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(]
ABSTRACT. Let f(z) = [ akzk, a # 0 be analytic in the unit disc. Any
k=0
infinite complex vector 6 = (90,91,92,...) such that |9k| =1,
(]
k =0,1,2,..., induces a function f_(z) = [ 3,0 ZX which is still analytic
2] k=0 k
in the unit disc.

In this paper we study the problem of maximizing the p-means:

r"lfe(rem”p“
[

over all possible vectors © and for values of r close to 0O and for all

p < 2.
- Kk
It is proved that a maximizing function is fz(Z) = -|a°| + ¥ |ak|z
k=1

and that r could be taken to be any positive number which is smaller than
the radius of the largest disc centered at the origin which can be inscribed
in the zero sets of fl. This problem is originated by a well known majorant
problem for Fourier coefficients that was studied by Hardy and Littlewood.
One consequence of our paper is that for p < 2 the extremal function

.

L J
for the Hardy-Littlewood problem should be -|a°| + ¥ |ak|zk.
k=1

We also give some applications to derive some sharp inequalities for the

classes of Schlicht functions and of functions of positive real part.
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1. DEFINITIONS AND NOTATIONS.

We will denote D(a,r) = {z € € | |z-a] <r} and U =D(0,1).
H(U) is the set of all functions analytic in U.
[ J
k
If f(z) = } az € H(U) and if 6 = (00,01,92,...) is an infinite

k=0
complex vector such that |ek| =1, k=0,1,2,..., then we will define
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«©

_ k
fe(z) = k§o|ak|ekz , z € U.
For fixed p and r such that pe€e R and 0 =r < 1, we will define a

n
functional on {f } by the formula: Jp L8 = Jz lfe(rei¢)|pd¢.
’ 0

) _1 1¢,,p -ing
If neZ then we will denote: cf,p,n(r) = 5m Jjulf(re )T e d¢.

(Usually f and p will be fixed so we will shorten cn(r) = ¢y P n(r) ).

The radius of the zero-free region of f will be defined by

8(f) = min(1,min({|z| | z # 0, £(z) = 0))).

If F(z) = k):OAkz € H(U) and satisfies |ak] = Ak’ k =0,1,2,...
then we will say that F majorizes f and write f « F.

Some familiar families of analytic functions in U are:
={f e HU) | £(0) =0, f’(0) =1, f 1is univalent in U}
={f € HU) | £(0) =1, Re{f(z)} >0 V z e U).

2. THE MAIN RESULTS.

If f(z) = E a X e H(U), a # 0. Denote £(2) = —|a [z Z ]am+k[m+k

k—m

Let fu(z) = -1+ Z akzk, fB(z) -1 + 2 Bkz € H(U) satisfy
k=1 k=1
0= o =< Bk’ k=1,2,3,...

The following theorems will be proved in the paper.

THEOREM A. For every p <2 and every 0 s r < 6(f1), we have

fznlf(re1¢)|"d¢ s Jznlfl(rei¢)|pd¢.
o o

The inequality is usually not valid for r > 8(f1L
THEOREM B. For every p < 2 and every 0 s r < B(fB), we have
i i
Jz"]fa(re ?)[Pag = Jznlfﬁ(re ?)[Pag.
o 0

THEOREM C. For every p <0 and 0 =r < 6({1), and for all

L4
J2 |f(re s Jznlfl(rei¢)|pe-in¢d¢.
o o

THEOREM D. For every p <0 and every 0 s r < 8(f_.), and for all
_ B
n=1,2,3,..., we have

E"Ifa(rei¢)lpe'1"¢d¢ s f:“|f3(re1¢)|pe'1"¢d¢.

3. A MAJORANT PROBLEM DUE TO HARDY AND LITTLEWOOD.
In this paper we solve the following extremal problem:

n =1,2,3,..., we have

max Jp l_(e), for every p <2 and every 0 = r < 6(f ).

We also find the extremal directions 6’ for which J (8’) = max J (0)
p,r p ’
P ,
(The compactness of (fe} in the topology of uniform convergence on compact
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subsets of U guarantees the existence of maximizing functions). A majorant
problem for Fourier coefficients, that was studied by Hardy and Littlewood,
goes as follows:

If p 1is an even integer and if f « F and F € Lp, then f € LP and,
in fact, ufup = nFHp.

