
lnternat. J. Math. & Math. Sci.
VOL. [5 NO. (1992) 161-174

MEASURING STATIC COMPLEXITY

BEN GOERTZEL

Department of Mathematics
University of Nevada, Las Vegas

Las Vegas NV 89154

(Received August 17, 1990 and in revised form March 1, 1991}

ABSTRACT: The concept of "pattern" is introduced, formally defined, and used to analyze

various measures of the complexity of finite binary sequences and other objects. The

standard Kolmogoroff.Chaitin.Solomonoff complexity measure is considered, along with

Bennett’s ’logical depth; Koppel’s "sophistication’, and Chaitin’s analysis ofthe complexity

of geometric objects. The pattern.theoretic point of view illuminates the shortcomings of

these measures and leads to specific improvements, it giles rise to two novel

mathematical concepts "orders" of complexity and "levels" ofpattern, and it yields a new

measure of complexity, the "structural complexity’, which measures the total amount of

structure an entity possesses.

KEY WORDS AND PHRASES. Kolmogorov complexity, algorithritic Information, pattern,

sophistication, structure, depth

AMS SUBJECT CLASSIFICATION CODE. 68Q30

1. INTRODUCTION

Different contexts require different concepts of "complexity’. In the theory of

computational complexity, as outlined for instance by Kronsjo [1], one deals with the

complexity of problems. And the complexity of evolving systems falls under the aegis of

dynamical systems theory, as considered for example by Bowen [2]. The present paper,
however, is concerned with the complexity of static objects, a subject which has receiled

rather little attention. Although most of the discussion focuses on binary sequences, the

implications are much more general.

The first mathematically precise measure of the complexity of static objects was

invented simultaneously by Kolmogorov [3], Chaitin [4] and Solomonoff [5].

162 B. GOERTZEL

DEFINITION 1. Let M be a universal Turing machine. Let us say that a program for

M is serf.delimiting if it contains a segment telling M its total length in bits. Then, the KCS

complexity of a finite binary sequence x is the length of the shortest program which

computes x on M.

In the decades since its conception, this definition has led to a number of

Interesting developments. Chaitin [4] has used it to provide an Interesting new proof of

Godel’s theorem; and Bennett [6], Zurek [7] and others have applied it to problems in

thermodynamics. However, it has Increasingly been realized that the concept of KCS

complexity falls to capture the Intuitive meaning of "complexity."

The problem is that, according to the KCS definition, "random", structureless

sequences are judged the most complex. The least complex sequences are those like

O(X)IX)O000...O00, 010101010101...010101, and 1010010001000010(XXX)...O, which can be

computed by very short programs. And the most complex sequences x are those which

cannot be computed by any program shorter than "print X’. There is a sense in which this

is not a desirable property for a definition of complexity to have In which a human or a

ree or the sequence ofprime numbers is more "complex" than a random sequence. Over

the past decade, there have been two noteworthy attempts to remedy this deficiency:

Bennett’s [6] "logical depth", and Koppel’s [8] "sophistication."

We outline a general mathematical framework within which various measures of

complexity may be formulated, analyzed and compared. This approach yields significant

modifications of these measures, as well as several novel, general concepts for the

analysis of complexity. Furthermore, it giles rise to an entirely new complexity measure,

the "structural complexity’, which measures the total amount of structure an entity

possesses. Intuitilely, this tells one "how much there is to say" about a gilen object.

2. PATTERN

DEFINITION 2. A pattern space is a set (S,*,l I), where S is a set, * is a binary

operation defined on some subset of SxS, and is a map from S into the nonnegatile

real numbers.

Let us consider a simple example: Turing machines and finite binary sequences.
DEFINITION 3. Let y be a program for a unilersal Turing machine; let be a finite

binary sequence. Define y*z to be the binary sequence which appears on the memory

tape of the Turing machine after, having been started with on its input tape beginning

directly under the tape head and extending to the right, program y finishes running. If y

never Mops running, then let y*z be undefined. Let zl denote the length of as Its

length, and let yl denote the length of the program y.

Now we are ready to gile a general definItion of pattern.

DEFINITION 4. Let a, b, and c denote constant, nonnegative numbers. Then an

ordered pair (y,z) is a paftern In x if x=y*z and alYl + blzl + cC(y,z) < Ixl, where C(y,z)

denotes the complexity of obtaining x from (y,z).

DEFINITION 6. ff y is a Turing machine program and is a finIte binary sequence,

C(y,z) denotes the number of time steps which the Turlng machine takes to stop when

MEASURING STATIC COMPLEXITY 163

equipped with program y and given z as initial input.

For many purposes, the numbers a, b and c are not Important. Often they can all be

taken to equal 1, so that they do not appear in the formula at all. But in some cases it may

be useful to, for instance, set a=b= 1 and c=O. Then the formula reads Yl + Izl < Ixl.
The constants could be dispensed with, but then it would be necessary to redefine and

C more often.

