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ABSTRACT. The main results of this paper concern radical classes of {-groups. In the sec-
tions 2-3 the relationship between several radical classes of [-groups are discussed and the
characteristic properties for several radical mappings are given. In the sections 5-6 we give
nice concrete descriptions of some important radical classes of /-groups using the structure

theorems of a complete /-group and an Archimedean [-group.
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1. INTRODUCTION

An [-group G is a group that is also a lattice such that c+a+d<Cc+b-+d whenever a<C
b [1]. The theory of I-groups is as natural as that of rings. But the fact of G is equipped
with two different kind of operations makes the things more complecated. We have more
subobjects in the category of [-groups. An l-subgroup of an l-group is both a subgroup and a
sublattice. An l-subgroup H is convex if a, b& H and a<¢g<b imply that ¢g& H. A normal
convex l-subgroup is called an l-ideal. A function ¢; G—H between [-groups G and H is an
I-homomorphism if it is a group and a lattice homomorphism. Let {G,|a€ A} be a family of

{-groups and IEI G, be their direct product where (----g,~---) X (---~fa-) = (----¢,
a€ A Y

X fa—-=-). An l-group G is said to be a subdirect product of G,, in symbols GZ' I1G,, if G
a€ A

is an l-subgroup of 1;[ G, such that for each a& A4 and each ¢’ € G, there exists & G with the
a€A
property g.=g¢'. We denote the /-subgroup of II G, consisting of the elements with only
a€A

finitely many non-zero components by >, G,. It is called the direct sum of {G,|a€ A}. An
a€ A
l-group G is said to be a completely subdirect product of G,, if G is an l-subgroup of Il G,
a€ A

and >,G,CG. An l-group G is said to be an ideal subdirect product of G,, in symbols G *
a€A

I1G,, if GZ' II1G,and G is an l-ideal of IIG,.
a€A a€ A a€A

Let G be an l-group and XCG. Xi‘= {fE€G|forallz€ X, |f| A |z| =0} is called the
polar of X in G and X11 = (X1)L is called the double polar. An l-subgroup H of G is closed
in G if, for all subsets {z,|a€ A} of H such that a= V z, exists in G we have a&€ H. The

aCA

order closure H; of H in G is the smallest closed {-subgroup of G containing H. Let G, (A€
A) be convex l-subgroups of G. The join \ G, is the smallest convex {-subgruop of G con-
AEA

taining G, (A€ A).
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A variety of any type of algebras is an equationally defined class. It is an important
area in the study of algebras. In 1935 G. Birkhoff proved that a class of algebras is a variety
exactly if it is closed under the formation of subalgebras, products and homomorphic images
[2]. In 1937 B. H. Neumann initiated their study for varieties of groups [3, 4]. In the
early 70’s J. Martinez began the study of varieties of /-groups [5, 6]. He also studied tor-
sion classes of l-groups [7, 8, 9]. J. Jakubik studied radical classes of /-groups [10, 11,
12, 13, 14]. In this paper we give some results in the study for radical classes of {-groups.
We use the standard terminologies and notations of [1, 15, 16].

We can make new [-groups from some original /-groups. These structures include .

1. taking [-subgroups,

1'. taking convex /-subgroups,

2. forming joins of convex [-subgroups,

3. forming completely subdirect products,

3'. forming direct products,

3”. forming direct sums,

4. taking [-homomorphic images,

4’. taking complete /-homomorphic images,

4”. taking l-isomorphic images,

5. forming extensions, that is, G is an extension of A by using B if A is an l-ideal of
G and B=G/A,

6. taking order closures, that is, G is an order closure of A if A is a convex /-subgroup
of an I-group H and G=A4y.

7. taking double polars, that is, G is a double polar of A if A is a convex Il-subgroup of
an l-group H and G=AjJ‘.

