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ABSTRACT. Generalizations of Banach’s fixed point theorem are proved for a large

class of non-metric spaces. These include d-complete symmetric (semi-metric)

spaces and complete quasi-metric spaces. The distance function used need not be

symmetric and need not satisfy the triangular inequality.
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Let (X,t) be a topological space and d X x X [0,) such that d(x,y) 0 if

and only if x y. X is said to be d-complete if E d(Xn,Xn+l) < implies that
n=l

the sequence {xn} is convergent in (X,t). In a metric space, such a sequence is a

Cauchy sequence. If T X X, 0(x,) {x,Tx,T2x, ...} is called the orbit of x..
G X [0,) is T-orbitally lower semi-continuous at x if {Xn} is a sequence in

* (X*0(x ) and lim x x implies G < lim inf G(Xn). T" X X is w-continuous at

x if x x implies Tx Tx.
n n

The basic idea of a d-complete topological space goes back to Kasahara [I] and

[2], Iseki [3], and their L-spaces.

LEMMA i. X is a set, T X X and d X x X [0,). Then there exists

X [0,) such that

(a) d(x,Tx) <_ (x) (Tx) for all x X, if and only if

(b) E d(Tnx,Tn+ix)-- converges for all x.
n=O

(c) If (a) holds for all y 0(x,), then E d(Tnx,Tn+ix) converges.
n-0

n n
PROOF. Suppose (a) holds. For x X, S d(Tix,Ti+Ix) _< [(Tix)

n
i-0 i-O

4(Ti+ix)] 4(x) 4(Tn+ix) _< 4(x). {Sn) is non-decreasing and bounded above and

therefore convergent.
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Suppose (b) holds and let (x) X d(Tix,Ti+ix).
i-0

4(x) 4(Tx) d(x,Tx)

The proof of (b) gives (c).

LEMMA 2. X is a topological space, T X X and d X x X [0,) such that

d(x,y) 0 if and only if x y. Suppose there exists an x X such

that lim Tnx x exists. Then"

(a)

Then

(b)

. .
PROOF. Assume that Tx x and (xn) is a sequence in 0(x,) with

lim x
n

If x
n

-imply Tx x

Then G(x d(x*,Tx 0 <_ lim inf d(Xn,TXn) lim inf G(Xn).

Tnx x and G is T-orbitally lower semi-continuous at x then

0 d(x ,Tx G(x lim inf G(Xn) lim inf d(Tnx,Tn+ix) 0. Thus, Tx x

The next theorem is a version of Carlsti’s theorem [4 or 5] in this more

general setting. Caristi’s theorem for metric spaces is a generalization of

Banach’s fixed point theorem.

THEOREM I. Let X be a d-complete topological space. Suppose T X X and

4 X [0,-). Suppose there exists an x such that

d(y,Ty) S 4(Y) 4(Ty) for all y O(x,-). (I)

Then we have:

(a) lim Tnx x exists.
,

(b) Tx x if and only if G(x) d(x,Tx) is T-orbitally lower semi-

continuous at x.

PROOF. From Lemma i, Z d(Tnx,Tn+Ix)-- is convergent. X is d-complete so lim
n-O

Tnx ,
x exists. Note that lim d(T’,Tn+Ix) 0. Now apply Lemma 2.

Even in this general setting one obtains a version of Banach’s theorem

as a corollary of the above theorem.

COROLLARY I. Let X be a d-complete topological space and 0 < k < I.

Suppose T X X and there exists an x such that

d(Ty,T2y) S k d(y,Ty) for all y 0(x,-). (2)

(a) llm Tnx- x exists..
(b) Tx x if and only if G(x) d(x,Tx) is T-orbitally lower semi-

continuous at x.