Intuitively, an ordered pair (y,z) is a pattern in x if the complexity of y, plus the

complexity of z, plus the complexity of getting x out of y and z, is less than the complexity

of x. In other words, an ordered pair (y,z) is a pattern in x if it is simpler to represent x in

terms of y and z than it is to say "x’. The constants a, b and c are, of course, weights: If

a=3/4 and b=5/4, for example, then the complexity of a is counted less than the

complexity of b.

The definition of pattern can be generalized to ordered n.tuples, and to take into

account the possibility of different kinds of combination, say *, and *:
DEFINITION 7: An ordered set of n entities (x, ,x2 ,...,x.) is a pattern in x if

x=x,*, x:*: ...*. x. and a, lx, +a:lx:l +...+a.lx.I + a./, C(x, ,...,x.) < Ixl, where C(x, ,...,x.)

is the complexity of computing x,*x,*...*x, and a, ,...,a., are nonnegative numbers.

Also, the following concept will be of use:

DEFINITION 8: The intensity in x of a ordered pair (y,z) such that y*z=x may be

defined as IN[(y,z)lx] (Ixl -/alyl / bizl /cC(y,z)])/Ixl

Obviously, this quantity is positive whenever (y,z) is a pattern in x, and negative or

zero whenever it is not; and its maximum value is 1.

3. AN EXAMPLE: GEOMETRIC PATTERN

Most of the present paper is devoted to Turing machines and binary sequences.

However, the definition of pattern does not Involve the theory of computation; essentially,

a pattern is a "representation as something simple’. Instead of Turlng machines and

binary sequences let us now consider pictures. Suppose that A is a one inch square

picture, and B is a five inch square picture made up of twenty.five non.overlapping one.

inch pictures identical to A. Intuitively, it is simpler to represent B as an arrangement of

copies of A, than it is to simply consider B as a "thing in itself’. Very roughly speaking, it

would seem likely that part of the process of remembering what B looks like consists of

representing B as an arrangement of copies of A.

This Intuition may be expressed in terms of the definition of pattern. Where x and

y are square regions, let:

y *, z denote the region obtained by placing y to the right of z
Y "2 z denote the region obtained by placing y to the left of z
y * z denote the region obtained by placing y below z
y *, z denote the region obtained by placing y above z

And, although this is obviously a very crude measure, let us define the complexity Ix of

a square region with a black.and.white picture drawn in it as the proportion of the region

covered with black. Also, let us assume that two pictures are identical if one can be

obtained by a rigid motion of the other.

164 B. GOERTZEL

The operations *,, "2 * and *, may be called simple operations. Compound

operations are, then, compositions ofsimple operations, such as the operation (x*, w*, x)*,
w. If y is a compound operation, let us define its complexity Yl to be the length of the

shortest program which computes the actual statement of the compound operation. For

Instance, }(x* w* x)*, w is defined to be the length of the shortest program which

outputs the sequence of symbols "(x* w* x)*, w’.

Where y is a simple operation and z is a square region, let y*z denote the region

that results from applying y to z. A compound operation acts on a number of square

regions. For instance, (x*, w*, x)*, w acts on w and x both. We may consider it to act on

the ordered pair (x,w). In general, we may consider a compound operation y to act on an

ordered set of square regions (x, ,x, xn), where x, is the letter that occurs first in the

statement of y, x2 is the letter that occurs second, etc. And we may define y*(x, xn) to

be the region that results from applying the compound operation y to the ordered set of

regions (x, x).

Let us return to the two pictures, A and B, discussed above. Let q=A*, A*, A*, A*, A.

Then, it is easy to see that B=q*,q*,q*,q*,q. In other words, B

(A*, A *, A*, A*, A)*,(A*, A*, A*, A*, A)*,(A*, A*, A*, A*, A)*, (A*, A*, A*, A*, A)*,(A*, A*, A*,
A*, A). Where y is the compound operation given in the previous sentence, we have

B=y*A. The complexity of that compound operation, lYl, is certainly very close to the

length of the program "Let q=A*, A*, A*, A*, A; print q*,q*,q*,q*’. Note that this program
is shorter than the program "Print(A*, A*, A*, A*, A)*,(A*, A*, A*, A*, A)*,(A*, A*, A*, A*,
A)*(A*, A*, A*, A*,)*, (A*, A*, A*, A*, A)", so it is clear that the latter should not be used

in the computation of Yl-
We have not yet discussed the term C(y,(B, ,B.)), which represents the amount

of effort required to execute the compound operation y on the regions (x, ,...,x.). For

simplicity’s sake, we shall simply set it equal to the number of times the symbol "*"

appears in the statement of y; that is, to the number of simple operations involved in y.

