
Internat. J. Math. & Math. Scio

VOL. 16 NO. 4 (1993) 645-652
645

THE NACHBIN COMPACTIFICATION VIA
CONVERGENCE ORDERED SPACES

D.C. KENT and DONGMEI LIU

Department of Mathematics
Washington State University

Pullman, Vashington 99164-3113

(Received April 21, 1992)

ABSTIACT. We construct the Nachbin compactification for a F3.5-ordered topological ordered
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0. INTRODUCTION.

The Nachbin (or Stone-Cech-ordered)compactification (see [1], [6]) is the largest T2-ordered
topological ordered compactficaton of a Ts.-ordered topological ordered space. In [4], one of the

authors and G.D. Richardson constructed an ordered compactification (X’, o) for an arbitrary

convergence ordered space X. This latter compactification exhibits essentially the same universal

property as the Nachbin compactification, but behaves poorly relative to separation properties (see
Example 1.4).

Startkug with an arbitrary convergence ordered space X, we introduce an equivalence relation

on the set IX’I which underlies X’, and obtain an ordered quotient space X’/R which s both

compact and T2-ordered. We next give two conditions C and O which are necessary and suicient

to make the natural map from X into X’/ both an order embedding and a homeomorphic embed-

ding, so that X’/R becomes a T2-ordered convergence ordered compactification of X. For ordered

convergence spaces X satsfyhug conditions C and O, it turns out that the topological modification

%X of X is a Ts.-ordered topological ordered space, and %(X’/R) is the Nachbin compactification

of %X. In particular, if X is assumed to be a T.s-ordered topological ordered space, then A(X’/)
is the Nachbin compactification of X.

In addition to giving an alternate construction for the Nachbin compactification, we obtain some

interesting results pertaining to convergence ordered compactifications. In Section 3, we define a
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regular convergence ordered space satisfying conditions C and 0 to be a Ts.s-ordered convergence

ordered space, and we show that for such a space X, the regular modification r(X*/) of the

quotient X’/ is a regular, T2-ordered convergence ordered compactification of X. Relative to this

compactification functor, the regular, T2-ordered, compact convergence spaces (with increasing,

continuous maps as morphisms) form an epireflective subcategory of the category of all T3.s-ordered
convergence ordered spaces (with increasing, continuous maps as morphisms).
1. PRELIMINARIES.

We introduce some basic notation and terminology and summarize some results from [4]. If

(X, _<) is a poset, and A C_ X, we denote by i(A),d(A), and A^ the increasing, decreasing, and

conez hulls, respectively, of A; note that An i(A) d(A). Similarly, if F(X) is the set of all

(proper) filters on X and r F(X), let i(Y’), the filter generated by i(F) F Y’), be the

increasing hull of Y’; the decreasing hull d(Y’) and convex hull Y? are defined analagously. A filter Y"
is said to be convex if " f. Note that i(Y’) v d(Y’).

If (X, <_, -,) is a poser (X, <) equipped with a convergence structure --, which is locally convex

(i.e., f z whenever Y" --, z), then (X, <,--,) is called a convergence ordered space; we usually

write X rather than (X, <, -,) when there is no danger of ambiguity. A convergence ordered space

is Tx -ordered if the sets i(x) and d(x) are closed for all x X, and Tn-ordered if the order <_ is a

closed subset of X X. For any convergence ordered space X, let CI(X) (respectively, CD’(X))
denote the set of all continuous, increasing (respectively, decreasing) maps from X into [0,1].

A convergence ordered space whose convergence structure is a topology is called a topological

ordered space. Such a space is said to be convex if the open monotone (i.e., increasing or decreasing)
sets form a subbase for the topology. For the remainder of this paper, we shall adopt the notational

abbreviation used in [4] and write "t.o.s" instead of topological ordered space" and "c.o.s." in

place of "convergence ordered space".
A t.o.s. X is said to be T3.a-ordered if it satisfies the following conditions: (1) If z E X,A

is a closed subset of X, and z A, then there is y CI’(X) and g CD’(X) such that

f(z) g(z) 0 and f(y) V g(y) 1, for all y A; (2) If z y in X, there is f CI’(X) such

that f(y) 0 and f(z) 1. The Ts.s-ordered spaces are precisely those which allow T-ordered
t.o.s, compactifications, and all Ts.-ordered spaces are convex.