Tx x implies G(x) d(x,Tx) is T-orbitally lower semi-continuous at.
x

G is T-orbitally lower semi-continuous at x and lim inf d(Tnx,Tn+Ix) 0

d(x,Tx) as n =.

n n
since S -T Z d(Tix,Ti+ix) Z d(Ti+Ix,Ti+2x) d(x,Tx) d(Tn+ix,Tn+2x)

n n
i-0 i-O
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PROOF. Set (y) d(y,Ty) for y0(x,). Let y Tnx in (2). Then

d(Tn+ix,Tn+2x) k d(Tnx,Tn+Ix) and d(Tnx,Tn+ix) k d(Tnx,Tn+Ix) d(Tnx,Tn+ix)
d(Tn+Ix,Tn+2x). Thus, d(Tnx,Tn+ix) l.-Ik [d(Tnx,Tn+Ix) d(Tn+Ix,Tn+2x)] or

d(y,Ty) (y) (Ty). Apply Theorem i.

In [6], it was shown that many generalizations of Banachs theorem hold
for quasi-metric (d(x,y) d(y,x)) spaces. However, we do not have the triangular
inequality in the present setting, so standard proofs and theorems do not

necessarily hold. Before proving more theorems, we give the definitions of some of
the special d-complete topological spaces we had in mind when we formulated the

results of this paper.

DEFINITION. A symmetric on a set X is a real-valued function d on

X x X such that"

(a) d(x,y) 0 and d(x,y) 0 if and only if x y- and

(b) d(x,y) d(y,x).

Let d be a symmetric on a set X and for any > 0 and any x X, let S(x,)

{y X" d(x,y) < }. We define a topology t(d) on X by U t(d) if and only if

for each x U, some S(x,) <_ U. A symmetric d is a semi-metric if for each x X
and each > O, S(x,) is a neighborhood of x in the topology t(d). A topological
space X is said to be symmetrizable (semi-metrizable) if its topology is induced by
a symmetric (semi-metric) on X.

THEOREM 2. Suppose X is a d-complete Hausdorff topological space, T X X

is w-continuous and satisfies d(Tx,T2x) k(d(x,Tx)) for all x X, where k’[O,)
[0,), k(O) 0, and k is non-decreasing. Then T has a fixed point if and only if

there exists an x in X with Z kn(d(x,Tx)) < . In this case, x Tnx p TP.
nl n

[k is not assumed to be continuous and k2(a) k(k(a))].

PROOF. If Tp p, d(p,Tp) 0, and kn(0) 0 for every n.

Assume the condition holds and let x Tnx. d(Tx T2x) < k(d(x Tx))n

and d(T2x,T3x) k(d(Tx,T2x)) k2(d(x,Tx)). By induction,

d(Xn,Xn+I) d(Tnx,Tn+Ix) kn(d(x,Tx)).

Now d(Xn,Xn+I) < and X is d-complete. Thus lim x p exists T
n-i n

w-contlnuous implies Xn+I T x Tp. Since Xn+I p Tp pn

In many special cases of Theorem 2, one has d(Tx,Ty) k(d(x,y)) for all X, y
X and the special form of k forces w-contlnuity of T. It may also force the

uniqueness of p and enable us to obtain error bounds. In other cases, T need not

be w-continuous so the following theorem is needed.

THEOREM 3. Suppose X is a d-complete Hausdorff topological space, T X X

and there exists a y such that d(Tx,T2x) k(d(x,Tx)) for every x 0(y,), where

k [0,) [0,), k(0) 0, and k is non-decreasing. Suppose Z kn(d(y,Ty)) <
n-i
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and {xn) in 0(y,) with E d(Xn,Xn+l) < imply lim x exists Let x Tny.
n="I n n

Then:

(a) lim x p exists.
n

(b) Tp p if and only if G(x) d(x,Tx) is T-orbltally lower seml-contlnuous

at p.

