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ABSTRACT. The phenomenon of equiconvergence was first observed by Walsh for two sequences
of polynomial interpolants to a class of functions. Here we obtain analogues of Yuanren’s results for
Walsh equiconvergence using rational functions as in Saff and Sharma. We extend this to Hermite

interpolation and an earlier result of [1] is improved and corrected.
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1. INTRODUCTION.

Walsh equiconvergence theorem is concerned with the class 4, of functions f(z) which are
analytic in the disk D, = {z|]z| < p} but not analytic in D,, where p > 1. If f(z) € 4,, the
theorem of Walsh asserts that the difference between the Lagrange interpolant on the n roots of
unity and the Taylor polynomial of degree n—1 about the origin tends to zero as n — oo in the
disk D,:. Here we shall be interested in the recent extension by Saff and Sharma [2] of Walsh'’s
theorem to rational functions with a given denominator z™ — o™ where o is a real number > 1.
Later the present authors extended these results by replacing Lagrange interpolation with Hermite
interpolation. The object of this note is two-fold: We first replace interpolation in the zeros of
z™+n+l _ 1 by interpolation in the zeros of z™+"t! — g™+n+l where |a] < p and m is an
integer 2 —1. We also obtain the analogue of Lou Yuanren's recent extension [3] of the Walsh
equiconvergence theorem using rational functions in the spirit of Saff and Sharma [2]. Lou (3]

was the first to observe that the sum of the £ “help polynomials” discussed in [4] have a natural
interpretation as the Lagrange interpolant in the nth roots of unity of Taylor polynomial of degree

¢n — 1. Secondly we apply the same point of view to Hermite interpolation and thereby improve

and correct our earlier results in [1).
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2. LAGRANGE INTERPOLATION.
For a fixed integer m > —1, a positive number o > 1 and a number a with |a| < p, let
Ratm,n(2) denote the rational function of the form

B..+,..(z)

m—on

Rotma(2) = Bptm(z) € Dngn(z) (211)

which interpolates f(z) in the zerosof z™t"+!—_qm+n+1, Let 1,4, o(z) denote another rational

function given by

Fapmn(z) = 222 b ) € Mngn2) (22)

2 —on’

which interpolates f(2) in the zeros of z™+}(2" —o~"). Walsh had shown [5] that if ¢ > 1 and

f(z) € Ap, then
: /
F GH..+. |’I-‘

is attained when P(z) interpolates f(z)(z" — o™) in the zeros of z™+!(z" — ¢~"). Thus the
rational function in (2.2) is characterized by the property (2.3).
It is easy to see that

P(z)

f(z) - ld I (23)

1 (z m+ntl -—a"""""'l)(t" u) f(t) &t

12) = Rusma®) = 5 [ syt ety i (24)
where T is the circle |t| = p —¢ for some small ¢ > 0. It follows as in [1] that
lim Ruyma(z)= f()  for |z| <min(a,p) =: .
If KC D, is compact, then
timeup 1£(2) ~ Rutma(s)E < T max{lal =]} (28)
where ||-||x = f‘é’}: Jz]. Further, if p > o, then for all |z| > o, we have
0, for m=-1
m, Rotm,n(2) = g axzt,  for m=0,1,2,... @)

where f(z) = S’E arzi. From (2.5) and (2.6), we see that Theorem 2.1 in [2] holds also for
k=0
Rn+mm(z)-
Since f(z) — rn4+m,n(z) has a representation similar to (2.4), it is easy to see that

Rutmn(2) = Fatmon(z) = / F(0] LK (2,1) + Kal2,8) + Ka(a, 1) de (2.7)

278
where
amntl t —o" (—l)z""“a""

n_ n
¢ g K,(z,t) = —o" tn —g—"

Ki(z,t) = " —o" S gm¥ndl _gmintl’

(2.8)
zm+u+l (tm-!-l o™ — am+u+l)
' tm+l(tu - c—u)(tm-b-n-l»l - am+n+l)’

t"—-o"
=zu_an

Kz(z: t)

From this one can easily prove
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THEOREM 1. Let p > 1 and let m > —1 be a fixed integer. If f(z) € A, and if
|a| < p and o > 1, then

1im (Rntmn(2) = Fotmn(2)] = 0 (2.9)
for
2 2
p p
-7 >t
< mmiale D "B 72 Sllale )

and for |z| # 0 if o < p?/max(|al,c?).