So, is (y,A) a pattern in B? Let us assume that the constants a, b and c are all equal

to 1. We know y*A=B; the question is whether lYI / IAI /C(y,A) < IBI.
According to the above definitions, Yl is 37 symbols long. Obviously this is a

matter of the particular notation being used. For instance, it would be less if only one

character were used to denote *,, and it would be more if it were written in binary code.

C(y,z) is even easier to compute: there are 24 simple operations involved in the

construction of B from A.

So we have, very roughly speaking, 37 + Izl + 24 < Ixl. This is the inequality that

must be satisfied ff (y,z) is to be considered a pattern in x. Rearranging, we find:

Izl < Ixl 61. Recall that we defined the complexity of a region as the proportion of

black which it contains. This means that (y,z) is a pattern in x if and only if it the amount

of black required to draw B exceeds amount of black required to draw A by at least 62.

Obviously, whether or not this is the case depends on the units of measurement.

This is a very simple example, in that the compound operation y involves only one

MEASURING S’rATIC COMPIEXI’IY 1)5

region. In general, we may define I(x, ,x,)1 {x,I +...+ Ixnl, assuming that the amount

of black in a union of disjoint regions is the sum of the amounts of black in the individual

regions. From this it follows that (y,(x, xn)) is a pattern in x if and only if a lYl +

b(Ix, l/.../lx.I) / cC(y,(x, ,...,x.)) < Ixl.
Results similar to these could also be obtained from a different sort of analysis. In

order to deal with regions other than squares, it is desirable to replace *,, *,, %, ** with

a single "joining" operation *, namely the the set.theoretic union U. Let z=(x,, xn), let

y be a Turing machine, let f be a method for converting a picture into a binary sequence,

and let g be a method for converting a binary sequence into a picture. Then we have

DEFINITION 9: If x x, U x U U xn then (y,z,f,g) is a pattern in x if

alYl +blzl +clfl +dlgl +eC(y,z,f,g) < Ixl.
We have not said how Ill and gl are to be defined. However, this would require

a detailed consideration of the geometric space containing x, and that would take us too

far afield. This general approach is somewhat similar to that taken in Chaitin [9].

4. ORDERS OF COMPLEXITY

It should be apparent from the foregoing that complexity and pattern are deeply

interrelated. In this and the following sections, we shall explore several different

approaches to measuring complexity, all of which seek to go beyond the simplistic KCS

approach. According to the KCS approach, complexity means structurelessness. The

most "random; least structured sequences are the most complex. The formulation of this

approach was a great step forward. But it seems clear that the next step is to give

formulas which capture more of the intuitive meaning of the word "complexity".

First, we shall consider the idea that pattern Itself may be used to define complexity.

Recall the geometric example of the previous section, in which the complexity of a black.

and.white picture in a square region was defined as the amount of black required to draw

it. This measure did not even presume to gauge the effort required to represent a black.

and.white picture in a square region. One way to measure the effort required to represent

such a picture, call it x, is to look at all compound operations y, and all sets of square
black.and.white pictures (x, ,...,x,), such that y*(x, ,...,x.)=x. One may then ask which y
and (x, x,) give the smalleMvalue of alYl + b(Ix, + + Ix.l) / cc(y,(x, ,...,x.)). Th#s

minimal value of alYl + b(Ix, l+...+lx, I) may be defined to be the "second.order"

complexity of x. The second.order complexity is then be a measure of how simply x can

be represented in terms of compound operations on square regions.

In general, given any complexity measure I, we may use this sort of reasoning to

define a complexity measure I’.
DEFINITION 10: If is a complexity measure, I’ is the complexity measure

defined so that, for all x, Ixl’ is the smallest value that the quantity alYl + blzl + cC(y,z)

takes on, for any (y,z) such that y*z=x.

xl’ measures how complex the simplest representation of x is, where complexity

is measured by I. Sometimes, as in our geometric example, and I’ will measure

very different things. But It is not Impossible for them to be Identical.

166 B. GOERTZEI

Extending this process, one can derive from I’ a measure I": the smallest value

that the quantity

alYl’ + blzl’ + cC(y,z) (4.1)
takes on, for any (y,z) such that y*z=x. Ixl" measures the complexity of the simplest

representation of x, where complexity is measured by I’. And from I", one may obtain

a measure I’". It is clear that this process may be continued indefinitely.

It is interesting to ask when and I’ are equivalent, or almost equivalent. For

Instance, assume that y is a Turing machine, and x and are binary sequences. If, in the

notation given above, we let I,, then Ix l’ is a natural measure of the complexity of

a sequence x. In fact, if a=b= 1 and c=O,/t is exactly the KCS comp/ex/ty of x. Without

specifying a, b and c, let us nonetheless use Chaitin’s [4] notation for this complexity: I(x).

Also, let us adopt Chaitin’s notation I(vl w) for the complexity of v relative to w.

DEFINITION 11. Let y be a Turing machine program, v and wbinary sequences; then

I(vlw) denotes the smallest value the quantity alYl,+cC, (y,w) takes on for any self.

delimiting program y that computes v when its input consists of a minimal.length program
for computing w.