A family 2¢ of l-groups is called a class, if it is closed under some structures. If a class
Z¢ is closed under the structures iy, ++-- s ixy we call 2 ijseeeeriy-class where iy, <=+*°° ,
e {1,1,2,3,3, 4, 4, 4", 5, 6, 7} and 1<k<7. All our classes always assumed
to contain along with a given [-group all its [-isomorphic images, so we omit the index 4".
Thus, a radical class [10] is a 1’ 2-class, a quasi-torsion class [17] is a 1’ 24'-class, a tor-
sion class[ 7] is a 1’ 24-class, a s-closed radical class [18] is a 12-class, a closed-kernel rad-
ical class [187] is a 1’ 26-class, a polar kernel radical class [ 18] is a 1’27-class, a variety
[19] is a 13’4-class. 1’25-class is called a complete (or idempotent) radical class. We call
a 1'23'-class (1’/23-class) a product radical class (a subproduct radical class). In this paper
we call all 1’/ 2izee«-- «ix-classes radical classes where iz, +o+*+ , k€ {3, 3, 3", 4, 4, 5,
6, 7}.

2. THE RELATIONSHIP BETWEEN RADICAL CLASSES

Let 2 be a radical class and G be an I-group. Then there exists a largest convex I-sub-
group of G belonging to ZZ. We denote it by & (G) and call & (G) the Z-radical of G.
It is invariant under all the l-automorphisms of G. Let Tl. ...... , be the set of all ij++«+-«i,- class-
es.

LEMMA 2. 1. Ti;=Tya.

Proof. It suffices to prove that each radical class is closed under forming direct sums.
Suppose that 2 is a radical class and {G,|a€ A} C%/. Consider G= IE'I‘G.. Let G.= (f

€ IGIAGG |a' #a=>f,=0)} for each a€ A. Then X G,V “G,. Since 2/ is closed under
a aC A

a€A
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forming joins of convex [-subgruops, > ,G.,E % .
a€A

A radical class Z is said to be a closed-kernel radical class if for any l-group G %
(G) is closed [18].

LEMMA 2. 2. A radical class & is closed-kernel if and only if Z is colsed under tak-
ing order closures.

Proof. Suppose that Z is a closed-kernel radical class, that is & (G) =% (G)for
any l-group G. Let GE Z and Gy is an order closure of G in an [-group H, GZGy. Then
G (Gy) Gy So & (Gy) =R (Gy)=GCGy and GyE€ R. Conversely, suppose that
a radical class Zis closed under taking order closures. Then for any l-group G, &£ (G) €
R implies Z (G)cE R. Since Z (G) is the largest convex l-subgraoup of G belonging to
R, R (G) =F (G)s.

LEMMA 2. 3. Every closed-kernal radical class is also a subproduct radical class, that
is Tyros=Tr2.

Proof. Suppose that £ is a closed-kernel radical class and G is a completely subdirect
product of {G,|AE A} where {G,|AE A} T, that is

>SG G TG

A€ 4 A€ A
Then & (@) NG=% (G,) =G, and so GDZ (G) DG, for each AE A. Let a= (----,
a,, ----) €G. Then
a = V (G)&A
- A€4 —_
where a,= (0, seoeee s 0y ary 0y <oeeeey 0) €G, (AE A), Since Z is closed-kermel, a
EAZ (G). Hence G=X% (G) and GE A.
A radical class & is called a polar kernel radical class if Z=2%1L, thatis & (G) =
R (G)LL for any I-group G.
LEMMA 2. 4. A radical class &£ is a polar kernel radical class if and only if & is
closed under taking double polars.

Proof. Suppose that & is a polar kernal radical class. Let G € &£ and
double polar of G in an l-group H. Then GC & (Gi1) Ceit and ¢z (61 <

Gﬁ"‘. So # (Gil) =G;‘,“L and G;,LLE Z. Conversely, suppose that a radical class Z is
11
)a

11 .
G” is a

closed under taking double polars. Then for any l-group G, % (G) € X implies Z£ (G
€ Z. But & (G) is the largest convex I-subgroup of G belonging to Z, so £ (G) =X

;.
If & and F are two 1’ 2-classes, define the prodict R.T = {G|G/ZR (G) €ET }.

