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1. INTRODUCTION. The six-dimensional unit sphere $6(1) has a nearly Kaehler structure J
constructed in a natural way by making use of Cayley division algebra [3]. It is because of this

nearly Kaehler, non-Kaehler structure, that $6(1) has drawn the attention. In particular, almost

complex submanifolds, CR-submanifolds and totally real submanifolds of $6(1) have been

considered by A. Gray [4], K. Sekigawa and N. Ejiri [2]. For three-dimensional totally real

submanifolds of $6(1) of constant curvature, N. Ejiri pz’oved the following [2].
THEOREM 1. Let M be a 3-dimensional totally real submanifold of constant curvature c in

$6(1). Then c 1 (totally geodesic) or c 1 (minimal).
In this paper we consider 3-dimensional CR-submanifolds of $6(1). We prove the following

result:

THEOREM 2. There are no 3-dimensional totally umbilical proper CR-submanifolds in $6(1).
2. PRELIMINARIES.

Let C+ be the set of all purely imaginary Cayley numbers. The C+ can be viewed as a 7-

dimensional linear subspace R7 of R8. Consider the unit hypersphere which is centered at the

origin

s(1) {c+ < , > 1}.

The tangent space TzS6 of $6(1) at a point x may be identified with the affine subspace of C+
which is orthogonal to x. On $6(1) define a (1,1)-tensor field J by putting

JxU xxU,

where the above product is defined as in [3] for x$6(1) and UTzS6.
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The above tensor field J determines an almost complex structure (i.e., j2= Id) on $6(1).
The compact simple lie group of automorphisms G2 acts transitively on $6(1) and preserves both J
and the standard metric on $6(1), [3].

Now let G be the (2,1)-tensor field on $6(1) defined by

G(X, Y)= V xJ)Y

where is the Levi-Civita connection on $6(1) and X,YTzS6.
Since xJ is skew-symmetric with respect to the Hermitian metric g on $6(1), it follows that

G has the following property

g(a(x, Y),Z) + g(G(X, Z),Y) 0 (2.1)
where X, Y,Z)..(S6).

A submanifold M of of dim(2p + q) in $6(1) is called a CR-submanifold if there exists a pair of

orthogonal complementary distributions D and D such that JD D and JD C v, where v is the

normal bundle of M and dimD=2p, dimD =q[1]. Thus the normal bundle v splits as

v JD , where/ is invariant sub-bundle of v under J.
A CR-submanifold is said to be proper if neither D {0} nor {0}.

_k
We denote by V, , V the Pdemannian connections on M, S6 and the normal bundle

respectively. They are related by Gauss formula and Weingarten formula:

V xY= V xY + h(X,Y) (2.2)

V XN -ANX + V XN Nv (2.3)

where h(X, Y) and ANX are the second fundamental forms which are related by

g(h(X, Y),N)= g(ANX, Y) (2.4)
X and Y are vector fields on M.
Now a CR-submanifold is said to be totally umbilical if h(X, Y)= g(X, Y)H where H 1 (trace h)
is the mean curvature vector. If M is a totally umbilical CR-submanifold, then equations (2) and

(3) become

v xY v xY + g(X, Y)H (2.5)

_l_
V XN g(H, N)X + V XN (2.6)

Let R be the curvature tensor associated with V. Then the equation of Gauss is given by

R(X, Y;Z, W) g(X, Z)g(Y, W) g(Y, Z)g(X, W)

+ g(h(X, Z),h(Y, W)) g(h(Y, Z),h(X, W))

It is known that for X, Y in D, a(x, Y) O, and G(W, W) 0 for all We ($6).
3. 3-DIMENSIONAL CR-$UBMANIFOLD$ OF

Let M be a 3-dimensional totally umbilical proper CR-submanifold of $6(1): Since M is
-+/-

proper, D # {0} and D #- {0}. Then since dim M 3, we have dimD 2 and dimD 1.