If X is a T.-ordered t.o.s., then the Nachbin compactification of X (see [1], [6]) is obtained

by embedding X into an "ordered cube, whose component intervals are indexed by CI’(X). The
Nachbin compactification/0X is characterized by the following well-known result.

PROPOSITION 1.1. If X is a T3.-ordered t.o.s., then 0X is T-ordered. Furthermore, if

f X -- Y is an increasing, continuous map and Y is a compact, T-ordered t.o.s., then f has a

unique, increasing, continuous extension f’/0X -, Y.
We next describe briefly the construction of the convergence ordered compactification X’ of

an arbitrary c.o.s. X described in [4], which has essentially the same lifting property as 0X.
Given a c.o.s. X, let X be the set of all non-convergent maximal convex filters on X, and let
X’ { z X} X. Before proceeding further, it will be useful to establish the following

proposition about maximal convex filters.

PROPOSITION 1.2. The maximal convex filters on a poset X are precisely the set {f Y" is

an ultrafilter on X}.
PROOF. Clearly every maximal convex filter is the convex hull of every finer ultrafilter. Con-

versely, suppose Y" is an ultrafilter on X and is a convex filter such that f <_ .. Then for any
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convex set (7 e , the filters ’1 and r2 generated by {i((7)f F" F E r} and {dC(7
respectively, are well-defined filters finer than, and hence equal to, r. Thus i((7)
implies i(G) n d(G) G ; therefore . f.

Again assuming that X is an arbitrary c.o.s., let o X X’ be defined by (x) 5, for all

x C X. A partial order <_ is defined on X as follows: " _< iff i(3r) <_ (or, equivalently,

d(.) <_ r). Since x _< y iff <_ , ’(X, <_) (X, <_) is an order embedding.

If A C_ X, let A’ ()" E X A C Y’); if Y" C F(X), let r denote the filter in F(X) generated

by (F’ F C Y’). A convergence structure on (X, <_) is defined as follows: For C F(X),

*-, Eo(X) itf there is Y -, z such that Y"_<4;

Writing X’ in place of (X’, _<’, -,), we state the following result which is proved in [4].
PROPOSITION 1.3. If X is a c.o.s., then (X’, ) is a convergence ordered compactification of

X. If f X Y is a continuous, increasing map and Y a compact, regular, T2-ordered c.o.s., then

f has a unique, increasing, continuous extension f, X" -- I/’.

Recall that a convergence space Y is regular if clr " x whenever x. Here "c/r" is the

closure operator for Y, and citY: is the filter on Y generated by (clyF" F ’).
In [4], a c.o.s. X is defined to be strongly T2-ordered ifX is T (i.e., convergent filters have unique

limits) and the following conditions hold: ($1) if Y" z,. Xe, and i(’) _< ., then d(.) _< ;
(S) if Y - , . X’, and d(Y’) _< ., then i(.) <_ . In Proposition 2.8, [4], it is shown that X" is

T2-ordered iff X is strongly T2-ordered. As we see in the next example, very nice c.o.s.’s may fail

to be strongly T2-ordered.
EXAMPLE 1.4. Let X be the Euclidean plane with its usual (product) order and topology.

Let Y be the filter on X generated by sets of the form F {(a, b) X - < a < 0, b 0} for

each natural number n, and let x (0, 0). Let . be the convex hull of any ultrafilter containing

the set S ((a, b) E X a -b-1) and coarser than the filter generated by sets of the form

H, ((a,b)
_
X" b >_ n) for n 1,2,3,.... Note that ($1) is violated by 3r,. and x; thus the

compactification X" of X is not T2-ordered.

2. 0X AS A QUOTIENT OF X’.
Let (X, <_ be any c.o.s., and let (X,o) be the convergence ordered compactification of

X constructed in the last section. By Proposition 1.3 there is, for any f CI(X), a unique,

continuous, increasing extension fo X" --, [0,1].
We define an equivalence relation on X" as follows: {(r, 9) X" X" f,(Y)

f.(.), for all f CI’(X)}. Let a be the projection map of X" onto X’/ (i.e., for each Y E

X’, o(’) [Y’], where [Y’] is the -equivalence class containing Y). A partial order _< on X’/]
is defined as follows:

[’]

_
[] iff f.(’)

_
f.() in R for all f e CI’(X).