Intuitively, this measures how hard it is to compute v given complete knowledge of w.

Finally, it should be noted that and I’ are not always substantially different:

THEOREM 1. If Ixl’=l(x), a=b=l, and c=O, then there is some K so that for all

x, lxl’- Ixl"l < K.

PROOF: alYl’ + blzl’ + cC(y,z) lYI’ + Izl: So, what is the smallest value that

lyl’ + Izl’ assumes for any (y,z) such that y*z=x? Clearly, this smallest value must be

either equal to xl’. For, what ff YI’ + zl’ is bigger than xl’? Then it cannot be the

smallest yl’ + zl; because ff one took z to be the "empty sequence" (the sequence
consisting of no characters) and then took y to be the shortest program for computing x,
one would have Izl’=o and lYl ’= Ixl: And, on the other hand, is it possible for lYI’+ Izl’
to be smaller than Ix ’? If YI’+ z I’ were smaller than x, then ore could supply a Turing

machine with a program saying "Plug the sequence z into the program y," and the length

of this program would be greater than Ix l’ by no more than the length of the program
P(y,z)=’Plug the sequence z into the program y". This length is the constant K in the

theorem.

COROLLARY 1. For a Turing machine for which the program P(y,z) mentioned in the

proof is a "hardware function" which takes only one unit of length to program, ’’= I’-
PROOF: Both I’ and I" are Integer valued, and by the theorem, for any x,

Ixl’-< Ixl"<- Ixl’+l.
5. PATTERNS IN PATTERNS; SUBSTITUTION MACHINES

We have discussed pattern in sequences, and patterns in pictures. It is also quite

possible to analyze patterns in other patterns. This is interesting for many reasons, one

being that when dealing with machines more restricted than Turing machines, it may often

be the case that the only way to express an intuitively simple phenomenon is as a pattern

in another pattern.

MEASURING STATIC COMPLEXITY 167

Let us consider a simple example. Suppose that we are dealing not with Turing

machines, but rather with "substitution machines" machines which are capable of

running only programs of the form P(A,B,C)=’Wherever sequence B occurs in sequence
C, replace it with sequence A’. Instead of writing P(A,B,C) each time, we shall denote

such a program with the symbol (A,B,C). For instance,

(1,10001,1000110001100011000110001) = 11111. (A,B,C) should be read "substitute A for

B in C’.

We may define the complexity xl of a sequence x as the length of the sequence,
Le. xl Ix I,, and the complexity yl of a substitution program y as the number ofsymbols

required to express y in the form (A,B,C). Then, 110001100011000110001100011 =25,

I1 5and I(OOO,,z) = . ,z=l, (ooo,,z)= oooooooooOOOllOOO.
For example, is ((10001,1,z), 11111) a pattern in 1000110001100011000110001?

What is required is that a(11) + b(5) + cC((10001,1,z), 11111) < 25. If we take a=b= 1 and

c=O (thus Ignoring time complexity), this reduces to 11 + 5 < 25, so it is indeed a pattern.
If we take c= 1 instead of c=O, and leave a and b equal to one, then this will still be

a pattern, as long as the computational complexity of obtaining

1000110001100011000110001 from (10001,1,11111) does not exceed 9. It would seem

most intuitive to assume that this computational complexity C((10001,1,z), 11111) is equal

to 5, since there are 5 ones into which 10001 must be substituted, and there is no effort

involved in locating these l’s. In that case the fundamental inequality reads

11 + 5 + 5 < 25, which verifies that a pattern is indeed present.

Now, let us look at the sequence x 1001001001001001000111001

1001001001001001001011101110100100100100100100110111100100100100100100.

Remember, we are not dealing with general Turing machines, we are only dealing with

substitution machines, and anything which cannot be represented in the form (A,B,C), in

the notation given above, is not a substitution machine.

There are two obvious ways to compute this sequence x o0 a substitution machine.

First of all, one can let y=(100100100100100100,B,z), and z= B 0111001 B 1011101110 B
110111 B. This amounts to recognizing that 100100100100100100 is repeated in x.

Alternatively, one can let y’=(lOO,B,z’), and let z’= BBBBBB 0111001 BBBBBB 1011101110

BBBBBB 110111 BBBBBB. This amounts to recognizing that 100 is a pattern in x. Let us
assume that a=b=l, and c=O. Then in the first case lYl + Izl 24 + 27 51; and in the

second case ly’l / Iz’l 9 + 47 56. Since Ixl 95, both (y,z) and (y’,z’) are patterns
inx.

The problem is that, since we are only using substitution machines, there is no way
to combine the two patterns. One may say that 100100100100100100 a pattern in x, that

100 is a pattern in x, that 100 is a pattern in 100100100100100100. BUt, using only

substitution machines, there is no way to say that the simplest way to look at x is as "a

form involving repetition of 100100100100100100, which is itse/f a repetition of 100.