PROOF. The proof of Theorem 2 gives (a). Lemma 2 gives (b) since

0 lim d(Xn,Xn+I) lim d(Tny,Tn+ly) 0.
n n

COROLLARY 2. Let 0 < A < i. Suppose X is a d-complete Hausdorff topological

space, T X X is w-continuous and satisfies d(Tx,Ty) _< A d(x,y) for all x, y

X. Then T has a unique fixed point p. For any x X, p lim Tnx.

PROOF. Let k(t) At. Then kn(d(x,Tx)) And(x,Tx), so Z kn(d(x,Tx)) <-
n-i

for any x in X. T is w-contlnuous so Theorem 2 gives x
n Tnx p Tp for any x

X. Clearly, p is unique since 0 < A < I.

In Corollary 2, if one replaces topological by symmetrizable, then d(Tx,Ty) <
A d(x,y) forces T to be w-continuous. We now give several examples of a specific

function k where Theorem 2 or Theorem 3 applies to yield another corollary similar

to Corollary 2. To apply the theorems, one needs a non-decreaslng function k and

an x in X with Z kn(d(x,Tx)) < . The following examples satisfy these
n-I

conditions. The reader can consult [7] for the details that are not obvious and

not provided here.

EXAMPLE I. Suppose 0 < A < I. Let k(t) At for t > 0. Then d(Tx,T2x) _<

knk(d(x Tx)) k d(x Tx) gives (d(x,Tx)) And(x,Tx).
EXAMPLE 2. Suppose T satisfies d(Tx,Ty) _< /(d(x,y)) d(x,y) for all x,y in X,

where 4: [0,-) [0,i) and 4 is non-decreaslng. Then k(t) t 4(t), k is non-

decreasing, and k [0,-) [0,-). It follows by induction that kn,(t) <_ t[(t)] n.
Since 4(t) < i, Z kn(t) < -.

n-i

EXAMPLE 3. Consider k(t) t 4(t) where 4 [0,-) [0,-) and 4(t) _< t for t

< i. If t < I, it follows that kn(t) _< t[4(t)] n. If k is non-decreaslng, the

theorems apply.

EXAMPLE 4. k(t) t /(t) where / [0,-) [0,-) and /(t) < 4(t) for

(0,I]. If 4(t) < I, kn(t) _< (kt)(4(t))n for all n _> 2. If k is non-

decreasing, the theorems apply.

EXAMPLE 5. Assume k is non-decreasing, k is convex on [0,i], and k(t) < t for

all 0 < t < I. Fix t < i. Now k(t) < t gives k(t) -t for some

0 < (t) < I. By induction, kn(t) _< nt for all n and thus Z kn(t) < -.
n-I

THEOREM 4. Suppose (X,d) is a Hausdorff d-complete symmetrizable space,
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T X X, and d(Tx,Ty) < [d(x,y)]P where p > i.

d(x,Tx) < i, then x Tnx p Tp.
n

PROOF. Let k(t) t
p for t > 0.

I, and k is convex. Since 0 < i,

applies.

If there exists x such that

k(0) -0, k is increasing, k(t) < t if t <

E kn() < .
n-1

T is w-continuous so Theorem 2

REMARKS. Given a topological space (X,t), when does there exist a distance

function d such that X is d-complete? Let X be an infinite set and t any T1 non-

discrete first countable topology for X. Then there exists a complete metric d for

X such that t t
d

and the metric topology t
d

is non-dlscrete. Now (X,t) is d-

complete since Z d(xn Xn+I) < implies that ixn} is a d-Cauchy sequence. Thus x

x in t
d

and therefore in the topology t. In [8], the construction gives t tE

where tE is a complete uniform space and the uniformity has a countable base.

Hence, the uniformity is metrizable and the compatible metric d must be complete.

It should also be noted that any complete quasl-metrlc space (X,d) (d(x,y)

’d(y,x)) is a d-complete topological space. There are several competing definitions

for a Cauchy sequence, but Ed(Xn,Xn+l) < will imply that {xn} s a Cauchy

sequence for any reasonable definition. One reasonable defnltion is obtained by

requiring that the filter generated by {xn} be a Cauchy filter in the quasi-

uniformity generated by d. This gives {xn} is a Cauchy sequence if for each > 0

there exists a positive integer no n() and x x() n X such that {xn" n _> no
{y X" d(x,y) < }. The metric space definition of a Cauchy sequence also holds

if Ed(Xn,Xn+l) < .
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