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ABSTRACT. A special type of family graphs (F-graphs, for brevity) are introduced. These are

cactus-type graphs which form infinite families under an attachment operation. Some of the

characterizing properties of F-graphs are discussed. Also, it is shown that, together with the

attachment operation, these families form an infinite, commutative semigroup with unit element.
’inally, it is shown that F-graphs are graph-theoretical representations of natural numbers.
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1. INTRODUCTION.
First of all we give some definitions relative to the material which follows. For the standard

definitions in Graph Theory, we refer the reader to Harary [1].
Let (G,u) and (H,v) be two graphs, rooted at u and v respectively. By attaching H to G, we

mean the identification of the roots u and v. H is therefore a subgraph of the new graph formed by
the process. Suppose that we attach an isomorph of (H,u) to every node of G, then the graph
formed by doing so, is denoted by G(H). Notice that if all the nodes of H are equivalent (for
example if H is a cycle), then we speak about G(H) without specifying a root in H. Also, since

every node of G is used in forming G(H), it is unnecessary to speak about a root in G.
Let us begin with a single node G0, then attach to it a rooted graph (H,u), to form the graph

G - GO(H)( H). G2 is the graph formed by attaching an isomorph of H to every node of G i.e.,

G2 -GI(H). In general, Gi+ Gi(H). By continuing in this manner, we obtain a family

F {G0, G,G2,...} of graphs. If H is a node, then F {GO}; otherwise F is infinite. We call GO

the core of the family. G is the basis of F. G2 is the (direct) descendant of G (In general,
G + k(k > 0) is a descendant of Gi, the (immediate) parent of G2 (In general, G is an ancestor of

G + k, k > 0). We define the elements of F to be F-graphs. Go and G are called, trivial F-graphs.
We note that F-graphs are a special kind of "cactus-type" graphs and are also Husimi trees (Harary
[2]). For any F-graph Gk, we call the subgraphs isomorphic to the basis G1, leaves of Gk.
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In the material which follows, we derive some characterizing properties of F-graphs, and then

investigate some of the algebraic properties of the families. We show that operations can be defined

on F-graphs, so as to create a system which is isomorphic to the system of natural numbers.

2. SOME CHARACTERIZING PROPERTIES OF F-GRAPHS.
Given an arbitrary graph G, it is of interest to determine (i) whether or not G is a non-trivial

F-graph and (ii) if it is, then what is its position in the family hierarchy. First of all, if G is not a

cactus-type graph, then it cannot be a non-trivial F-graph. Also, from the definition of an F-graph,

G must consist of isomorphic leaves. This criteria will eliminate many graphs. However, many

cactus-type graphs will qualify, so the problem is certainly not a trivial one. For example, is the

following graph T a non-trivial F-graph?

T:

Figure

The following theorem helps to characterize F-graphs.
THEOREM 1. Let F {GO, G1,G2,...} be a family of F-graphs in which G has rn( > 1) nodes

and n edges. Then Gr(r > O) has

(i) mr nodes

(ii) n(nr_-11) edges
and

(iii) mr- 1 leavesrn-1
PROOF. The result can be easily proved.
Theorem 1 provides a (not too useful) necessary condition for a graph to be a non-trivial F-

graph. Since GO is always a node, then clearly, the members of the family’ are totally characterized

by the (rooted) leaf G1. If one is given a non-trivial F-graph, then Theorem could be used to find

its position r, if _a leaf can be determined. The determination of the leaf of an arbitrary non-

trivial F-graph is in practice, a difficult exercise. The first inclination is to find symmetries in the

graph; but this is forbidding, even in reasonably small F-graphs. Thus, a practical use of Theorem

1 as a necessary condition, poses great problems, since m and n depend on one’s ability to identify
the leaf.

We now refer the reader to the graph T in Figure 1. Because T is constructed from triangles,
one is inclined to look for T in the family of triangles. T cannot be found in this family; and

therefore the conclusion could be that T is not a non-trivial F-graph. However, careful observation

will show that T consists of the graph G2 from the family of triangles, with the leaf G2 attached to

every node using a node of valency 2 as a root. Therefore, T is indeed a non-trivial F-graph. T is

the second member of the family of F-graphs with basis G2 rooted at an2 node of valency 2 (i.e. the
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family of G2’s). It would be useful to develop some analytical means for arriving at the correct

conclusion about an arbitrary T. At present, we are unable to do this.

3. SOME ALGEBRAIC PROPERTIES OF F-GRAPHS.
The practical problem of determining whether or not an arbitrary graph is a non-trivial F-

graph, seems to be one of pattern recognition. In this section, we will show that the family F has

some beautiful algebraic properties which will have useful implications on the patterns displayed by
the graphs.

In the material that follows, we assume that zero belongs to the set of natural numbers.

LEMMA 1. In Gr, there exists a node formed by the coalescence of the roots of r leaves.

PROOF. This follows immediately from the construction of Gr from G0.
DEFINITION. Let :r be a node of Gr defined by Lemma 1. Then x is a root of Gr. (Notice

that it is possible for several nodes of Gr to qualify as a root eve___an if Gr is not regular. Therefore

any of them can be used in the attachment process). The idea of a root and the existence of a root

of Gr (by definition) are crucial to the theory of F-graphs. We show later on, that they are vital to

the establishment of the properties of F-graphs.
LEMMA 2: G G- 1(G1) GI(G- 1), for all k > 0.