Are there any other values of p for which an inequality of the type
Hfﬂp £ Bp"FHp holds whenever f « F ?

In his paper [2] from 1975, Harold Shapiro characterizes the

n
class of all smooth functions & on R’ for which Jz ¢(|f(e1t)|)dt
0

n
s IZ ¢(|F(eit)|)dt. In particular he deduces that &(x) = xP 1is not such a
0

function unless p 1is an even integer.
One consequence of our paper in connection with this problem is that for
p < 2 the majorant function of Hardy and Littlewood should be replaced by a

new majorant function:
od K od K
-laj] + L |a |z instead of [ |a |z= (a_ * 0).
0 k=1 k k=0 k o
4. PRELIMINARY REMARKS.

(a) If f,g € H(u) and f « g, then for every p =2k, k =0,1,2,...

and every 0 =r <1 we have

J2u|f(rei¢)|pd¢ = J2u|g(rei¢)|pd¢.
o o

Even more is true:

14
”2 |£(rel?)|Pe 1My | = J'z"|g(re1¢)|"e'1“¢d¢, n=0,1,2,...
o o]

(In view of the fact that for every f € S and every h € P we have

fek(z) =2, hellz) = 12
(1-2) z
we can deduce that

J.zulf(n)(rew)'de¢ < Jzu,k(n)(rei¢)|2kd¢, fes
0 o

1.4
Jznlh(n)(rei¢)|2kd¢ sr 1t (re!?) |4, hep
o o

for all n,k =0,1,2,... and O0sr <1.)
..k d k
(b) If f(2) =k§Bakz € H(U), a  # 0 and if £,(2) = -|ay| +k§1|ak|z

then (by the triangle inequality) we have

min lfl(rei¢)| = min
0s¢=

i¢
f , O 3(f
os¢=2m <¢san l£re™) sr<d( 1)

and in particular 8(f1) = 3(f).
(¢c) If p#0, 0s=rc< G(fl) and 6’= (90,61,92,...) satisfies

Jp,r(el) = m;x Jp'r(e), and if we have the Fourier expansions:

443
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- k
f,(z) = Y |a 6.z
e k=0 k'"k

(Jz] = 1)
«©
p-2 k
|£g.(2)] fg.(2) ~ L bz
k=-w
then for all k =0,1,2,..., we have arg(bk) € (arg(ﬂk), arg(ek) + n}. (To
aJ r(6’)
see this we use the fact that for all k =0,1,2,... we have ——%é————— =0.)

k
5. AN ANALYTIC EXTENSION FOR cn(r).

PROPOSITION 1. Let f € H(U) and n € 2.
(a) If p e {2k|k=0,1,2,...) then there is a g, € H(U) such that gn(r) =

cf.p'n(r) for every 0 =r < 1.

(b) If pe {2k|k=0,1,2....) and if f has a zero of order m at z =0,
mp =
then there is a g, € H(D(O.B(f))) such that r gn(r) = cf,p,n(r) for every

0 = r < 8(f). Moreover for each n > 8(f) we have g, ¢ H(D(O.n))-
Proof. It is enough to consider the case n = 0.

ot K _ o ]
(a) If f(z) = ¥ a,z" then f(z)" = Y p!(a ,...,at)z where p, 1s an

t=0 t=0 " °
homogeneous polynomial of degree k with positive integer
that 1im IPCII/L = 1im |a¢|1/t. By Parseval’'s equality the desired analytic

o«
_ 2 2L
extension of co(r) is given by go(z) = tgolpl(ao....,al)| z

coefficients such

(b) Let h e H(U) satisfy h(0) # 0 and f(z) = zmh(z). z € U. Since
8(h) = 8(f) we have for each fixed ¢ € R that (h(ze1¢)h(§e1¢))p/2 is an
1 16\ - 1é\p/2
analytic function in D(0,3(f)). Hence go(z) = 5 . (h(ze ¢)h(ze ¢))P d¢
is an analytic function in D(0,8(f)) and clearly rmpgo(r) = co(r) for
(]
0sr<38(f). Finally, 1f (n(ze!®)P? = § ay(ze't, |2| < 5(£) then by
L=0

Parseval’s equality we have

° 2 2L
go(ZJ =T Idtl 27, |z| < &(f).
2=0
1,
= 2,2 —_ 17¢
But limlldtl | = 1im Id¢| = 37%7 because (h(zew))p/2 has a singular
point on |z| = 8(f) (since g is not a nonnegative integer).