For a =1, this theorem gives a result of Saff and Sharma [2]. A slightly more general theorem
can be proved if we set B(z) := z/(m+1)(2" — §%*) where B is a real number < p, |B| # |al
and where Ly(m+n)(2,B,fs) denotes the Lagrange interpolant of degree &(m +n+1)~1 to
fo(2z) ;= (2" —0™)f(z) at the zeros of B(z). Let Lm4n(2,a,f,) denote the Lagrange interpolant
to f, at the zeros of z™*"+! — q™+n+1  We shall now prove

THEOREM 2. Let f(2) € A, (p > 1) and let m > —1 be a fixed integer. If a #
B, (lal, 18] < p) are given, and if

Aa,B(2, f) = Lin4n(2, @, fo) = Lm4n(z, @, Ll(m+n)(zy B, f5)) (2.10)
then

lim 28 1) _ (2-11)

n—oo 2" — g™

for |z| < 01, if 0 > 01 := p**!/max(|al,|B|)¢ and for |2| # o if 0 < 01. For £ =1 and
B =071, we get Theorem 1.
PROOF. We know that

Lmin(2,B, o) = 57 [ £o(OK (21 t)

where
. B(t) - B(2)
K@= G380
tt(m+n+1) _ l(m+nt1) ﬁln(tl(M+l) - zl(m-H))
~ B@) [ t—z B t—z ]

It is easy to see that

Lm+n(7'1 a, K(’ t))

_ tl(m+n+1) _ Ql(mtntl) ygmtntl _  m+ntl _ ﬂln (tl(m+l) _ zl(m+l))
T B(t) | tmintl _ gmintl t—z t—z ’

This gives us an integral representation for A4 p(z, f) so that

Aq,B(2, f) 2n/f,(t)Kl(z’t) dt (2.12)

zn_an
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where

tm+n+l - zm-{-n-l-l al(m+n+l) — tl(m-i»l)ﬂln
(t = z)(tm+n+l _gm+ntl) ) B(t)

Kl(zrt) =

Bin(tlm+1) _ Um+1))
(t-2)B(?)
From (2.12) and (2.13), we can easily obtain (2.11).
3. HERMITE INTERPOLATION.
Let fe A, (p>1) andlet o > 1. For fixed integers m, r, s (m > -1, 1 <r <s), set
N=n+m+1. Let

(2.13)

RJN—I(Z, f) = RcN—l.nr(zy f) = CoN—l(zr f)/(zn - ‘7")' (31)

where C,n_1(z, f) is a polynomial of degree < sN —1 which interpolates f(z)(z" —0¢")" in the
zeros of (zV — a™)*, where |a| < p. Forany f#a, |B]<p, let

San-1(2, f) := SeN-1,ae(2, f) := Qun-1(2, )/ (2" — 0")"

where Q,n-1(z, f) € I,y_; interpolates f(z)(z" —o™)" in the zeros of 2°N-""(z" - g")". If

we set

APz, £) 1= Run-a(2, £) = San=1(2, f), (32)
then we shall prove
THEOREM 3. If feA, (p>1), and a# 8 (|al, |8| <p), then
(a,B)

limp_.co AN 5(2,f) = 0 in the following situations:
(2) For |z] < py := p/ {==BLLD P/, when (£) > cofipap-
(b) For 2| < p2 = {gradirarap /™, |2l # 0, when 1< (£)* < p/max((al, 8.
() For || < {zZmmmap}/¢™", lel#0, when 1<0 <p.
The convergence is uniform and geometric in every compact subset of D.
REMARK. When a=1 and f =0, Theorem 3(a) gives Theorem 2.1 in [1], when s=r.
For s> r, cases (b) and (c) in Theorem 3 correct the statement of Theorem 2.1 in [1}].
We shall prove a slightly more general result which will yield Theorem 3 when £=1.

In the sequel we shall need the following identity ([4]):

O - (=) - 6

J=1

where 7;.(z") is a polynomial in z of degree < n(r — 1), given by

r—1
in(z™) = Z (”"’ )(z"-l)", i=12,.... (3.4)

In particular, m,(z") =2™—(z"~1)".
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THEOREM 4. If f(z) € A, (p>1) andif a # 8 (|a|,|8] < p) are any complex
numbers, then for any integer £ > 1, there exist polynomials P,n_, (2, f) of degree sN —1 in
z(j=1,...,£—1) depending only on f(z)(z" —o™)" and its power series such that

n [AG(z f) - ZP.~ Lz NIE" =™ =0 (3.5)
=1

for z € D where Ag‘,"'ﬂ(z, f) is given by (3.2) and the region D is given below:

(a) If (%)‘ > (mfa_mm)‘, then D= {z||z]| < p/ma.x(M‘L’Iﬂ)‘/"
() ¥ p < (8)° < (zapfeyap) > then

D= (el lol < p (24" ma (2hlPlyro=r, ) 4 o).
(c) f 1<o<p, then
D = (el lol < p/max (BLBlyre—r, 53,

The convergence is uniform and geometric in every compact subset of D.

PROOF. It is easy to see that

2D )= o [ L E T gy (3.6)

2ni Jrt—z (2" —om)

where
) z\#N-rn zn_ﬂn r 2N _oN :
Rewriting K(t,2) = Ki(t,2) — K3(t,2), where

N

z\*N N —aM\’
Ko =(2) _(_tN_aN) ,

mea: =)0 (525)"

From (3.3), it follows immediately that

(3.8)

v — - (27 a
Ki(t,2) =05 Za(ﬁ" 1)~7:~(t1~ Y

y=1

(3.9)

z\oN-m " —z" — ‘YJ.r(z ™) LUHr=D)
Ka(t,2) = (3) > Frbe,
In [6] it was shown by K. G. Ivanov and Sharma that
[3,r(2")| < Coj™ " max(1, ||~ 1) (3.10)

where C) is a constant depending only on r.