PROOF. We will prove the result by induction on k. For k 1, Gk- is G0, which is a

rtode. Therefore, Gk- 1(G1) GO(G1) G G(GO). Let us assume that the result holds for

k- 1. Then

G/r- G 2(G1 GI(GIr- 2).
Now

G/r G/r I(G1 (GI(G/- 2))(G1).
The graph (GI(G/- 2))(G1) is obtained by attaching G to every node of GI(Gk- 2). In particular,
G is attached to every node of G/ -2. It can be seen that the roots of each G/ -2 now become the

roots of each G/ 1. Hence we obtain G/ attached to G i.e. GI(GI 1). Therefore,

G/ G/ I(G1 GI(GI 1).
Hence, the result holds for k. By the Principle of Induction, it holds for all k > 0.

Lemma 2 suggests that it does not matter whether we attach G/- to G or G to Gk- 1,
when forming G/. This idea is generalized by the following theorem.

THEOREM 2: G + 8 G.(G) GS(G).
PROOF. We will prove the result by induction on k. For k 0, G/ is a node, and the result

follows trivially. For k 1, the result holds, as shown above in Lemma 2. Let us assume that the
result holds for k- 1. Then

G/r + 8-1 Gk- 1(G8 GS(GIr- 1).
Clearly then,

G + 8 G + 8- I(G1 (G l(GS)) (G1) (G,(G 1)(G1) (1)

The graph (G/- I(GS))(G1) is the graph obtained by attaching G to every node of GIt- I(G8).
Now the attachment of G to every node of the subgraphs G8 of Gk -1(G8), will create subgraphs,
each of which is Gs + 1. Therefore, the resulting graph can be described as GIt- with Gs +

attached i.e. Gk l(G8 + 1).
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Consider any roof z of G/- 1. The graphs with z as a common node can be described as

G- I(GI(Gs)) i.e. G- with the graph GI(Gs) attached to it, at z. But the leaf G can be

considered as being attached to G/- 1, and each node of G has Gs attached to it (at its root z).
Also, every other node of G: 1(G1) will have Gs attached. Therefore, the graph G l(GS + 1) is

also
(Gk- I(G1))(Gs) Gk(Gs)

Similarly, we can show that Gk + s GS(Gk) by using Gk + s GI(Gk + s- 1). Hence, the results

holds for k. The proof is completed by the Principle of Induction.

Theorem 2 has some interesting implications about the description of an F-graph as a pattern.
The graph Gn can be described as Gr with G attached, for any pair of nonnegative integers r and

s, such that r + s n. Also, we construct Gn by attaching Gr, to Gs, for any r,s >_ O, such that

DEFINITION. We define equality in F, as a graph isomorphism. Addition (+) in F is

defined as follows:

Gr + Gs Gr(GS), for all Gr, G
_
F.

It can be easily shown that + is well-defined on F.
COROLLARY 2.1 (Closure and Commutativity)
For all nonnegative integers k and s, and for all G/ and Gs in F

v + v(vs) vs(v)
PROOF. The result is immediate from the theorem.

LEMMA 3 (Associativity)

Gq+ [Gr + Gs] [Gq + Gr] + Gs, for all Gq, Gr and Gs in F.

PROOF: Gq + [Gr + Gs] Gq + Gr + s Gq + r + Gq + + Gs

[Gq + Gr] + Gs, for all q, r, s > 0.

The associative property of +, implies that the order in which ancestors are added in the

construction of a descendant, is unimportant. We can begin with any ancestor and attach the

others, in any order that we choose.

Since GO is a node, the following result is immediate.

LEMMA 4 (Identity). Let F be a family of F-graphs. Then

GO+Gr=Gr+GO=Gr, for allGr_F.

The following theorem sums up the results of Theorem 2 and Lemmas 3 and 4.

THEOREM 3. (F, + is a commutative semigroup with identify.
Let us use the symbols < and >, for the relations "is an ancestor of" and "is a descendant

of" respectively. Then for every family F, the following result holds.

LEMMA 4 (Trichotomy). For any two elements Gr and G in F, one and only one of the

following holds either Gr < Gs, Gr > Gs or Gr G
PROOF. The result follows immediately from the definitions of ancestor and descendant.

Let us define a mapping from (F, + to the set N of natural numbers under addition, as

follows:

() .
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Then for all Gr, Gs

_
F,

/(a + a) /(a + ) + /(a) + /(as).

Therefore # is a semigroup homomorphism. Suppose that ?(Gr) dl(Gs). Then r s, which

implies that G"= Gs. Therefore # is injective. is clearly surjective. Therefore, is a semigroup
isomorphism. Hence, we have the following theorem.

THEOREM 4: (F, +)- (N, +).
Theorem 4 is the crucial result for completing the equivalence between F and N. Now we can

make parallel definitions in F in terms of +, by looking at definitions in N. For example, we

define multiplication in F as follows:

Gr. G Gr + Gr + Gr + + Gr (s times)

G + G + G + + G (r times)

The roles of GO and G as equivalent to 0 and 1 remain intact, as shown below.

GO.Gr GO+GO+...+GO (r times GO

and

G1.Gr GI+G +...+G (r times Gr

Also, we have

#(ar a (Gr + ar + + ar) ?(ar) + (ar) + + (ar) (s times)

r + r + r... + r (s times rs (Gr),(GS).
The following theorem can be easily established in a manner similar to that of Theorem 3.

THEOREM 5. (F, + is a commutative semigroup with identity. From our observations on

above, we can easily establish the following extension of Theorem 4.

THEOREM 6: (F, +,.) (N, +,.).
The equivalence of F and N is now complete. We state this result in a different manner in the

following corollary.
COROLLARY 6.1. F-graphs are graph-theoretic representations of natural numbers.
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