We also impose on X/] the quotient convergence structure which is described (see [2]) as

follows: If F(X/) and [Y’] C X/], then -, [Y’] in X/] iff there is Y C [Y’] and there is

a filter { E F(X) such that { *- Y in X and ({) _< .
THEOREM 2.1. For any c.o.s. X, X/] is a compact, T2-ordered c.o.s.
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PROOF. X’/, is obviously compact. To show that X’/P. is T-ordered, it is sufficient (by
Proposition 1.2, [4]) to show that if , (9 E F(X’/), [F] and (9 --, [] in X’/,, and

has a trace on the order _, then [r] <: [.].
If f e CI’(X), define f X’/ [0,1] by /([3r]) f.(Y’), for all ,v X’. It is easy to

verify that f is well-defined and f e CI’(X’/). If [Y’] and O [.] in X’/, and

has a trace on _<, it follows that f() f(O) has a trace on the order of [0,1]; since [0,1] is

T2-ordered, f([’]) f,(.T)

_
f,() f([.]). The latter inequality holds for all f e CI’(X),

and so [,v]

_
[], which establishes that X’/. is T2-ordered.

For an arbitrary c.o.s. X, we have already defined the continuous, increasing maps o X --, X’
and a X" X’/; we define o X X’/ by o a o o. It is clear that o(X) is dense

in the compact, T2-ordered c.o.s. X’/. We are now interested in characterizing those spaces X
for which (X’/.,,) is a compactification. With this goal in mind, we introduce the following

conditions.

CONDITION C. For any maximal convex filter Y" on X, r x in X iff/() .f(x) in [0,1]
for all f CI(X).

CONDITION O. For any points x,y in X, x _< y in X iff f(x) <_ f(y) in [0,1], for all f CI’(X).
It is easy to verify that any Ta.-ordered t.o.s, satisfies Conditions C and O.
LEMMA 2.2. ff X is a c.o.s, satisfying Conditions C and O, then [] (k), for all x X.
PROOF. CI*(X) separates points in X by Condition O, and so a is one-to-one on (X). This

implies [] if x y. Next, assume that there is Y" X []. Then f.(Y’) f,() f(x) for
all f CI(X); in other words, f(,) f(x) in R, for all f CI*(X). Condition C then implies

:T x in X, contradicting the assumption :T X’.
THEOREM 2.3. Let X be a c.o.s. Then X --, X’/ is an order and a homeomorphic

embedding iff X satisfies Conditions C and O.
PROOF. Suppose that X satisfies Conditions C and O. Then is one-to-one since CI’(X)

separates points in X. Also note that a.o (a]{x)) o o, and thus al(x is one-to-one.
Let --. [3] in X’/,. Then there is { E F(X’) such that { -** in X" and

By definition of convergence in X" there is a filter Y" on X such that " x and

Therefore, o1() _> l(a()) _> ol(cr(.T’)) -. (a[(x))-(a(Y")). It follows by Lemma
2.2 that (al,(x})-(a(.T)) >_ .T*. Consequently, o1(@) _> o-’(Y") r __, x o1([]), i.e.

() -. ([]). Thu i

Let []

_
[] in X/; then for any f E CI(X), f(]c)

_
fo(), i.e..f,(o(x)) <_ f(o(y)),

which implies ,f(x) <_ f(y), for all f e CI(X). By Condition O, z <_ y. Thus o is increasing,

and we conclude that o is an order and homeomorphic embedding.

Conversely, assume that o is both an order and homeomorphic embedding. Let Y" be a maximal

convex filter on X such that, for some e X, ]’() ]’(x) for all f e CI’(X). Suppose
not true. Then we need to consider two cases.

CASE 1. Y" y and y - x. This implies that for each f CI*(X), y(Y’) y(y). From this

we deduce that [] [], which is a contradiction, since p is assumed to be one-to-one.

CASE 2. Y X. This leads to the conclusion that [Y’] [3]; in other words, p(Y) [3]
in X/, which implies Y" x in X, since is a homeomorphic embedding. This contradicts

Y E X’. We therefore conclude that X satisfies Condition C.

Finally, let x,y X such that f(x) < y(y) for all f CI’(X). Then fo(p(x)) <_ f((y)) for
all f G CI’(X), i.e.f.() _< f.() for all f CI’(X). This implies [3] <_ [] in X’/, and x <_ y
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follows since is an order embedding. Therefore, X satisfies Condition O.