We remark that in (b) we have proved the representation
1 ig.\p mp o 2 28
T |f(re ")|"d¢ = r T 'dtl z", 0sr <3(f).
o =0

6. A SOLUTION FOR THE PROBLEM max Jp r(9) FOR p <2, 0 sr < &(f).
e ,

k
€ H(U) satisfy 0 « f. Let @ = (1,81,92,...)

[
Let f(2) =1+ Jaz
k=1mk
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be an infinite complex vector such that |0k| =1, k=1,2,3,... . Suppose q
[
k
<1 and (fe(z))q = Ldgz. lz| < 8(fy).
k=0
LEMMA 2. If ¢ = (1,1,-1,1,-1,1,-1,...) then for every 6 we have

ldgi | = |d¢k|, k =1,2,3,...

[
Proof. Denote x = ):akekzk. |z] < 6(1‘9), then (fe(z))q = (1+x)%, and
k=1

this implies

et
=@ 1 .oa
dgp = (e, + (D) (2y2p1010py * %% 5858, 5 + ---)+ -+ +(Peyey- (1)
Hence we have a representation of the form:
nl'j ntj (2)
d ., = T 7(x,0.) V... («08,) 7,
ot n+...+nstj11 (A4
where 7j € R and depends only on q (not on 8). If Yn ) (1 =sns=2¢ |is
the coefficient of zt in (aiz - otzz2 a323 - .. .)n then Yn ¢ is a sum of
monomials of the form (—l)t-n o @y, 11 + ...+ in = {. But sgn (:) =
1 n
(-1)™?, 0<q<1
and by (1) we have
(-1)" ,q<0

00
a,= ¢ Oy ,.
W n=1 P n,¢
Hence using the representation (2) we have
n n
la,,| = » Iy o, 9. e, Y, 3)
vt n, ,+...+n, st Jh ¢
1%y
and the conclusion therefore follows. o

PROOF OF THEOREM A. We can assume m = 0, a, >0, a, z 0. Let

/2 _ ok /2 _ o ..k
(£(2)P° = k)=:odkz . |z < 8(£) and (£, ()" = kgodkz . lz| < 8,00,

By the representation in Proposition 1 we have

[ J
Izu|f(rei¢)|pd¢ =2 § a2, o0sr<an)
[4 k=0

[
r"|f (re'®)|Pag = 2e ¥ |4 |* £, 05 <air)).
o ! k=0 t
P

By Lemma 2 with q = 3 < 1 we have Idkl s ldlltl' k =0,1,2,..., and we
obtain the desired inequality.

For the final part of the theorem we consider the following example:
Fix 0 < a <1 and define ge(z) = o + 20z - ewzz, 51(2) = o® + 20z - 2°.

We have &(g ) = (V2 - 1)a. Denote

d¢ d¢
G(r)=| — ., G(r)==| —= __ .
1 0 1¢)| (’) o 1¢)'

Igl(re |ge(re
Then Gi(é(gl)) = Ge(a(ge)) = +w. Since 8(81) < S(ge) for all 0 56 g 2n

and 1lim &(g,) = 8(g ), we can do the following:
9—)0’ (] 1
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For every r > a(gl) we can choose a 6 > 0 such that 6(31) < 6(8e ) = T,
o
So Gl(ro) < o while Gg (ro) could be made as large as we want and in par-
o

<
ticular we can choose 6, so that Gl(ro) Geo(ro) o

/2 /2
P »

o0
_ k
PROOF OF THEOREM B. Let (f_(2) = k)zjodkz » 2| < 8lr) (fg(2)

]
r d’zk. |z| < 8(f_,). By representation in Proposition 1 it suffices to prove

< B
that [d | = |d |, 1,2,... . By by formula (2) in the proof of Lemma 2
n n n
we have |dk] = £‘7J|“1 ...akkj , |di| = £|1J|311J...Bkkj and we are
done. a

The combination of Theorems A and B gives us, for example, the

following:

COROLLARY 3. Let p <2 and let © be an infinite complex vector of

modulus 1 components.