Let us first consider Ixl ’. It is not hard to see that, of all (y,z) such that y is a

substitution machine and is a sequence, the minimum of Yl + zl is obtained when

168 B. GOERTZEL

y=(100100100100100100,B,z), and z= B 0111001 B 1011101110 B 110111 B. Thus,

assuming as we have that a=b=l and c=O, Ixl’=51. This is much less than Ixl, which

equals 95.

Now, let us consider this optimal y. It contains the sequence 100100100100100100.

If we ignore the fact that y denotes a substitution machine, and simply consider the

sequence of characters "(lO0100100100100100,B,z)’, we can search for patterns in this

sequence, just as we would in any other sequence. For instance, if we let y,=(lOO,C,z,),

and z,=CCCCCC, then y,*z,=y, lY, =1o, and Iz, =6. It is apparent that (y, z,) is a

pattern in y, since lY, + Iz, 10 + 6 16, whereas lYl 18. By recognizing the

pattern (y,z) in x, and then recognizing the pattern (y, z,) in y, one may express both the

repetition of 100100100100100100 in x and the repetition of 100 in 100100100100100100

as patterns in x, using only substitution machines,

Is (y, z,) a pattern in x? Strictly speaking, it is not. But we might call it a second-

level pattern in x. It is a pattern in a pattern in x. And, if there were a pattern (Y2 z2) in

the sequences of symbols representing y, or z,, we could call that a third-level pattern in

x, etc. In general, we may make the following definition:

DEFINITION 12. Let F be a map from S into S. Where a first.level pattern in x is

simply a pattern in x, and n is an integer greater than one, we shall say that P is an nh.

level pattern in x if there is some Q so that P is an (n.1) h.level pattern in x and P is a

pattern in F(Q).

In the examples we have given, the map F has been, implicity, the map from

substitution machines into their expression in (A,B,C) notation.

6. APPROXIMATE PATTERN

Suppose that y,*z,=x, whereas y2*z2 does not equal x, but is still very close to x. Say

Ixl =1ooo. Then, even if ly, l+lz, l=9OO and ly, + lz, =lO, (y, z,) is not a pattern in x,
but (y, z,) is. This is not a flaw in the definition of pattern after all, computing

something near x is not the same as computing x. Indeed, it might seem that if (y= z)
were really so close to computing x, it could be modified into a pattern in x without

sacrificing much simplicity. However, the extent to which this is the case is unknown. In

order to incorporate pairs like (y= z=), we shall introduce the notion of approximate

pattern.

In order to deal with approximate pattern, we must assume that It is meaningful to

talk about the distance d(x,y) between two elements of S. Let (y,z) be any ordered pair for

which y*z is defined. Then we have

DEFINITION 13. The ordered pair (y,z) is an approximate pattern in x if [1 + d(x,y*z)

][alYl + blzl + cC(y,z)] < Ixl, where a, b, c and C are defined as in the ordinary

definition of pattern.

Obviously, when x=y*z, the distance d(x,y*z) between x and y*z is equal to zero,

and the definition of approximate pattern reduces to the normal definition. And the larger

d(x,y*z) gets, the smaller alYl+blzl+cC(y,z) must be in order for (y,z) to qualify as a

pattern in x.

MEASURING STATIC COMPLEXITY 169

Of course, if the distance measure d is defined so that d(a,b) is infinite whenever

a and b are not the same, then an approximate pattem is an exact pattern. This means

that when one speaks of "approximate pattern’, one is also speaking of ordinary, exact

pattern.
Most concepts involving ordinary or "strict" pattern may be generalized to the case

of approximate pattern. For instance, we have:

DEFINITION 14: The intensity of an approximate pattern (y,z) in x is IN[(y,z)lx] =
(Ixl-[+d(x,y*z)][alYl +blzl +cC(y,z)])/Ix I.

DEFINITION 15: Where v and w are binary sequences, the approximatecom
of v relative to w, I.(v,w), is the smallest value that [1 +d(v,y*w)][a }y} +cC(y,w)] takes on

for any program y with input consisting of a minimal program for w.

The Incorporation of inexactitude permits the definition ofpattern to encompass all

sods of Interesting practical problems. For example, suppose x is a curve in the plane or

some other space, z is a set of points in that space, and y is some interpolation formula

which assigns to each set of points a curve passing through those points. Then

I,[(y,z) ix] is an Indicator of how much use it is to approximate the curve x by applying the

Interpolation formula y to the set of points z.

7. SOPHISTICATION AND CRUDITY

As Indicated above, Koppel [8] has recently proposed an alternative to the KCS

complexity measure. According to Koppel’s measure, the sequences which are most

complex are not the structureless ones. Neither, of course, are they the ones with very

simple structures, like O00(XX)tX)(X Rather, the more complex sequences are the ones

with more "sophisticated" structures.