THEOREM 2.4. For every c.o.s. X satisfying Conditions C and O, ((X/),) is a T2-ordered
c.o.s, compactification of X. Furthermore, for any compact, regular, T2-ordered c.o.s. Y and for

any continuous, increasing map f X Y, there is a unique, continuous, increasing extension

fp. :X’/ r.
PROOF. The first assertion is an immediate corollary of Theorem 2.3. The second follows easily

with the help of Proposition 1.3.

For any c.o.s. X, let c#oX be the t.o.s, consisting of the poser (X, <) with the weak topology

induced by GI’(X). Note that GI’(X)
PROPOSITION 2.5. Let X be a c.o.s, satisfying Condition G. Let X oX be the identity

map. Then is an order isomorphism and a homeomorphism relative to ultrafilter convergence.

PROOF. It is obvious that is a continuous order isomorphism. Let " --. x in 0X, where

F is an ultrafilter. By Proposition 1.2, is a maximal convex filter and f(F) - f(z) implies

f(]) f(x) in [0,1], for all f E CI’(X). Condition C thus guarantees that - x in X, and

hence r z in X.
PROPOSITION 2.6. If X is a c.o.s, satisfying Conditions G and O, then c#oX is a T3.s-ordered

t,o.s.
PROOF. First observe that coX also satisfies Condition C and O; O is obvious, and C fol-

lows from Proposition 2.5, since and C#oX have the same ultrafilter convergence and hence, by

Proposition 1.2, the same convergence of maximal convex filters.

For / E C’I*(oX), let ! be the closed interval [0,1] indexed by /, and let P

C(X) be equipped with the usual product order and product topology. Then P is a compact,

T-ordered t.o.s. Define o CoX P by o(X) , where : C(C#oX) [0,1] is given by

(/) /(x), for all / C’I*(C#oX). Since C#oX has the weak topology induced by CI*(CoX)
C*(), and C*(o) separates points in C#oX by Condition O, o is a topological embedding

(see 8.12, [10]). By Condition O, o is also an order embedding.

Given a c.o.s. X satisfying C and O, we introduce some additional functional notation. Let

be the evaluation embedding of the T3.s-ordered t.o.s, c#oX into its Nachbin compactification

and let e eo-i X -/o@oX). The unique extension of e to X’ (guaranteed by Proposition

1.3) is denoted by e., and the extension of e to X’/P. (guaranteed by Theorem 2.4) is denoted

by e. If f Gf’(X) GI’(oX), the unique extensions of f in Cf’(X’) and GI’(/o(oX))
(see Proposition 1.3 and 2.4) are denoted by f, and f’, respectively. The following commutative

diagram is helpful in keeping track of these various maps.

x x. x./

oX
o

THEOREM 2.?. If X is any c.o.s, satisfying G’ and O, then e is an order isomorphism and a

homeomorphism relative to ultrafilter convergence.

POO.s [Zl IS;l i x’/ itr .(z) .() t t([Zl)
one-to-one. Furthermore, (X) is dense in/o(oX), which implies that the extension e is onto

/o@oX). It follows from Theorem 2.4 that e is continuous and increasing. Finally, if is an
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X*/ since the latter space is compact. It follows by uniqueness of filter limits in both spaces and

the continuity of e that el(a) a.

If X is any convergence space, let AX denote its topological modification (i.e., X is the set IXI
equipped with the finest topological structure coarser than X.) If X is a c.o.s, satisfying C and

O, we obtain from Proposition 2.5 and Theorem 2.7 that X oX and (X’/)) is a compact,

T2-ordered t.o.s, homeomorphic and order isomorphic under e to o(taoX). Let Oo woX -- X/be defined by Oo o o o -1 o o -1.
COROLLARY 2.8. If X is a c.o.s, satisfying C and O, then (A(X’/R),Oo) is the Nachbin

compactification of caoX ,X. If X is a T3.5-ordered t.o.s., then ((X’/R),o,) is the Nachbin

compactification-of X.
One question which deserves clarification is the status of X’/ as a "quotient" of X’. We have

indeed equipped X’/R with the quotient convergence structure, but can we interpret

_
as the

"quotient order" relative to the order _’ defined on X’? Various notions of "quotient order" have
been considered (for instance, see [5] and [8]), but the order

_
is generally different than these.