R. T is then a 1'2-class. Now similarly to [7] we give a more description of complete 1’
2_classes. Let & be a 1’2-class and o be an ordinal number. We define an assending se-

quence g, 72’ IPPRTTIN 3_0‘ seeeeegs rollows:
. F°-! if ¢ is not a limit ordinal,
7= {{G|G —UI @) if o is a limit ordinal.
a<lo

It is easy to show that F is a 1’ 2-class for each ordinal o. Define
T =T

Then we have .
PROPOSITION 2. 5. Let % be a 1'2-class. Then Z* isa complete 1’2-class. It is

the smallest complete 1’ 2-class containing Z. So, Z is complete if and only if Z=%".
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The proof of this proposition is similar to the proof of Theorem 1.6 of [7]. & * is
called the completion of <. Similarly to Theorem 1. 7 of [7] we have

LEMMA 2. 6. Let Z be a 1'2-class and G be an l-group. Then &Z* (G) && (G)1+L.
That is, Z*CXLL and T, C"Thss.

From Proposition 4. 4 of [18] we can also see that Ty.z; T )ios.

Since polars are closed convex [-subgroups, T2 =Ty2. From the above lemmas we
get

THEOREM 2. 7. For radical classes of /-groups we have the following relations
Tl¥4
N
T
ni

Tiwi & Tize & Tizs & Teey & Tz 2 Teze =2 Teaw =2 Trawe

Ul Ul Ul ul Ul Ul
Trass & Tras & Trays & Tvss 2 Traes =2 Traes

Ul Ul Ul Ul

Tvwr = Twvar = Toam = Tum

COROLLARY 2. 8. Any polar kernel radical class is a product radical class and a sub-
product radical class.

EXAMPLE 2. 9. 5, the class of orthofinite /-groups, that is {-gruops in which no
positive element exceeds an infinite pairwise disjoint set. We can show that , is a 1’ 25-
class. Suppose GE F . F o, thatis G/ F ((G) € F . Let {r.|a€ A} be a pairwise disjoint
set of positive elements of G with an upper bound a. Then A=A;|JA,, A;[NA:= so that
2, € F 4 (G) for ay € A, and 2, € F 1 (G) for 4, € A,. F4(G) €5 implies |A;] is finite.
Then we have [F, (@) +x.] A [Fo (G) +1.,] =F ¢ (G) 4z, N2s =5 (G) for
a, & €Ay, aFd. So {F, (@) +z,|a€ A,} is a pairwise disjoint set of positive elements
of G/ , (@) with an upper bound &, (@) +a. Hence |A,| is also finite. Therefore &,
is a complete 1’ 2-class. But &, is not a 1’23’ -class.

EXAMPLE 2. 10. <&, the class of all compolete [-groups, is a 1’ 23-class, but not a 1’
23-class.

EXAMPLE 2. 11. Let .4 be the variety of normal-valued {-groups. Then 4" € Ty2s6,
but A4 € T,y by Proposition 4. 6 of [18].

3. RADICAL MAPPINGS

Let &£ be a 1’2-class and G be an l-group. Let &£ (G) be the K-radical of G. The
mapping G—Z is called the radical mapping on l-groups which has the property. if A is a
convex [l-subgroup of G, then & (4) =AN R (G). Conversely, any mapping ¢ associating
to each /-group G an l-ideal @ (@) of G and satistying the above property always define a u-
nique radical class & such that &£ (@) =¢ (G) for each l-group G [10]. So a radical class
is determined by its radical mapping. The above property is called the characteristic property
of a radical mapping. In [7] J. Martinez gave the characteristic properties for torsion radical
mapping. In [20] we gave the characteristic properties for product radical mappings as fol-
lows.

THEOREM 3. 1 (Theorem 2. 1 of [20]). A product radical calss Z is uniquely deter-
mined by a product radical mapping G—Z (G) which has the characteristic properties;
(1) if Ais a convex l-subgroup of G then Z (4) =ANZ (¢); (1) if {G.]A€ A} is
a family of /-groups, then Z (I1 G) =11 (G).

A€ A) A€EA
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In this section we will prove the characteristic propertices for other radical mappings.