We have the following:
LEMMA 1. If M is a 3-dimensional totally umbilical proper CR-submanifold of Sti(1), then

HcJD
PROOF. For X, Y # 0 in D we use equation (2.5) and the equation J V xY V xJY to get
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J V xY + g(X, Y)JH V xJY + g(X, JY)H. (3.1)

Taking inner product in (3.1) with Neu we have

g(X, Y)g(JH, N) g(X, JY)g(H, N) (3.2)

In particular, if we let Y JX in (3.2) we get

x g(g, N)-- 0

From which it follows that HeJD.
LEMMA 2. If M is a 3-dimensional totally umbilical CR-submanifold of $6(1), the H is

constant.

PROOF. Using (2.7) and the equation h(X, Y)= g(X, Y)H we get

R(X, Y;Z, W) (1 + H 2) {g(X, Z)g(Y, w)

g(Y, Z)g(X, W)} (3.3)

Then since dimM 3, we invoke Schur’s theorem to conclude that (1 + H 2)is constant. Thus

H is constant.

4. PROOF OF THEOREM 2.

In this section let {X, JX, Z} denote an orthonormal frame field for the 3-dimensional totally

umbilical CR-submanifold M of $6(1). The unit vector fields X, JX are in D and the unit vector

field Z is in D. Since M is totally umbilical, the equation h(X, Y) g(X, Y)H implies that

h(X, JX) h(X, Z) h(JX, Z) 0

and (4.1)
h(X, X) h(JX JX) h(Z, Z)2.= H

We know from the previous Lemma that HeJD. Since dimJD 1, then one can write H aJZ
for some smooth function c on M. Therefore

h(X, X) h(JX, JX) h(Z, Z) =.aJZ
Using equation (2.4) with N JZ we get

AjzX aX, AjzJX aJX, AjzZ aZ (4.2)

So the frame field {X, JX, Z} diagonalizes A. Now in $6(1) we have equation (2.1)i.e.
g(( xJ)Y, Z) + 9( xJ)Z, Y) 0 for any X, Y, Ze(S6). Since for X, YeD xJ)Y 0, then

using this equation with Y JX for our orthonormal frame field {X, JX, Z} in M, we get

g(( XJ) Z, JX) 0 (4.3)

2.
Using equation (2.5) (4.3) and (2.6) with the fact that HJD and V xJ)Z V JZ- J V xZ we

X
get

g( V XZ, X)= 0 (4.4)

Again using equation (2.5) and (2.6)in equation (2.1) with Y X, we get

g( v xZ, x) ,
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Also using equation (2.1) and 7 jxJ)Z 7 jxJZ- J 7 jXz we get

9( V jXZ, X)= -c (4.6)

Switching the role of X and Y in equation (2.1) and letting Y JX we obtain

9( V jxZ, JX) 0 (4.7)

Now using the equation 9(( V xJ)X, JZ) 0 and g( V jxJ)x, z) 0 we get

( v xX, z)= o, ( v sxJX, z)= o (.s)

From the equation V zJ)Z 0, using equation (4.1) and (4.2) and the fact that V zZeD, we get

+/-
7 zZ O, V zJZ 0 (4.9)

Using equations (4.4), (4.5), (4.6), (4.7), (4.8) and the first part of equation (4.9) we can write the

local equations for the frame field {X, JX, Z} as follows:

7 xZ cJX, 7 jxZ -aX, zZ 0

7 xX aJX, jxX bJX + oZ, 7 Zx cJX

V xJX aX aZ, V jxJX bX, V zJX -cX (4.10)

for some smooth functions a, b and c.

The curvature tensor R is given by

R(X, Y; Z, W) < V x V yZ- T y T xZ- T Z, W >
Ix, y]

Then using this equation with the help of equations (4.10) we get R(X, Z, Z, X) off, o S II.
But from equation (3.3) we know that R(X, Z, Z, X)= -(1 /c2). This is a contradiction and

hence $6(1) cannot admit a 3-dimensional totally umbilical proper CR-submanifolds.
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