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ABSTRACT. In this paper we study the existence result of classical

soluticns for the quasilinear equation uu-Au-—H(fQI Vu| zdx.)Auu = £,
with initial data uC O.)=uo. utf o> =u, and homogeneous boundar vy
conditions.
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1. INTRODUCTION: Let Q be an open and bounded set of [R", with smooth
boundary I'. Let’s denote by Q the cylinder Q@ = (]0.7{ and by I its
lateral boundary. Our notations and function spaces are standart and
follows the same pattern as Lions’s book [2].

Ebihara et al [1] was proved that there exist only one classical
solution for a semilinear model, given by following initial-boundary

value problem

2 .
v, - Au - H(jnwm dx4u, = f inQ €1.1)

w(0> = v, w0 = u in Q 1.2)
o t 1
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)
-
)

o

ulx,t2 =0 in X

when the following hypotheses hold:

Cid MCAD e C'¢O,+a>, and there exist positive constants a, p such that
the following itneguality ts valid:

MAD 2 o/ + p, VA € (0, +l
Ciid There exists a non negative function (3CAD satisfying:
|%ncx>|ﬁ‘ < BOMOMAY YA 2O

Ciiid The tnitial datas are such that:

LT ¥4
) »

u, u € DCA L2 1

[o] 1
£ %{ € CCoT;Dca"%>, 121

Where A4 = -A and for DCA™> we are denoting the domain of the
operator A°. The main result of this paper is to prove the existence

result of classical solutions for system (1.1)-C1.3) when

Hl. M is a continuos function such that: MCAD 2 m >0
H2. f € CCO,T;DCA®>>, L2 2 and uy, u € DAY 2, 122
2. THE MAIN RESULT: Let’s dencte by w. ..., w and by )“. e )\m the

m firts orthonormal eigen functions and eigen values of the Laplacian
respectively. Let’s denote by Vm the finite dimensional vector space
generated by the firts m eigen functions and by Pm the projector
operator on Vm. that is:
m
P v = ECf vlxouw (xddxdw
m A8 L
v=1
It is easy to see that AGPm = PmA° in DCA®). Moreover 'we have that

J e w|®dx < i) lwl?dx c2.12
m
Q Q
Then the aproximated problem is defined as follows.
u™ - au™ - e[ (v ™ Paoa™ = ce.a
tt Q tt m
u'™co> = W7, W™co> = W™ in
(] t 1
where
<m) m 1, m m m
u (to = t‘_\:‘g Ct.)wt. u, = Pmuo, u, = Pmu‘

Before to prove the main result of this paper we will show the
following Lemmas:
LEMMA 21- Let’s suppose that v, Y, v, € cco,T; %> and

I v ex t21%dx < a + b |ulx, t2|%dx
19! 0
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Then we have:
.

o)
J lex, e1%dx < avaf [vCx, 00 |dx+abe [ Ivth.O)|zdx}e¢"t
0 Q o

PROOF - Since
uwCx,t> = fév‘Cx.t)d{ + v(x,00 a. e. in x

we have:

2 4+ jux,00]

t
JuCx, 1| < rthalvth.{)lzd{)
From where it follows

t
foyvi.u;’dx < ZtIOIQIU‘Cx.{'.)lzdxdz + Zj'nlv(x.o.)lzdx

Applying the relation above to v, we have:

2 t 2 S 2
fnlvth.Lﬂ dx < atfofoluqu.t.)! dxdf + ZIQIU‘CX.O..] dx

From the two last inequalities we conclude:

J 1ex, e21%ax <
0
2f 1wex,001%ax + 4t*f v Cx,05|%dx + 4:’[‘] lv, Cx, 2 |%dxdE
Q ’ a ¢ 0 a

Finally, from the hypotheses, the last inequality and Gronwall’s
inequality the result of Lemma 2.1 follows o
LEMMA 22~ Let suppose that w € CC[O.T];LZCQ)). then we have that

Pw =+ w strong in ccto,T1;L%co>
PROOF - By the pointwicse convergence of me in t, it’s sufficient

to show that me is a Cauchy sequence in CC[O.T];Lz(Q).). Let’s take
£>0, by the continuity of w we have that there exist & » 0 such that

lt -s| <6 = [ lux,t>- wx,s2|2dx < g 2.3
Q
By the compacity of (0,71, there exist Sp Spe - S csatisfying
(0,77 ¢ B1s-6,5+6¢
L=1 A8 L
and from the pointwise convergence of me we conclude that there exists

a positive number N such that

J 1P wc. s> - P . .si)lzd.x <& V¥mu=2N i=w....,n (2.4
0

Finally by (2.1), (2.3), (2.4) and the following inequality

2 1,2
[J'Qlew(x. tD Ppw(x. t>|dx1 <

172 172

{(f 1P (wx, tO-wCx,s 33 | 2ax? + [ |P wCx,sI-P ulx,s > 13dx1 +
Q m T Q m L Iy L

+1f IPP(wa.sk)-wa.tJ)lzdx]’/z
Q

the result of Lemma 2.2 follows o
THEOREM 23~ Let’s suppose that Hi and H2 are valid. Then there exists
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C1.1), €1.2) and (1.3). Remains to show that u is a classical solution.
Let’s note that u‘™ belongs to C%0.T;DCAY" 35> for all m € N, then