THEOREM 3. 2 A subproduct radical class Z is uniquely determined by a subproduct
radical mapping G—Z (G) which has the characteristic properties; ( 1) if A is a convex [-
subgroup of G then & (A4) =ANZ (6); (1) if G is a completely subdirect product of [-
groups {G,|A€ A} then Z (G) =GﬂAI;IA.% G,

Proof. We only prove that the mappong G—>R (G) satisfies the property (I ). The
other parts of proof are similar to the proof of Theorem 2.1 of [20]. Let G be a completely
subdirect product of l-groups {G,|A€ A}. Put G,= lg€& ‘I(:IAGAI gv =0 for X' 74} for each A
€ A. Next, for each A€ A and x, € G, we denote by 7. the element of G whose A-coordinate
is z, and other coordinates are 0. Then the mapping ¢ * 1,—>1, is an isomorphism of G, onto
G,. Hence ¢ (Z (G)) =Z @G.

a) For each AE A, & (G,) belongs to Z. Put H=GﬂA1;IA% (G,). Since H is a com-
pletely subdirect product of the system {Z (G)) |AE A}, we obtain that H €A, Thus H
R (G).

b) For proving that & (G) CH it suffices to verify that & (G)*SH*. Let 1€EAR
(&)*. For each AE A let z, be the coordinate of z in G,. By way of contradiction, suggose
that z€ H. Hence there is A€ A with £, €ER (G,). In view of the isomorphism @, 5L,ER
(@). But Z (G,) =Z (&) NG, hence 7 EZ (G). We have o< z,< z and this implies
that 7, € & (G), which is a contradiction.

The proof of the following theorem is left to the reader.

THEOREM 3. 3 A complete radical class Zyss is uniquely determined by a complete
radical mapping G—2 .25 (G) which has the characteristic properties; ( I ) if A is a convex
I-subgroup of G then Z,5 (4) =AN Ry (@) (1) for any l-group G Ryas (G Ryas
@) =0.

Form Theorem 3. 1, Theorem 3. 2 and Theorem 3. 3 we get the following theorems.

THEOREM 3. 4. A complete product radical class &£ y..ys is uniquely determined by a
complete product radical mapping G—>2,,ys (G) which has the characteristic properties ;
(1) if Ais a convex l-subgroup of G then Ry235 (A) =AN K235 (@), (1) if (Ga] A
€ 4} is a family of I-groups then F2ys (AIGTAGA) '—'AI;IA@ vays (G1), (I for any [-group
G Ryays (G Ryays (G)) =0.

THEOREM 3. 5. A complete subproduct radical class &£ .35 is uniquely determined by
a complete subproduct radical mapping G— Z 1,35 (G) which has the characteristic proper-
ties; (1) if A is a convex l-subgroup of G then R,y (A) =A() Rras (G); (1) if G
is a completely subdirect product of {G,|A€E A} then Ryns (G) =GC[) A\IE-IA Ryas (G

(W) for any l-group G Kyas (G/ Ryas (G)) =0.
4. THE STRUCTURE OF A COMPLETE [-GROUP AND ARCHIMEDEAN [-GROUP
In order to give concrete discriptions of some important radical classes we need to know
the structure of a complete [-group and an Archimedean [/-group. First we introduce some
concepts. Let G be an l-group. We denote by vG the least cardinal o such that |4|<Ca for
each bounded disjoint subset A of G, where | A| denotes the cardinal of 4. G is said to be v-
homogeneous of vH =vG for any convex l-subgroup H7 {0} of G. G is said to be v-homo-
geneous I-group of a type if vG=a. An Il-group G is said to be continuous, if for any 0<lz
€ G we have z=z,+1z; and z; A z,=0, where £,7%0, 2,70. By Theorem 3. 7 of [21] it
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is easy to verity the following lemma, the proof is left to the reader.

LEMMA 4. 1. Any complete /-group is [-isomorphic to an ideal subdirect product of
complete v-homogeneous /-groups.

By using 4. 3 of [21] it is easy to verity that if an [-group G is v-homogeneous and
non-totally ordered, then v . GZ=3%%,. It is well known that any non-zero complete totally or-
dered group is [-isomorphic to a real group R or an integer group Z. So from Lemma 4. 1 we
obtain the structure of a complete /-group.

