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ABSTRACT. It is shown, using classical means, that the outer composition of hyperbolic or loxodromic linear

fractional transformations {fn}, where fn"f, converges to a, the attracting fixed point of f, for all complex

numbers z, with one possible exception, zo. I.e.,

Fn(z fnofn_lo ofl(z --a

When zo exists, Fn(zo)-,8, the repelling fixed point of f. Applications include the analytic theory of reverse

continued fractions.
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1. INTRODUCTION.

The iterative behavior of the non-singular linear fractional transformation (LFT)l(z): (az +b)/(cz +d),
a,b,c,d E C and ad- bc :/: O, is well documented. For example, Ford [1] describes the "multiplier" form of f(z) for

LFTs that are loxodromic, hyperbolic, or elliptic:

(f(z) l(.f(z) 8) K (z a)/(z 8), K: (a cc)l(a c8). (1.1)

Here and / are the two distinct fixed points of f. A special equation analogous to (1.1) exists for the one

remaining type of LFT the parabolic transformation, having a single fixed point.

K is called the multiplier of f and provides an important means of classifying LFT’s in terms of their fixed

points. Briefly, (1.1) is either loxodromic or hyperbolic if [KI < 1, and it is this combined case representing

"most" LFTs we shall consider exclusively in this article. It is then easily seen from the multiplier form that

ln(z)- for all z # 8, and I"(8) 8.
If f(z): a/(b / z), fn(O) is the normal nth approximant of a periodic continued fraction

++...
Thus, this simple continued fraction converges to the attractive fixed point of f. 8 is called the repulsive or

repellent fixed point of f. The modified continued fraction generated by fn(z) instead of fn(0) also converges to a

for all z - 8. For this special f(z), KI c,/81, so that I < fl.
Magnus and Mandell in 1971 [3] posed and answered the following question: If {fn} is a sequence of

hyperbolic/loxodromic (H/L)LFTs that converge to a H/L LFT f(z), then what may one predict of the

convergence behavior of the "inner" composition Fn(z): flof2o...ofn(z for z E C?. They obtained the followingresult which resembles the iterative case.

THEOREM 1. If {In} and f Lirn fn are all H/L, then the inner compositional sequence {Fn(z)} convergesto a constant function for all values of z # 8.
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As a consequence, the modified limit periodic continued fraction generated in this way by setting

fn(Z): an/(bn + z) with fn(z)-f(z) a/(b + z), and where all the fn’s and f are H/L, converges to a constant

for all z . This result has proven fruitful in both accelerating the convergence of such continued fractions and

analytically continuing them beyond initial regions of convergence [4], [5].
In the current paper the question posed by Magnus and Mandell with regard to inner compositions is answered

in the context of outer compositional structures:

Fn(z): fnOfn lO...ofl(z), where {fn} and f Lira fn are all H/L. (1.2)

The proof of Theorem is elementary, but complicated. Surprisingly, the proof of an analogous theorem for

outer composition is, if anything, slightly more delicate. One would think that in (1.2) Fn(z becomes very like

fn(z) for large values of n, and that this should simplify matters. However, the initial segment Fj(z) for j : n is

not easy to control.

In analogy to Theorem (and even closer to the simple iterative ease) we shall prove

THEOREM 2. If {fn} and f Lira In are all H/L, then the outer compositional sequence {Fn(z)} described

in (1.2) converges to a, the attractive fLxed point of f, for all values of z except possibly one, zo. In this exceptional

case Fn(zo)--,a, the repulsive f’Lxed point of f.
As one example of Theorem 2, one easily obtains

COROLLARY 1. The modified reverse limit periodic continued fraction

an an aa
bn +bn- +’"+ba+z’

where fn(Z): an/(bn + z) and Lira fn(Z) f(z) a/(b + z) are all H/L, converges to a, the attractive f’Lxed point

of f for all z (/C, with one possible exception.

In order to prove Theorem 2, it is convenient to use a more general result from the analytic theory of

contraction maps as applied to outer composition. The sufficiency part of the proof of the following theorem (all
that is required in this exposition) is given in (1.2):

THEOREM 3. Let {gn} be a sequence of functions analytic on a simply connected region S and continuous on

the closure of S. Suppose there exists a compact set f contained in S such that f D gn(f) for all n. Then, if

Gn(z): "-gnO...ogl(z), Gn(z)-,a, a constant, uniformly for all z ( S if, and only if, the sequence {an} of fLxed

points of {gn} in S converges to a.