<m)

in order to prove that u € Cz(O,T;Ck(Q.)). we will show that Cu“)
(Let)sr2

melN

is a Cauchy’s sequence in LmCO.T;D(A 22, for all L 2 2. In fact

let 4 € N, then

(77 o (2 o _
u’ Au M fowu | “dxoay T pr

From (2.2) and the above equation we have:

Cul-utt> - acu™-uHy - mef ™ PaoacuT-ut = 6
Q

tt ot tt my

where
= (m), 2 _ O, 2 on _
Gmu (H(fQIVu | “dx> HCJ'QIVu | dx)}Auu + me P“/
Multiplying the system above by Al(ui':}—u:‘;”) and integrating in Q we

have
L
2 g2 <
m.JQIA Cu M-u O Tdx <

_, b Lo m__ b
ul Dldx + fnlém“A Cu u’ D |dx

J racu'™-u gt cu™
Q tt tt

From which it follows that:

leg l

L+t
1 2 2 . m__ gn, 2 2 (w2 2z 2
2mJQ|A Cu w70 Tdx < folA Cu u D Tdx + J'QIA Gm“l dx

From Lemma (3.1) and the last inequality we have

L+t
ém;fnu * cuT-uty ) %ax <
1 Leg let
2 2 2, m 2 2 =z m_ 2 8 Y
(fau Gyl @+ 2jﬂ|.4 uy u‘;)l dx + dt J'QIA (] u’;‘)l dx)Exp(E: t*>

(Let)r2

Finally from Lemma 2.2 and since U, u € DCA > we have that

Al’sz“ +0asm p+ + o strongly in CCLO,T1;L3c>

(l-ﬂ.)/z) and

Then we have that Cu:':“) a Cauchy sequence in LmCO.T;D(A
the proof is now complete o

REMARK 24.- UNIQUENESS: If M is locally Lipschitz, then we have

uniqueness. In fact, let u and v be two solutions, putting w = u-v we

have

v, - v - HCfQIVulzdx)Awu = (H(leVulzdx) - HCIQleIchx)Av“

Multiplying by Awn applying Hi and the Lipschitz condition on M we
have that there exists a positive constant <, such that:

2 2 12 2 272
mJﬂlAwul dx < fQ|AwAwu|dx + c‘CleAwl dx> (fnmw“l dx)
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only one classic solution of system ({.1>, (1.25 and (1.3>

PROOF- Since DAY ™ c W' o el if w1 > 3 + x at's
sufficient to cshow that there exists a solution of system C1.1), (1.2
and (1.3 satisfyang uv e CICIO.T];D(Aa“VZJ. In order to prove 1t
let’s multiply (2.l2) by Atu:':) and integrating in Q we have:

Lleg
2z (w2 (w2 2 _om 2 -
J'QIA uy lTax + ch'nwu | dx.)J'QIA O

cm L (m L cm
fQAu Ay ldx + fnfmA u Tdx
By Hi and H2 the last equality becomes:
823 L+e L+t L L
2 (m) , 2
moj‘olA u 'l

ry ry 2 2
dx < _[0|,42 u‘™a? u:':"ldx + fnu,q’fmu u " |ax
from where it follows that:

L+

|8 L+
Ll 142w Pax < Laf 104 11%ax + j0|4’u""’|’dx
Q 1 Q

By Lemma 2.1 and the above inequality we obtain:

L+t

1 2 2 _(m 2 -
2mJQ|A uCx, 2| dx £
|8

2.5
: bl Lt
2 2 2 _m,2 2 2 _m,2 8 Y
{f|ufm1|dx+2f 1A uoldx+4tf|A ul|Tdx}Exploz 72
0 0 0 o
From (2.8) and since:
Lt Lot Les
J 142 u™ex,t01%ax < 2ef 4% u™cx, t2)%ax + 2f 4% 7| %dx
Q t Q tt Q 1
L+t L+a L
J 1A% u™ex, 03)%dx < 2ef 1A% w™ex, e31%dx + 2f |A*® ul|%ax
0 o) t 0 °

we conclude that there exists a subsequence of (¢ o™

N which we
still denoting of the same way and a function u € L"’(O.T:DCA““V2
satisfying

22,
u™ 4+ u weak star in LmCO.T;DCA“'ﬂvz)) as m + ®©
(m)
u -

v weak star tn L0, T;DCAY"®) asm s @
™+, weak star in L%0,7;:DCAY®)> asm4w
From the last convergences and the Lions-Aubin’s theorem (see Lions’s

t

(21, theorem S.1, chap 1) we conclude in particular that:
u(m)

+ u strongly in CC[O.T];H;C(DJ as m +» ©

By standard methods we can prove that u is a strong solution of system
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from where it follows that there exists <, such that:

By Lemma ¢.1, since w(x,0J)
from this it follows that w

1.

2
law |%dx < c_[ jaw|Zdx
J.Q tt IJ.Q

wl\”x.Cr) = 0, we obtain that Aw = 0, and

O, that is u = v o
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