]. Then condition i) tells us that H(co) = E(Y) — E(X) < 0 and
condition iv) is equivalent to Jf(x) < 0 for « < v. Since H is continuous at v, we actually
have [I(v) < 0 as well. Now il & < v, then S(x) J5 (v — 8)dG(t) < [Z_ S(t)(v — t)dG(t)

= [T [UW)=UN)dG() |0 as @ | —>c. since [ UdG > —oco. But then for r < v,
0< .s'(..')/’ (v = )dE(1) < .«s'(.l-)/” (v — )dG(2).
In particular, we sce that El_l! S(a) () = 0. Consequently,

JUIG — [ UdF = [[(°(1) = U(»)][dG(t) — dF(t)]
= | Sl = w)[AG(t) — dF(1)]

Il

[S(d i)
S(+o0) [l (+00) — [, H(t)dS(1)
= U HE(Y) = E(X)) - J23, H()dS(2)

<0.
since U'(v*) > 0, E(Y) < E(X), ﬂ(l.) <0 forall t <v, and S is non-increasing on R. g

Comments and Supplements:

A.For Y ~ G, X ~ [, with (¢ and I in Il, let G <; F denote first order stochastic
dominance, i.e. G(x) > F(x) for all + € R. and G <3 F denote second order stochastic
dominance, i.e. [T G(1)dl > [Z  F(1)di lor all + € R. Then, because of characterizations

of these orderings in terms of E(U(Y)) < E(U/(X)) for all U belonging to successively more

restricted classes of functions on R, we sce that for any non-empty clesed proper subset C of
R, G < F= G < F = G <, F. Furthermore, neither of these implications is reversible,
even if the distributions have equal mcans, as can be seen by Proposition 1 and its corollary

for the simple case when F = ¢,.

B. For Y ~ G, X ~ FF, with G and F in I1, define as in Landsberger and Meilijson [3], for
any p € R, G <, F tomean [Z_(t — p)dG(1) < [Z,(t — p)dF(t) for every z € R. We claim
that if p € C and G <, F, then G < F.

Proof: As in the proof of Theorem . we assume U € S¢ with fUdG > —oo and write

JUdG — [fUdF = [[U(t) = U(p))[dG(1) — dF'(1)] = [ S(t)dH(t), where S(t) is non-negative
and non-increasing on R, H(z) = [’ (I — y)[dG(t) — dF(t)]. Under the assumptions

JUdG > —oco0 and H(z) < 0 for « < s, we showed that zli131 S(r)f{(:t) = 0. Therefore,
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JUAG — [UdF = S(+00)/l(+oc) — [ 11(1)dS(t) < 0, since H(z) < 0 for all € R if

G <, F,s0 that I(+5c) = £(Y) = £(N) < 0 as well, and 0 < S(+00) < 00.

C.If C = {pu} and E(Y) = I(X). then (7 <, I is also a necessary condition for G <¢ F,
see Landsberger and Meilijson [3].

Proof: Since we know that /f(x) = [* (I — 1)[dG(t) — dF ()] < 0 for z < g, and thus for
T = p as well, is necessary, even if /() < I(X'), we nced only to show that this inequality
must also hold for > y when (¢ <¢- 1 and E(Y) = E(X). So assume p < r and consider
Uvr € Sgpoc): C Scs for vp = (priyzn. 1) where 0 < 4 < 1 and 4(y — u) = (x — p) so that
# <z <y Now (., (V) — B, (X)) = = [L[G(t) = F(t)ldt — v [;°[G(t) — F(t))dt.
Hence if E(U,,()7)) < F(U.,(X)) and E(Y) = E(X), we get

— /,, "Gty = P =+ /_ ”\ [G() = POt < /O: [G(t) — F(1)]dt or, equivalently,

1 [1Gw - rior < (- [ 160~ F(o).

. Letting y | z gives

Since y(y — i) = (¢ — p), we have
(Glz) - F(z)] < L=l00-FOI

r—p

Lrew-Foue o J7IG0-F(et
e <

x T—p

and this is equivalent to ﬁ(z) <0y

D.If C = {u}, but £(Y) < E(X), then G <,, I cannot be a necessary condition for G <¢ F.
Proof: Let G = ¢,, I' = ¢, where p < a < b. Then G <, F,.so that G <¢ F, but for

a<z<bwehave [T _(t —p)dG(t)=a—p>0= [Z (t—p)dF(t). g

E. If E(Y) = E(X) but C contains at least 2 points, say ¢ < v, then neither G <, F nor
G <, F can be a necessary condition lor (i < F.

Proof: First supposc that (g,r) is a component of C¢. For convenience, we take
p# = —v < 0and, as in example 3.D.1, we let G be the uniform distribution on [—L, L] where

0<2v-—L< ;#u. If we let F = gg, then G <¢ F. However,

0~ 0
Y % > 0 and, similarly,

/-oo(t — WdG(t) = dF(t)] = (0 + »)[G(0)] — /_w Gt)dt = 3 -

> 0.

|~

0 0 v
[t =)l — dr (1) = (0 - mIG(0) - 1]_/_ Gt)dt =% -

If (4, v) is not a component of C¢, then there must be a point 7 € (u,v) such that 5 € C.
Again, assuming for convenience that = —r < 0, the condition 7 € (u, v) is equivalent to
|nl < v. Now let G be the uniform distribution on [p—L,n+ L], where v—|n| < L < 2(v—|n|),
and let F = ¢,. Since 5 € C and G has mean 7, the corollary to Proposition 1 shows that
G <c F. But [7(t — dG() — dF(D)] = ( + »)[G(n)] - [1oy G(t)dt = 22 — £ > 0 and,
similarly, [7. (¢t — »)[dG(t) — dF(t)] = (g = )[G(n) = 1] = [T G(t)dt = 52 — L > 0.4
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F. Finally, supposc we have a function {7 define on R such that for every ¥ ~ G € II,
X ~ F ell with (¢ <¢ F.EU(Y)) < FE(7(X)). Then the question arises: Does U
necessarily belong to S¢-7 The answer is ves,

Proof: Since G <y I sullices for (v <o 1. we take G = ¢y and F = ¢, when y < x to see
that U(z) < U(y). i.e. 17 is non-decreasing on R. If p € C, welet ¢ < u < y with a € (0,1)
chosen so that axr + (I —a)y = p. (. = oz, + (1 —a)ey, and F = ¢,. Then G <¢ F
by Proposition 1 (or its corollary) since (¢ and F both have expectation u. Therefore,
aU(z) + (1 —a)U(y) < () and hence {7 is supported above at u. Finally, suppose p € C
zo # i, and a € (0,1). Let G = as,, + (1 —a)s, and F = ez, where T = azg + (1 — a)pu.
We thus have two cases, o < ¥ < y and ¢ < ¥ < 19, and show in each case that G <¢ F

because the sufficient (and necessary for (' = {yt} since G and F have the same expectation)

condition G <, F is satisfied. If vy < & < p. we get

0, T < ZTo

/;.(1 - ,u)[(l(w'(l) — (/I"(I)] = i-p ro<r<i

and if ¢ < Z < @y,

0, v <%
/_..(I—/t)[(l(.'(f)—(/l’(l)] =J u—% F<z <20

0, x>z

Thus, in either case, al/(2) + (1 — )7 (¢r) < U(ax 4+ (1 — a)u) which shows U is star-shaped

at ug
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