The basic idea [10] is that a sequence with a sophisticated structure is part of a

nabral class of sequences, all of which are computed by the same program. The program

produces different sequences depending on the data it is given, but these sequences all

possess the same underlying structure. Essentially, the program represents the structured

pad of the sequence, and the data the random part. Therefore, the "sophistication" of a

sequence x should be defined as the size of the program defining the "natural class"

containing x.

But how is this "natural" program to be found? As above, where y is a program and

z is a binary sequence, let yl and zl denote the length of y and z respectively. Koppel

proposes the following:

ALGORITHM 1:

1) search over all pairs of binary sequences (y,z) for which the two-tape
Turing machine with program y and data z computes x, and find those pairs
for which yl / zl is smallest.

2) search over all pairs found in Step 1, and find the one for which yl is
biggest. This value of zl is the "sophistication" of x.

All the pairs found in Step I are "best" representations of x. Step 2 searches all the

best" representations of x, and find the one with the most program (as opposed to data).

170 B. GOERTZEL

This program is assumed to be the natural structure of x, and its length is therefore taken

as a measure of the sophistication of the structure of x.

There is no doubt that the decomposition of a sequence into a structured part and

a random part is an important and useful idea. But Koppel’s algorithm for achieving it is

conceptually problematic. Suppose the program pairs (y, z,) and (y, z2) both

cause a Turing machine to output x, but whereas ly, l=50 and Iz, l=300, ly21 =250 and

Iz, l=lO. Since lY, + Iz, =350, whereas lY=I + Iz=l =36o, (y= z=) will not be selected in

Step 1, which searches for those pairs (y,z) that minimize Yl + zl What if, in Step 2, (y,

z,) is chosen as the pair with maximum lYl ? Then the sophistication of x will be set at

lY, =50. Does it not seem that the intuitively much more sophisticated program y,, which

computes x almost as well as y,, should count toward the sophistication of x?

In the language of pattern, what Koppel’s algorithm does is:

1) Locate the pairs (y,z) that are the most intense patterns in x
according to It, a=b=l, c=0.

2) Among these pairs, select the one which is the most
intense pattern in x according to I=1 I,, a=l, b=c=0.

It applies two different special cases of the definition of pattern, one after the other.

How can all this be modified to accomodate examples like the pairs (y, z,), (y=

z,) given above? One approach is to look at some sort of combination of Yl + z with

Yl- Yl + zl measures the combined length of program and data, and Yl measures the

length of the program. What is desired is a small Yl + zl but a large Yl. This is some

motivation for looking at (lYl + Izl)/lYl. The smaller lyl + Izl gets, the smallerthis quantity

gets; and the bigger Yl gets, the smaller it gets. One approach to measuring complexity,

then, is to search all (y,z) such that x=y*z, and pick the one which makes (lyl + Izl)/lYl
smallest. Of course, (lYl + Izl)/lYl + Izl/lYl, so whatever makes (lYl + Izl)/lYl
smallest also makes zl/lYl smallest. Hence, in this context, the following is natural:

DEFINITION 16. The crudity of a pattern (y,z) is z / Yl.
The crudity is simply the ratio of data to program. The cruder a pattern is, the

greater the proportion of data to program. A very crude pattern is mostly data; and a

pattern which is mostly program is not very crude. Obviously, "crudity" is Intended as an

Intuitive opposite to "sophistication"; however, it is not exactly the opposite of

"sophistication" as Koppel defined it.

This approach can also be interpreted to assign each x a "natural program" and

hence a "natural class’. One must simply look at the pattern (y,z) in x whose crudity is the

smallest. The program y associated with this pattern is, in a sense, the most natural

program for x.

8. LOGICAL DEPTH

Bennett [9], as mentioned above, has proposeda complexitymeasure called "logical

depth’, which incorporates the time factor in an interesting way. The KCS complexity of

x measures only the length of the shortest program required for computing x it says

nothing about how long this program takes to run. Is it really correct to call a sequence

of length 1000 simple ff it can be computed by a short program which takes a thousand

MEASURING STATIC COMPLEXITY 171

years to run? Bennett’s idea is to look at the running time of the shortest program for

computing a sequence x. This quantity he calls the logical depth of the sequence.

One of the motivations for this approach was a desire to capture the sense in which

a biological organism is more complex than a random sequence. Indeed, it is easy to see

that a sequence x with no patterns in it has the smallest logical depth of any sequence.

The shortest program for computing it is "Print x", which obviously runs faster than any

other program computing a sequence of the same length as x. And them is no mason to

doubt the hypothesis that biological organisms have a high logical depth. But it seems

to us that, in some ways, Bennett’s definition is nearly as counterintuitive as the KCS

approach.

Suppose them are two competing programs for computing x, program y and

program y’. What if y has a length of 1000 and a running time of 10 minutes, but y’ has

a length of 999 and a running time of 10 years. Then if y’ is the shortest program for

computing x, the logical depth of x Is ten years. Intuitively, this doesn seem quite right:

it Is not the case that x fundamentally requires ten years to compute.