THEOREM 4. 2. Any complete {-group G is {-isomorphic to an ideal subdirect product
of real groups, integer groups and complete v-homogeneous I-groups of ¥, type (i==0).

LEMMA 4. 3. (Proposition 2. 3 (1) of [22]) Let G be a v-homogeneous /-group of
¥, type and G# {0}. Then G has no basic element.

LEMMA 4. 4. (Lemma 2. 4 of [22]) A complete I-group G is continuous if and only
if G has no basic element.

COROLLARY 4.5. A complete v-homogeneous I-group of 3%, type is continuous.

Now we turn to an Archimedean I-group.

A subset D in a lattice L is called a d-set if there exists z € L such that d; A dy=2z for
any pair of distinct elements of D and d_>z for each d€ D. We denote by w [a, b] the least
cardinal a such that |D|<Ca for each d-set D of [a, b].

LEMMA 4. 6. An l-group G is Archimedean if and only if G is l-isomorphic to a subdi-
rect product of subgroups of reals and Archimedean v-honogeneous I-groups of 3, type.

Proof. The sufficiency is clear. We need only to show the necessity.

Let'G be an Archimedean /-group. Then G has the Dedekind completion G*. From The-
orem 4. 2, without loss of generality, we have

2T S G T Ty, 4.1
€A sen

where T's=R or Z or a continuous complete v-homogeneous I-group of ¥, type for each 6 €
/\. Let ps be the projection map from GA onto T;. Put p,Ts=T, ,

A= {0 € A'T6 =R}, A= {6 € A'Ta =7} and N\; = A\(Al U A».
Thus, for &€ A, U A T4 is a subgroup of reals. For € /\; we can show that T is also
v-homogeneous. In fact, for any a, bE T, (a<b), we denote by [a, b]" the interval in
T4 and by [a, b]" the interval in T;. We assume that w [a, b]"=%],. [a, b]" < [a,
b]" implies w [a, ] <w [a, b]™=13%,. On the other hand, let {c,|jEJ, |J|=13%.}
be a disjoint subest in [0, b—a]™. Since G is dense in G", T, is also dense in T;. For each
¢, (JE€J), there exists 0<c,’ € T4 such that ¢,/ <c,. Thus {¢,|j€E J} is also a disjoint sub-
set in [0, b—a]™. So w [a, ] =w [0, b—a]™">=%},. Therefore w [a, b]" =¥, for
any a,b€ Ty, and so T4’ is w-homogeneous. From 3. 6 in [21] T, is v-homogenous. Since
Ts is complete, T4 is Archimedean. From (4. 1) we have

¢S/ II Ty,
s€A

where each T is a subgroup of reals or an Archimedean v-homogeneous I-group of 3%, type

for € A.
Suppose that G is a subdirect product of subgroups of reals and v-homogeneous I-groups

of ¥, type, G’ !IAT,. Let A\1= {6€ A|T,is a subgroup of reals}. If > T,=G, G is
é sEA,

said to be a semicomplete subdirect product of subgroups of reals and v-homogeneous (-
groups of ¥, type, in symbols >, T,ZG<' I T,
seAcA s€n
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THEOREM 4. 7. An [l-group G is Archimedean if and only if G is [-isomorphic to a
semicomplete subdirect product of subgroups of reals and Archimedean v-homogeneous I-
groups of 3%, type.

Proof. We need only to show the necessity. By Lemma 4. 6, without loss of generali-
ty, we have

s 1Ty,
sen

where each T, is a subgroup of reals or an Archimedean v-homogeneous [-group of 3%, type.
Put A,= {6€ A|T, is a subgroup of reals}. For each 6€ /\; and any 0<t, €T, there
exsits 0<<z€ G such that z;=t,. Let &= (0, =, 0, t, 0, -+, 0) be the element with
only one non-zero component ¢;. Since L, G (see the formula (4. 1)) and G is dense in
G, there exists & = (0, *=+, 0, &', 0, *+, 0) € G such that ¢,/ <t;,. Because T, is a
subgroup of reals, there exists some n€ N such that t;<nty/. Then z An ts =t,€ G. Hence
Ty =T,= {t;|t: €Ty} =G for each 6€ A.

