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ABSTRACT. f(z) = z + I a 2" is said to be in V(e ) if the
m=2

analytic and univalent function f in the unit disc E is normalised

by £(0) = O, £'(0) = 1 and arg a, =6, for all n, If further there

n(mod 2n) then f is

exists a real number B such that 9n+(n-1)B
said to be in v(en,a). The union of V(en,B) taken over all possible
sequence {6é and all possible real number B is denoted by V.
Vn(A,B) consists of functions f € V such that

Qn+1§(zz = 1+Aw(z

an(Z) 1+Bw(z ’
-1 CA<CBZC 1, where n € N U {0} and w(z) is analytic, w(0) = O
and |w(z)| < 1, z € E. In this paper we find the coefficient
inequalities, and prove distortion theorems.
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1. INTRODUCTION.
Let A denote the class of functions f(z) analytic in the
unit disc E ={z ¢ |z|] < 1} . Let S denote the subclass of A
consisting functions normalised by f(0O) = O and f'(0) = 1 which
are univalent in E. The Hadamard product (f*g)(z) of two functions

) o0
f(z) = £ a2z and g(z) = £ b 2" in A is given by
m=0 ™ n=0 @ ’

(f*g)(z) = mio amb-zm.
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Let D"f(z) = 2“‘§EIT * £(z), n € N U {0} where N = {1,2,3,...].
1-z

Ruscheweyh [2) observed that D"f(z) = z(z“'lf(z))(“)/n!. D"f(2)
is called the n*™M Ruscheweyh derivative of f(z) by Al-Amiri [1].

DEFINITION 1. (Silverman [3]). f£(z) = z+ T amzm is said
to be in V(6 ) if f € S and arg a = 6 for allm:? If further
there exists a real number p such that eh+(n-1)ﬂ = w(mod 2x),
then f is said to be in V(Gn,ﬁ). The union of V(en,a) taken
overall possible sequences {94 and all possible real number B
is denoted by V.,

Now we define the class Vn(A,B) consisting of functions

n+l
£ € V such that 2——f(z) _ L¥Awlg) =, (5 (B¢ 1, where
an (Z ) 1+Bw(z

n € NU {0} and w(z) is analytic, w(0) = O and |w(z)| < 1,
z € E. Let Kn(A,B) denote the class of functions f € V such
that 2f'(z) € Vn(A,B).

2. COEFFICIENT INEQUALITIES.
THEOREM 1. Let f € V. Then f € Vn(A,B) if and only if

n:Im; ;-1 1 Chlaml < (B-A). (2.1)

where C = (B+1) (n+m)=(1+A) (n+1).

PROOF. Suppose f € Vn(A,B). Then

1
D."*_f(n,m.ug} -
D¢ (z) 1+bw(z) * "1 £A<Bg

w(z) is analytic, w(0) = O and |w(z)| < 1, z € E. We get

(2) n 4p+1
w = °
: BD"+§f(z)-ADpf(2)

Since Re w(z) < [w(z)| < 1, we obtain on simplification,

{.;; nIT-: .m-l T [(n+1)-(n+m)]amz""1 }
(B=A)+ 22 ngImtl ;-1 ![B(n+m)-A(n+1)]amzn'1
m=

Since f € V, f lies in V(Gh.ﬁ) for some sequence {ﬁh} and a
real number B such that
eh+(m~1)ﬁ = x(mod 2x). Set z = relf,
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Then we get,
i(e,+m=1 B)

5( P fomell o [(ne1)=(ntm)]|a, |2 e

m=2 -
. : —, 1(0_+m=1 p)
(B-A)+ T D [B(n#m)-A(n+1) ]|a, [£™le ™
< 1. (2.3)
; n+m-1)! [(n+m)=(n+1)]|a_| "
n+1) ! (m-1)! m

m=2

- -1)! -1
¢ (8-a)- 5 ISRy (B(mem)-A(ne1) Jla "

m§2 R—ﬁ%")-"l'r,%?_-n—. [(B+1) (n+m)~(1-A)(n+1)]|e_| ™1 ¢ (B-A)

Hence,

L el o fa, | ™ < (B-a). (2.4)

m=
Letting r => 1 we get (2.1).
Conversely, suppose f € V and satisfies (2.1). In view of

(2.4) which is implied by (2.1), since ¢ 1, we have,

a0
ntm-1)! mel
|m£2 D )T ((ntl)=(ntm) Ja 2777 |

_' T [(n+m)-(n+1)]|am| L

< (B=A)- ;; Rl [B(n+m)-A(n+1)]|a, [*™"1

m=
< I(B-A)-m‘:v:2 L [A(n+1)-B(n+m) Ja, 2™}

which gives (2.2) and hence follows that f € Vo (A,B).