At the core of Bennett’s measure is the idea that the shortestprogram for computing

x is the most natural representation of x. Otherwise why would the running time of this

particular program be a meaningful measure of the amount of time x requires to evolve

naturally. But one define the "most natural representation" of a given entity in many
different ways. Bennett’s is only the simplest. For Instance, one may study the quantity

dC(y,z) + elzl/lYl + f(lYl + Izl), where d, and f are positive constants defined so that

d+e+f=3.

The motivation for this is as follows. The smaller z I/lYl is, the less crude is the

pattern (y,z). And, as Indicated above, the crudity of a pattern (y,z) may be Interpreted as

a measure ofhow natural a representation it is. The smaller C(y,z) is, the less time it takes

to get x out of (y,z). And, finally, the smaller lyl + Izl s, the more intense a pattern (y,z)

is. All these facts suggest the following:

DEFINITION 17: Let m denote the smallest value that the quantity

dC(y,z) + elzl/lYl + f(lYl / Izl) assumes for any pair (y,z) such that x=y*z (assuming

them is such a minimum value). The depth complexily of x may then be defined as the

time complexity C(y,z) of the pattern (y,z) at which this minimum m is attained.

Setting d=e=O reduces the depth complexity to the logical depth as Bennett defined

it. Setting e=O means that everything is as Bennett’s definition would have it, except that

cases such as the patterns (y, z,), (y, z,) described above are resolved in a more

Intuitive matter. Setting f=O means that one is considering the time complexity ofthe moM

sophistJcated least crude, most structured representation of x, rather than mere/y the

shortest. And keeping all the constants nonzero ensures a balance between time, space,

and sophistication.

Admittedly, this approach is not nearly so tidy as Bennett’s. Its key shortcoming

is Its failure to yield any particular number of crucial significance everything depends

on various factors which may be glvsn various weights. But there Is something to be said

172 B. GOERTZEL

for considering all the relevant factors.

9. STRUCTURE AND STRUCTURAL COMPLEXITY

We have discussed several different measures of static complexity, which measure

rather different things. But all these measures have one thing in common: they work by

singling out the one pattern which minimizes some quantity. It is equally interesting to

study the total amount of structure in an entity.

For Instance, suppose x and x, both have KCS complexity A, but whereas x can only

be computed by one program of length A, x, can be computed by a hundred totally

different programs of length A. Does it not seem that x, is in some sense more complex

than x, that there is more to x, than to x?

Let us define the Mnecture ofx as the set of all (y,z) which are approximate patterns

in x (assuming the constants a, b, and c, and the metric d(v,w), have previously been

fixed), and denote it P(x). Then the question is: what is a meaningful way to measure the

size of P(x)? At first one might think to add up the Intensities

[l +d(Y*Z,X)][alYl +blzl +cC(y,z)] of all the elements in P(x). But this approach has one

crucial flaw, revealed by the following example.

Say x is a sequence of 10,000 characters, and (y, z,) is a pattern in x with [z,I =70,

lY, 1000, and C(y, z,)=2000. Suppose that y, computes the first 1000 digits of x from

the first 7 digits of z, according to a certain algorithm A. And suppose It computes the

second 1000 digits of x from the next 7 digits of z, according to the same algorithm A.

And so on for the third 1000 digits of z,, etc. a/ways using the same algorithm A

Next, consider the pair (y, z,) which computes the first 9000 digits ofx in the same

manner as (Y2 z,), but computes the last 1000 digits of x by storing them in z, and

printing them after the rest of its program finishes. We have z, 1063, and surely Y, Is

not much larger than Y, I. Let’s say y, 1o. Furthermore, C(y, z,) is certainly no

greater than C(y, z,): after all, the change from (y, z,) to (y, z,) Involved the

replacement of serious computation with simple storage and printing.

The point is that both (y, z,) and (y z,) are patterns in x, but in computing the

total amount of structure in x, it would be foolish to count both of them. In general, the

problem is that different patterns may share similar components, and it is unacceptable

to count each of these components several times. In the present example the solution is

easy: don count (y, z2). BUt one may also construct examples of very different patterns

which have a significant, sophisticated component in common. Clearly, what is needed

is a general method of dealing with similarities between patterns.

Recall that I.(v w) was defined as the approximate version of the effort required to

compute v from a minimal program for w, so that if v and w have nothing in common,

I.(v,w)=l.(v). And, on the other hand, if v and w have a large common component, then

both I.(v,w) and I.(w,v) are very small. I.(vlw) is defined only when v and w are sequences.

But we shall also need to talk about one program being similar to another. In order to do

this, it suffices to assume some standard "programming language" L, which assigns to

each program y a certain binary sequence L(y). The specifics of L are Irrelevant, so long

MEASURING STATIC COMPLEXITY !73

as it is computable on a Turing machine, and it does not assign the same sequence to any

two different programs.