Therefore

Ty S GS'IITS.
se A=n s€A

5. THE RADICAL CLASSES GENERATED BY Z

For a family X of [-groups we denote by 2., (X) the interesction of all 1’ 2ize++-+-
iy-classes containing X where iz, -+, i€ {3, 3, 4, 4, 5, 6, 7}. It is the smallest 1’
2ig++++++i,~class containing X and said to be the 1/2i3+--+--iy-class generated by X. The 1’2i;
«eeeeej-class generated by a single l-group G is denoted by % va-i6. It is well know that
R\yz=, the variety of all abelian /-groups. In this section we will determine some radi-
cal classes generated by the integer group Z.

We recall that an element ¢>>0 in an l-group G is singular if g=g¢,+g¢. with g;, g.>0
only when ¢g; A go=0. A negative element g is called a negative singular element if -g is a
singular element. € (G) will be denoted the set of all convex I-subgroups of an l-group G.

LEMMA 5. 1. An l-group G is a direct sum of Z if and only if G is a complete {-group
which has no continuous convex l-subgroup and each element of G is a sum of singular ele-
ments and negative singular elements.

Proof. Let G= ;Z‘,, Z,=7Z for all a&€ A. By Theorem 4. 2 G is complete. Since Z
a€A ‘

is not continuous and every integer is a sum of singular elements 1 and negative singular ele-
ments — 1, G has no continuous convex [-subgroup and each element of G is a sum of singu-
lar element and negative singular elements. Conversely, if G is a complete /-group which has
no continuous convex I-subgroup and each element of G is a sum of singular elements and
negative singular elements. Since a complete v-homogeneous I-group of %, type is continu-
ous and the real group R has no singular element, it follows from Fheorem 4. 2 that G&*

I1Z, with Z,=Z for all o & A. But each element of G is a sum of singular elements and neg-
a€A :

ative singular elements, so G= >, Z,.
aEA

THEOREM 5. 2. Ryoz= {2, Z.|Z.=Z for all aEA}.
a€EA
Proof. First we prove that the set & of all direct sums of Z is a 1’ 2-class. It is clear
that & is closed under taking convex l-subgroups, because any convex l-subgroup of a direct

sum of Z is still a direct sum of Z. Suppose that ;€ € (G) and Gi= 2, Z, (Z, =Z) for
G‘EAA

ME A. It is well known that & of all complete I-groups is a radical class [13], that is & is



136 D.R. TON

closed under taking joins of convex l-subgroups. So V @ G, is complete. V ‘G, has no
A€ A A€A

continuous convex [-subgroup. In fact, if H is a convex [-subgroup of V ‘°G,. Since &
AEA
(G) is a Brouweian lattice,
H=H n ( \" (G)Gx) = V (G)(H n G,).
A€ A A€ A

Each H[)G, is a convex (-subgroup of Gy, so HNG,= >, Z,.(Z,.=Z). Hence for each
a€dica

A€ 4, if 0<z2,, €Z,, = H (a)' € A'), then z,. cannot be expressed to z,, =z, +z, such that
ry Nz,=0 and z;, %20, 7,7 0. So H is not continuous. Let € V “®G,. Then r=uz,
A€ A

++eeeee 4z, with 2, € G,. Since each z, is a sum of singular elements and negative singular

elements, r is a sum of singular elements and negative singular elements. Therefore \ ‘°G,
A€ A

is also a direct sum of Z by Lemma 5. 1.
Now suppose that 2 is a 1’ 2-class containing Z. Let >, Z, (Z,=2Z) be a direct sum of
aEA

Z. Since 2/ is closed under taking joins of convex I[-subgroups and
v z, = 3z,

a€ A a€A
by Corollary 1 of Theorem 1. 5 in [;5] , GEZ‘,EQ( . This shows that & is the smallest 1’
2-class containing Z.