From (3.6), (3.8) and (3.9), it follows easily that
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AGE( f)-ZP.N 1i(2 (" = o) (3.11)
J=1

where P,n-1,j(z, f) are polynomials in z of degree sN —1 for each j and are given by

Punorj(s,f) == = / FE)E™ — o™ M2, 2)dt. (3.12)

27

Here Mj(t,z) is a polynomial of degree sN —1 in z given by M;(t,z) := M;(t,2z) — Mj2(t,2)

where

a\G+e=DN 4. (:Naq=N) N _ N
it 2) = (—t-) ! o ) .

N — (3.13)

and

tn t—2z

From (3.4) and (3.13) it is easy to see that Mj(t,z) is a polynomial in z of degree sN —1.
For any positive integer £ > 1, we see from (3.11) that

-1
AG2(2,£)= Y Pavori(z, /(2" = 0" ZP.N Li(# /(" ="
J=1 J=t

In order to estimate the expression on the right above, we see on using (3.10) that for |z| > p and
|t| < p, we have

IN(.-I)'aI—N(o 1))
MaNﬂN l

|(a (+e=DN 5; ,(zNa=N) N —

N < |afldte=DN max(1, |z
tN t— -

jn max(|a(e~DN, [z|(e-DN)
I 'tl)N""w l I

and

tr t—z

l(g)(r-ﬂ'-l)n 'Yj,r(z-ﬁ-') . FLp ) (;).N-m

n(r—1)|g|~n(r—1) -
< gy 2L g m = e

. n(r=1) |z|»(r-1) _
< 'ﬂ". ma.x(lﬁl Itlj.+:| l ) IzIaN ra+n

B sl
= |t|(j+.)ﬂ |t|‘("‘+l)

Hence with |t| = R<p and |z| > p, we have

R® -o"

Izln —0o"

<C

I(z" = e™I™"

Z PlN—l,J(z) f)

[RpN+N RineN I
j=t

Sl e LLPey
=t
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< | Brmon |7 1l max(|al*, 6])
= |z|" —o" R(s+0n R(s+6)(m+1)
i et (16N L e (1LY
ijzo{(JH) (R) +(+9) (R
R*—o" |" 'zlan max(lalln Iﬂlln)
< Cl lzlu —on R(n+l)n
From the above we see that
A PiN-1,i(z, f)
n—‘oo N rn( f) Z (Z" Jon)r ] (3.14)
=1
when
s R+t 1/s
|Z| < p 1 o>p = {;;(Ia_ll,l—ﬂl-‘_)-} (3.15)
If p< o <p;, then (3.14) holds if
R+t 1/(s—r)
IZ' < p2 = {;'_nmﬂ‘—)} and |z| # o. (316)
If o < p, then (3.14) holds if
Rett-r 1/(s—r)
|z| <p3:= {W} and Izl # o. (317)

It is easy to see that (3.15), (3.16) and (3.17) give the region D in the cases (a), (b), (c) of
Theorem 4.

This completes the proof of the Theorem.
It may be noted that p; > p and p3 > p, but p; > p only if

o> ()
max(lal, 1B ~ \ 5

and p; > 0 if (£)° < mmdEpEy- When s = r, both (3.16) and (3.17) give the result that
convergence holds for |z| # 0. When £=1, we get the result of Theorem 3.

REMARK. The “help functions” P,n_),j(z,f) in Theorem 4 seem to be different from
those obtained in [1] in Theorem 2.2. When s # r, Theorem 4 provides the correction to Theo-
rem 2.2 in our earlier paper [1].

It would be interesting to interpret the polynomials P,n_1,(z,f) (j =1,...,£—1) as
having some interpolaory property as has been done in [6] and [7). If we set

fo(2) := f(2)(" — o™)"

and if T,—;f, denotes the Taylor polynomial of f, of degree < n —1, we shall show that

1
ZP.N-l,j(Z,f) = H,n-1(2,0,(To4e-1yn-1 — Ten-1)fs)

=1

- Z'N-ern-l(z1 B, zmTln—n—lfc) (3-18)
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where H,n-1(2,a,g) denotes the Hermite interpolant of degree sN —1 to g on the zeros of
(zV — aM)’. Recalling that if go(2):= z/+(*+¢=DN where 0<j <n—1, then

N(s+2-1)

H,n_1(2,a,9¢) = da 'n,,(zNa'N),

we can verify that

Z*N(tN-N _ IN-N) Y, (z “ ) oNG+i-1),
HcN—l (Z, a, t(.+l-l)~(t - z) = t -2z tON Z * ™
Similarly,
zru(tln-n - zln—n) 7,’ (z ﬂ ) + —l)
Hen (z’ B, tontin—n(t _ z) = t -z t"" Z - tin ﬂ"(’ ’

From the above we can get (3.18) easily. Formula (3.18) is not exactly of the same kind as the
corresponding results in [7] and [3]. However it provides an interpretation for the “help functions”
in terms of iteration of interpolation operators. It would be interesting to see if the regions of
equiconvergence can be extended by application of summability methods as has been done in (8]
by R. Bruck for the case of Lagrange interpolation.
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