The introduction of a programming language L permits us to define the complexity

of a program y as I.(L(y)), and to define the complexity of one program y, relative to

another program Y2 as I.(L(y,) L(Y,)). As the lengths of the programs involved increase,

the differences between programming languages matter less and less. To be precise, let

L and L, be any two programming languages, computable on Turing machines. Then it

can be shown that, as L(y,) and L(y2) approach Infinity, the ratios I.(L(y,))/I.(L,(y,)) and

I.(L(y,) L(Y=))/I.(L, (y,) L, (Y,)) both approach 1.

Where is any binary sequence of length n, let D(z) be the binary sequence of

length 2n obtained by replacing each 1 in with 01, and each 0 in with 10. Where w and

are any two binary sequences, let wz denote the sequence obtained by placing the

sequence 111 at the end of D(w), andplacing D(z) at the end of this composite sequence.

The point is that 111 cannot occur in either D(z) or D(w), so that wz is essentially w

Juxtaposed with z, with 111 as a marker inbetween.

Now, we may define the complexity of a program.data pair (y,z) as I. (L(y)z), and we
may define the complexity of (y,z) relative to (y, z,) as I. (L(y)z L(y,)z,). We may define

the complexity of (y,z) relative to a set of pairs {(y, z,),(y,, z,) (y,, z,)} to be

I. (L(y)z L(y,)z,L(y,)z, ...L(y,)z,). This is the tool we need to make sense of the phrase

the total amount of structure of

Let S be any set of program-data pairs (x,y). Then we may define the size IS of S

as the result of the following process:

ALGORITHM 2:
Step O. Make a list of all the patterns in S, and label them (y, z,), (y, z,),

(y. z.).
Step 1. Let s,(x)=l.(L(y,)z,)
Step 2. Let s,(x)=s,(x)+l.(L(y,)z,)l(L(y,)z,)
Step 3. Let s,(x) =s,(x)+l.(L(y,)z, L(y,)z,L(y,)z,))
Step 4. Let s,(x)=s,(x)+l.(L(y,)z, lL(y,)z,L(y,)z,)L(y,)z,))...
Step N. Let ISl =s(x)=s,,(x)+l.(L(y,)z, lL(y,)z,L(y,)z,)...i.(y,,)z,,)

At the kh step, only that portion of (y, z,) which is independent of

{(y, z,), (y,., ,z,.,)} is added onto the current estimate of Sl. For instance, in Step 2,

if (y, z,) is independent of (y, z,), then this step increases the initial estimate of Sl by

the complexity of (y, z,). But if (y, z,) is highly dependent on (y, z,), not much will be

added onto the first estimate. It is not difficult to see that this process will arrive at the

same answer regardless of the order in which the (y, z,) appear:

THEOREM 2: The resu/t ofAlgorithm 2 is invariant under permutation of the (y, ,z,).

Where P(x) is the set of all patterns in x, we may now define the structural

complexity of x to be the quantity P(x) I. This, we suggest, is the sense of the word

complexity" that one uses when one says that a person is more complex than a tree,

which is more complex than a bacterium. In a way, structural complexity measures how

many insightful statements can possibly be made about something. Them is much more

to say about a person than about a tree, and much more to say about a tree than a

174 B. GOERTZEL

bacterium.

REFERENCES

1. KRONSJO, I_ Alclorithms: Their Complexity and Efficiency, Wiley.lnterscience, New York,
1979.

2. BOWEN, R. Symbolic Dynamics for Hyperbolic Flows, Am. J. of Math. 95 (1973), 421-460.

3. KOLMOGOROV, A.N. Three Approaches to the Quantitative Definition of Information,
Prob. Info. Transmission 1 (1965), 1.7.

4. CHAITIN, G. Information.Theoretic Computational Complexity, IEEE.TI120 (1974), 10-15.

5. SOLOMONOFF, I_ A Formal Theory of Induction, Pads I. and I1., Info. and Control 20
(1964), 224-254.

6. BENNETT, C.H. The Thermodynamics of Computation A Review, Int. J. Theor. Phys.21
(1982), 905-940.

7. ZUREK, W.H. Algorithmic Information Content, Church.Turing Thesis,Physical Entropy,
and Maxwell’s Demon, In Complexity_, Entro_pv and the Physics of Information, (ed. W.H.
Zurek), Addison.Wesley, New York, 1990.

8: KOPPEL, MOSNE. Complexity, Depth and Sophistication, Complex Systems 1 (1987),
1087-1091.

9. CHAITIN, G. Toward a Mathematical Definition of Life, In The Maximum Entropy
Formalism (ed. Levine and Tribus), MIT Press, Cambridge MA, 1978.

10. ATLAN, H. Measures of Biologically Meaningful Complexity, in Measures of Complexity
(ed. Peliti et al) Springer.Verlag, New York, 1988.