2. PROOF OF THEOREM 2.

An explicit expression for fn(Z) from the multiplier form (1.1) is

fn(Z
(an Kn/n)Z + anln(Kn 1)

(1 Kn)z + Knan an (2.1)

Let us begin with a lemma that will prepare the way for the use of Theorem 3 in the present context. In all

that follows it will be assumed that K: Lira Kn, a: Lira an, and 3: Lira 3n exist.

LEMMA 1. Let R: p a- 31, P: (r- KI)/r 1- K I, K < r < 1. For n sufficiently large, there

exists E (r, 1) such that z a < R = fn(Z) a < IR < R.

PROOF. Writing

ln(Z)-a=(ln(z)-an)+n (en: =an-a)

Kn(an-an [(z-a)-n] /[(l-Kn)(Z-a)+a-3n + Knen]+en
one gets

Ifn(z)-al <_ IKn(an-an)(R+ Inl) / (la-anl- Ignenl-nll-Knl)+ lenl.

Letting n--,x and replacing R by its defined value, this last expression becomes: rp a- rR < R).

Thus, for all n sufficiently large and z- a < R,

fn(Z) a < tR < R, for some E (r, 1). QED
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We next decompose the final segment of Fn + re(z) in order to show that as m increases applying In + ra ;.s

similar to applying f.
From (1.2) one can write

lp(z) Ap-loKpoAp(Z), where Ap(z): (Z-ap) / (z- 8p) and Kp(z): Kpz.

Here, for all p, Kp <_ Ko<1.
Therefore

Fn 4- m(z) In 4- mO...ofn 4- l(Fn(z))

An 4- m-lKn 4- mOAn -6 moan 4- m 1-1Kn 4- m .. "An 4-1-1Kn 4-1An 4- l(Zn )’

where Zn: Fn(z). Then

where

Fn + m(z) An + m-loKn + mTmTm lO...oT2(wn),

Tp(z): An 4- poAn 4- p_ l-loKn 4- p_ l(Z) and vn: An + l(Fn(z)).
The idea behind the proof of the next lemma is that Tp(z) , Kn + p_ l(Z) for large values of p. This is a

dvice initiated by Magnus and Mandell [3].
LEMMA 2. Suppose that wnl < M( M(z)) for all n sufficiently large. Then, for preassigned 6 > 0, there

exists N( N(z)) and P( P(z)) such that n > N and p > P implies Tpo...oT2(wn) < 26/(1 go).
PROOF. From

T2(wn)’- {Kn+ lwn(Sn+ 1-n+2)+(an+2-an+ 1)] /[Kn+ lwn(Sn+ l-3n+2)+(n+2-Cn+ 1)]

one obtains

IT2(wn) <[KoMln4-1-an4-21 4- lan4-2-an_l_l l] / [ln4-2-an4-11-KoMln4-1-n4-21]<M
and

T2(wn)- Kn 4- lWnl < 6, for large values of n.

Hence T2(wn) < 6 + Kn+ lwn < 6 + KoM.
Similarly T3oT2(wn) < M and T3oT2(wn) < 6 + Ko T2(wn) < 6(1 + Ko) + KoM2.
Continuing in this manner, one arrives at the general form Tpo...oT2(wn) < M and

ITpo...oT2(wn) <6(l+go4-go24-...4-goP-2)+KoP-lu<_6/(1-go)4-KoP-lM<26/(1-go) for

large p. QED

At several points later on we will refer back to this system of inequalities albeit under slightly different

hypotheses.

In order to proceed, we need to know more about the exceptional point zo described in Theorem 2. If fn f,

then zo . That zo can be any point in C is easily seen by setting fn -= f for n > and allowing fl to be any

LFT. Since fl is one to one in C, and zo f1-1(), clearly zo could be any point we wish, including a.

It will become apparent later that the method of proof of Theorem 2 requires that {Fn(z)} be uniformly
bounded away from for large values of n. Consequently, the possibility that {Fn(z)} has a cluster point at /must
be explored.