(a) For every f € P and every 0 =r < 1 we have

ig, P
et (2l
1-(re ¢)

Moreover for every n = 0 there is a 6n > 0 such that for all 0 s r < Gn

we have
jzulfén)(rei¢)|pd¢ = J2n|t(n)(rei¢) - 2-n!|Pag (e2) = l;E .
[4
(b) For every f € S and every 0 sr < 5 (2 - ¥2) we have

Jzulfe(rei¢)|pd¢ =
0

If & 1is the minimal modulus of the zeros of 1 + z - 2(1-2)3 then for

i¢ p

every O sr < & we have

J2n|fé(re1¢)|pd¢ = Izu
o o

Finally for every n 2 1 there is a an > 0 such that for all 0 s r < Gn

1:S£Si22_. - 2]pd¢ .
(1-(re'?))®

we have
Jz"|fén)(re1¢)|pd¢ > J’Z"|k(“’(rei¢) - 2nent|Pag  (k(2) = ).
[ 0 (1-2)
COROLLARY 4. Let f(2z) = 2 akz € HU), a*0 and
k=0
[ J
f(z)=-|a| +L laklzk, then for every p 2 0 and for all 0 s r < min
! " x=0

(a(fl). 6(?:%57 - f:%ET) we have

f (0)f (re )
Jznlf(re1¢)|pd¢ = sz| i¢ d¢
2f (re )£, (0)
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- 0
. 1 _1 Kk 11, X and
PROOF. Since rroy = o=+ Lo ripy =~ (my* LlAl?)
both are analytic in D(O,a(fl)) and ]ak| = ]Bkl, k =1,2,3,..., we obtain

2 - ___1_ -pd¢
f _(0) fl(rei¢)|

114 114 -p
r |£(re'?)|Pag = r l—liTI g = Jz'
o o 'f(re ") o

for every 0 = r < min (6(f1), 6(?_%57 - f_%ET)'
1 1

1

o

PROOF OF THEOREM C. Let f(z) = z™h(z) where h € H(U) and h(0) # 0. As
0

usual let (h(z))p/2 = ¥ dkzk, |z] < 8(f). Then, just as in Proposition 1,
k=0

we have

i¢y,p_-ing ., _ it ~ 2ky _mp
Jjnlf(re )e ¥de = 2n(k§Odk+ndkr )r', 0 =r <&(f).

For |z| small enough we have, as in Lemma 2:

o 7m0 7o 7 — q _ _ = ql(g-1) 2
(1-a,z-o z°-a z )T =14 (s )z + [ qu, + *o af]z

(g-1) (q-1)q(q-2) 3
+ [rae, + 35 (2020)) - TLAE o]z

-1 -1 -2
+ [rae, + q(g! ) (2a1a3+a:) - ;?(q )(3afa2)

. q(q-l)q(z;Z)(q—3) a:]zl .

and if d is the coefficient of zk then max|d is solved simultaneously

k k'
for all k =0,1,2,... if we choose arg(aJ) =0, jJ=1,2,3,... when q < 1.

When considering max
2]

J2n|f6(re1¢)[pe-in¢d¢| , We naturally would like to
o
solve simultaneously

d) = const., k =0,1,2,...

mgx|dk| and arg(d,,
So let us check arg(d,, d ) for the choice arg(a;) =0, J=1,23,...: If
0 sq <1 then sgn(do) = +1 while sgn(dk) =-1, k=1,23,/... . If q<0
then sgn(dk) =+1, k =0,1,2,... . This proves that when q < 0, the
choice arg(aj) =0, Jj=1,2,3,... solves (1) and the conclusion
follows. o

The proof of Theorem D goes along these lines in analogy to the proof
of Theorem B.
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