COROLLARY 1. If f € V is in VB(A,B) then,

la | < ntl)!(m-1)¢(B-A
m-

n+m-1)! qm

for m > 2, The equality holds for the function f given by,

ie
£(z) =z + n+1n;mfIlz!cB-A e D zm' z € E.
m

THECREM 2. Let f € V. Then f(z) = z+ amzm is in
m=2
Kn(A,B) if and only if

ht (n+m=1)!
m£2 n+l)!(m-1)! mChIaml < (B-A).
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- -]
THEOREM 3. Let f(z) = z+ & amzm £ Vh(A,B). with arg a, = €,
m=2

where (€ +(m-1)g] = n(mod 2m). eDefine £,(z) = z and

" (e N m_m
fo(z) = z + dotplilnad): :‘A & 2 ,m=23,..., z¢€E.

f € V (A,B) if and only if f can be expressed as f(z) = E me (z)

where B 2 O and 2 B = 1.
m=1

PROCF. If f(z) = t Bpfn(z) with zl By = 1, Wy 2 O, then,
m=

= (nm-1)!C pm n+l)!(m=1

- ' . |- .
m=2 (n+1)!(m-1)¢ n+m

= 22 by (B-A) = (l-pl)(B—A) (B-A).
m=
Hence f € V (A,B).

Conversely, let
)
f(z) =2z + % amzm € Vn(A,B),
m=2
(n+m-l)‘|a |c
define, o = TniD) (o1 B , m=2,3,... and define

B = 1l - 22 Ppe From Theorem 1, £2 Hm £ 1 and so (Y 2 0.
m= m=

Since, umfm(z) = pmz+amzm,

z Hpfp(2) =z + ; amzm = f(z).
m=1 m=2

THEOREM 4., Define fl(z) = z and

ie, . . m
n+l)i(m-1)t(B=A)z . _.53,...2¢€E.

nm"l « M

fm(z) =2z +
m

Then f € K (A,B) if and only if f can be expressed as

f(z) = 2 Pofm (z) where By 2 O and 21 By = 1.
=

3. DISTORTION THEOREMS.
L _J
THEOREM 5. Let the function f(z) = z+ I anzm be in the

m=2
class Vn(A,B). Then,
l2|-(8-a)|2|%/C, < |£(2)] < |z]+(B-A)|2|?/C, (3.1)
1-2(B-A)|z|/C, < lf'(z)l < 1+2(B-A)|z]|/C,. (3.2)

PROOF. |f(z)] = lz+ 2 a 2" < lz|+l=l2 2 lag |
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(nﬂn-l)‘c

2 @®
and |f(z)| > |z|-|z] m£2 Iaml. Since mi-)- is an

increasing function of m > 2 and f(z) € V_ (A,B), by Theorem 1,

we have
n+l)! ® n+m—1)¢
>y °2m§2 lagl < T Ty Calanl < (B-4)
that is,

B-A
z Iaml Sé-z—- (3.3)

From (3.3) we get (3.1)
[f1(z)] = |1+ z ma_ 2 | < 1+|z| z mla, |
m=2 m=2

and

a0
[£°(z)| 21 - |z] £ wml|a ].
m=2

(ntm-1): C
Since ICOVH L is an increasing function of m 2 2 and

(n+m-1)! mC (n+m=1) mC,
A 1) (m¥1)? < —-(——-51—;‘7— by Theorem 1, we have,
(n+1)! C, o « (n+m-1)! C lag|
2 3m
L oolagl & ¢ TEnT oD < (B-A)
n+l)! 2m=2 m-.2 n+l)! (m=1)!
that is,
L]
£ mlag| 5_2-‘%—'&. (3.4)
m=2 2

From (3.4) we get (3.2). Further for the function f(z) = zAB—EA;)- 22,
we can see that the results of the Theorem are sharp.
COROLLARY 2. Let f(z) = z+ 2 amz be in the class V (A,B).
m=2
Then f(z) is included in a disc with its center at the origin
and radius r given by r = ((32+B-A)/C2 and f'(z) is included
in a disc with its center at the origin and radius Ty given
by r; = [C2+2(B-A)]/C .
THEOREM 6. Let the function f(z) = z+ 2 amz be in the

ms
class K, (A,B), then,

lz]-(B-A)|2|%/2 C, < |£(2)] < |z|+(B-A)|2]?/2 C,
and

1-(B-A)|z|/C, < |£'(2)| < 1+(B-A)|z|/C, )
for z € E. The results are sharp for the function f(z) = z+(B-A)z/2 C,.
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