LEMMA 3. If {Fn(z)} has a cluster point at D, then Fn(z)--,.
PROOF. Suppose that {Fn(z)" has a cluster point at , but does not converge to . Then there exists an

additional cluster point * 8. Assure 8" t oo a slight variation on the following argument works for this special
case).
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No matter how large N is, there exists n > N such that Fn(z E Ne(0*), where e > 0 is chosen to exclude by a

large margin 0 or any 0j from N(0*). We will show that this has the effect of eliminating the possibility of

being a cluster point of the sequence, thus providing a contradiction.

Under these conditions An + l(Fn(z)) < M for an infinite subsequence of n’s. For such an n large enough

the entire structure of the proof of Lemma 2 remains intact, thus giving, for a suitable choice of e,

Tpo...T2(wn) < 2/(1 Ko) for all p sufficiently large.

Now Fn + p(z)-n + p An + p-lgn + p(Ypo...oT2(wn))- n + p

-> In+p-n+ p I/(1+ [Kn+ p IYpo...oT2(wn) l)

> I/-a I/(2(1 + KI)) for all p sufficiently large.

Therefore, it is not possible that {Fj(z)} has a cluster point at/L (--,) QED

Next, we see that Zo, if it exists, is unique.

LEMMA 4. There exists no more than one value zo such that Fn(zo)---,O.
PROOF. Suppose there are two such values, z and z2. Set Vn: Fn(Zl) and Wn: Fn(z2). Observe that

VnWn since Fn is one to one. For large n (using a local uniform convergence argument)

fn+ l(Vn)-- fn + l(Wn) l/lVn- Wnl = fn + l’(V,)l ft()l > 1.

Therefore, Vn + Wn + / Vn- Wn for all n sufficiently large, nence, one of {Vn} or {Wn} does not

converge to 8. (-*--) QED

It is now possible to complete the proof of Theorem 2.

ff z Zo, then Lemmas 3 and 4 tell us that there exists D > 0 such that Fn(Z On + > D for all n

sufficiently large. We use this to insure the boundedness of {Fn(z)} for large n. Then it is possible to show that

Fn(z) a < p o 0 for large n, thus allowing the use of Lemma and Theorem 3.

Suppose that {Fn(z)} has a duster point at oo. Choose n large enough to guarantee that [An + l(Fn(z))
and that the inequalities of Lemma 2 are valid. Then, for suitable e > 0, Tpo...oT2(wn) < p/4Ko < 1/2Ko.

It then follows that

IFn + p(Z)[ [An + p-logn + p(Tpo...oT2(wn))
<- I/n + pKn + p(Tp’"T2(wn)) + n + p} )/(1 K, + p(Tpo...oT2(wn))
-< [n + p[ + 2[n + p[ < B for all p sufficiently large. (--,--)

Therefore, for all sufficiently large n, [An + l(Fn(z))[ < M.

Lemma 2 then insures that Tpo...oT2(wn) < p/4Ko < 1/2Ko, for all sufficiently large values of p. Next,

IFn+p(z)-l < IFn+p(z)-%/pl + len/pl (recall: n:--n-)
An + p-loKn + p(Tpo...oT2(tVn) an + p + fn + p

<- Ko Tp...oT2(wn) [On + p-an + p[/(l Ko Tpo...oY2(wn) + n + p

< (P/2) n+ p-n+ p[ + [n + p[ < P[-[ for all p sufficiently large.

Therefore zp: Fn + p(z) lies in the disk [z- a _< R) of Lemma 1.

Theorem 3 then implies Limm._fn + morn + m ’’’fn + P + l(zP o.

Hence Limn_,xFn(z o.

REFFRENCES
QED

1. FORD, L. Automorphic Functions, 2nd Ed., Chelsea, New York, 1951.

2. GILL, J. The Use of the Sequence Fn(z fno...ofl(z in Computing Fixed points of Continued Fractions,

Products, and Series, J. App. Num. Math., 8 (1991), 469-476.

3. MAGNUS, A. and MANDELL, M. On Convergence of Sequences of Linear Fracitonal Transformations,

Math. Z. 115 (1970), 11-17.

4. THRON, W. and WAADELAND, H. Accelerating Convergence of Limit Periodic Continued Fractions

K(an/1), Numer. Math. 34 (1980), 155-170.

5. THRON, W. and WAADELAND, H. Analytic Continuation of Functions Defined by Continued Fractions,
Math. Scand. 47 (1980), 72-90.