LEMMA 5. 3. An l-group G is an ideal subdirect product of Z if and only if G is a com-
plete l-group which has no continuous convex Il-subgroup and each convex l-subgroup of G
has a singular element.

Proof. The necessity is clear. Suppose that G is a complete /-group which has no con-
tinuous convex [-subgroup and each convex {-subgroup of G has a singular element. By The-
orem 4. 2 we have

G IIG,

A€ A
where each G, is Z or R or a complete »-homogeneous [-group of 3%, type. Since a complete
v-homogeneous [-group of ¥, type is continuous and R has no singulat element, so

GC 112,

A€A

where Z,=Z for each A& A.

THEOREM 5. 4. R p9z= {GlG;"nIeTAZQ, Z.=2Z for all a€E A}.

Proof. First we prove that the set & of all ideal subdirect products of Z is a 1’'23'-
class. Z is closed under taking convex /-subgroups, because any convex l-subgroup of an
ideal subdirect product of Z is still an ideal subdirect product of Z. Suppose that G is an I-
group and G,E¥F (G),

S I Z,(Z,, = 2)

'le ‘l

for A€ A. Similarly to the proof of Theorem 5. 2 we see that \ ®G, is complete and has no
) ‘€4
continuous convex l-subgroup. Let H be a convex l-subgroup of V ‘“G,, then
A€ 4
H=\@HN G).
A€EA
For each A€ A, H[\G,is a convex l-subgroup of G,, so HNG. S * II Z, (Z, =Z). Hence
€A,
H has a singular element. It follows from Lemma 5. 3 that V G, € £2.
A€

Now suppose that 27 is a 1’23’ -class containing Z. Since a convex [-subgroup of direct
product of Z is an ideal subirect product of Z, so 2 2% and % is the smallest 1'23'-
class containing Z.
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LEMMA 5. 5. An l-group G is a completely subdirect product of Z if and only if G is an
Archimedean [-group which has no continuous convex {-subgroup and each convex [-sub-
group of G has a singular element.

Proof. Necessity. Let »,Z, & G ' I1Z, (Z, =Z). By Theorern 4.7 G is

a€A aEA
Archimedean. It is clear that ; has no contin:ous convex l-subgroup. Each convex [-sub-
group H of G contains at least a Z,, so H has a singular element.
Sufficiency. Suppose that G is an Archimedean /-group which has no continuous convex
l-subgroup and each convex [-subgroup of G has a singular element. By Theorem 4.7 we
hav

$6,S 616,
r€A A€ A

where each G, is Z or R. But each G, is a convex [-subgroup of G and R has no singular ele-
ment, so >, Z, G 11Z, (Z=2).
AEA AEA

THEOREM 5. 6. Zy= (G| ;Z,_C_G;_’ IETZ,. Z,=Z for all a€E A}.
a€EA a€EA

Proof. First we prove that the set & of all complete subdirect products of Z is a 1’ 23-
class. Z is closed under taking convex [-subgroups, because any convex Il-subgroup of a
completely subdirect prodeut of Z is still a completely subdirect product of Z. Suppose that G
is an l-group and G, €€ (G), GLE X (LE A). Since &1 , the set of all Archimedean [-
groups, is a quasi-torsion class [ 147 and is closed under taking joins of convex (-subgroups.

So \e/ @@, is Archimedean. Similarly to the proof of Theorem 5. 2 and Theorem 5. 4 we see
A€A

that }E/ 9@, has no continuous convex I-subgroup and each convex l-subgroup of G has a
A€ A
singular element. It follows from Lemma 5. 5 that V ®G,€ . It is obvious that & is the
A€ A

smallest 1’/23-class containing Z.
The following proposition is a corollary of Theorem 2. 7.
PROPOSITION 5. 7. Let G be an [-group, then we have the following relationship be-