Instead of regarding the order and convergence structures of X’/ separately, we think that it is

appropriate to consider the notion of a "quotient c.o.s.", where order and convergence structures

are considered together. From this perspective, the next theorem indicates that X’/R is indeed a

quotient c.o.s, of X’, at least in the category of c.o.s.’s which satisfy Conditions C and O.
THEOREM 2.10. For a c.o.s. X, let X" and X’/R be defined as before. Let Y be any c.o.s.

satisfying C and O, and let h" X’/] - Y. Then h is continuous and increasing iff h o X" Y
is continuous and increasing.

PROOF. If h is continuous and increasing, the same is obviously true for h o .
Conversely, suppose h o # is continuous and increasing. Let q -- [Y’] in X’/R; then there is

’ E [Y’] and a filter/ on X" such that/{ yt in X" and

_
r(A). Hence h o r(A) ---, h o (.7)

in Y, by continuity of h o r. But @

_
r(A) and r(r) [r], so h(@) --, h([.]), implying that h is

continuous.

To show that h is increasing, let ey be the natural map from Y into o(woY) and consider

g er o h o o o X -- o(taoY). Since g woX --* o(caoY) is also continuous and increasing,

there is a continuous, increasing extension g" o(taoX) (wY) which makes the diagram below

commute.

x x. x’lA Y

o(woX) --, o(Y)
g.

Thus erohoo g"oeoo,dsinceo X X’/ is a dense iection, eoh g"o.
But er order embedding, so h e o g" o e, d h increg.

3. T3.s-ORDERED CONVERGENCE ORDERED SPACES.
In this brief concluding section, we introduce the notion of a Ta.s-ordered c.o.s., describe the

largest regular, T2-ordered c.o.s, compactification of such a space, and interpret this compactifi-
cation in the language of category theory. The necessary categorical terminology can be found in

In [3], a convergence space X is defined to be completely regular if it allows a symmetric corn-
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pactification. In [9], it is shown that the Hausdorff, completely regular convergence spaces, which

we shall refer to as T3.s consergence spaces are precisely those convergence spaces which allow a

regular, Hausdorff convergence space compactiflcation.

Given a convergence space X, let rX denote the regular modification of X (i.e., rX is the set

IX equipped with the finest regular convergence structure coarser than the original convergence

structure on

We define a c.o.s. X which is regular and satisfies conditions C and O to be a T3.s-ordered c.o.s..

It follows by Proposition 2.5 that a T3.s-ordered c.o.s. X has the same ultrafilter convergence as its

topological modification AX woX.
THEOREM 3.1. Let X be a T.s-ordered e.o.s, and let r/oX r(X/R) be the regular mod-

ification of X’/]. Then (roX,) is a regular, T-ordered c.o.s, compactification of X. If Y is

a regular, T-ordered, compact c.o.s, and f X --, Y is continuous and increasing, then f has a

unique, continuous, increasing extension , :roX Y.
PROOF. By Theorem 2.3, X --. X’/] is an order embedding and a homeomorphic

embedding. By the functorial properties of the regular modification and the fact that rX X,
it follows that X --, roX is continuous. Because X’/ and roX have the same ultrafilter

convergence, it is easy to verify that the regular modification of p(X) (considered as a subspace
of X’/) coincides with o(X) considered as a subspace of roX. From this we see that x is also

continuous, and the first assertion is established. The second assertion is an immediate consequence

of Theorem 2.4.

We denote by C the category of all Ts.s ordered c.o.s.’s, with increasing continuous maps as

morphisms; let D be the full subcategory of C consisting of all regular, compact, T-ordered c.o.s.’s.
If D C’ is the inclusion functor, it follows by Theorem 3.1 that the functor ro C D, which

assigns to each object X in C its compactification roX and to each morphism ]" X Y in C the

extension fo roX
THEOREM 3.2. If C and D are the categories defined in the preceding paragraph, then D is

an epireflective subcategory of C.

If X is a T.s-ordered t.o.s., it is generally not true that oX roX, although it is true in this

case that oX (roX).
The T3.s convergence spaces mentioned earlier in this section are the T3.-ordered c.o.s.’s for

which the partial order is equality. Indeed, any T.s convergence space’X, equipped with the trivial

order (equality), satisfies Condition C and O relative to CI’(X) C’(X), the set of all continuous

maps from X into [0,1]. For such a space X, oX (which also has the trivial order) coincides with

the largest regular, Hausdorff convergence space compactification of X constructed in [9].
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