tween the radical classes generated by G.
gzww
Ul
%lm

Ul
@ww ; al'iw 2 a1’230 =2 Ql‘!’a =2 al'” g al'll’o g al‘lw g QIVCG

nl Nl n nl nl ni
Rse 2 Pine 2 Fwse =2 R S R & Fiawo

ni n ni n
Rywre = Ryme = Riwe = Ryn

Let & be a radical class. In [18] M. Darnel defined the order closure Z° of & with
R (G) =R (G)efor any l-group G. It follows from Lemma 2. 2 and Proposition 5. 7 that
Rygez = Rig = Riovz = Rfizsz. (5. 1)
From theorem 5. 2, Theorem 5. 4, Theorem 5. 6 and the formula (5. 1) we get
THEOREM 5.8. (1) Z,2= {G|@G is an order closure of a convex l-subgroup
>Z. (Z.=Z) of an l-group H}.

a€EA
(I )A,262={G|G is an order closure of a convex [-subgroup K of an /-group H where

KC*NZ, (Z,=2)).
a€A
(I )R ,2={CG|G is an order closure of a convex l-subgroup K of an l-group H where
EzagKg’ H Zu (Zu=z) }'
a€A

a€A



138 D.R. TON

From Lemma 2. 4, Theorem 5. 2, Theorem 5. 4, Theorem 5. 6 and Proposition 5. 7
we have

THEOREM 5.9. (1) &,2z= {G|G is a double polar of a a convex [-subgtoup GEEAZ.
(Z,=2Z) of an l-group H}.

(1) Ry2z=R2312= {G|G is a double polar of a convex {-subgroup K of an l-group
H where KC* al;IAZ, (Z,=2)}.

() Ryaz=Rvarz= {G|G is a double polar of a convex [-subgroup K of an I-group
H where mEEAZ‘,_C_KQ’C‘IG'IAZ‘l (Z2,=2)}.

LEMMA 5. 10. Let & be a radical class, then Z11 = {G|for each convex {-subgroup
Cof GZZ (C) #0).

Proof. &1 (@) is the largest convex I-subgroup C of G such that Z (C) =0. So &L
(G) =0 if and only if for each convex [-subgroup C of G &£ (C) #0. Since ZL1 (G) =
R ()L, GERLL if and only if &L (@) =0, if and only if for each convex {-subgroup
Cof G (C) #0.

Let & be a radical class. It is clear that 211 is the smallest polar radical class con-
taining Z£. From Lemma 2. 4 and Lemma 5. 10 we get

THEOREM 5. 11. Ry2z=Z% ;Lz";= {G | each convex I-subgroup of G contains a convex
{-subgroup g;z, (Z.=2Z)}.
6. THE RADICAL CLASSES GENERATED BY R

In this section we will determine some radical classes generated by the real group R.

LEMMA 6. 1. An l-group G is a direct sum of R if and only if G is a complete I-group
which has no continuous convex {-subgroup and for each principal convex l-subgroup C of G
vC is finite and [C|>}},.

Proof. Let G =ﬂ§R, (R.=R). By Theorem 4. 2 G is complete. Since R is not continu-

ous and R is a totally ordered group, G has no continuous convex /-subgroup and | K | > %3,
for each convex l-subgroup K of G. Since each element of G has only finitely many non-ze-
ro components, » C is finite for each principal convex I-subgroup C of G.

Conversely , suppose that G satisfies the conditions of Lemma, 6. 1. Since a complete »-
homogeneous I-group of 3%, type is continuous and |Z|=13%,, GZ IT R, (R.=R) by Theo-

a€EA
rem 4. 2. The fact that » C is finite for each principal convex I-subgroup C of G implies that
each element of G has only finitely many non-zero components. Therefore G= > R, (R,=
a€A

R).

THEOREM 6. 2. Z1»x= { > R.|R.=R for all aEA}.

a€EA

Proof. We can prove that the set & of all direct sums of R is a 1’2-class. It is clear
that Z is closed under taking convex I-subgroups. Suppose that G is an l-group and G, €EF
@, = EE R, (R, =R) for A€ A. Similarly to the proof of Theorem 5. 2 we can show

Q€A

that \e/ @@, is complete and has no continuous convex l-subgroup.

AEA

Now we prove that v C is finite for each principal convex [-subgroup C of V ‘°G,, Let

AEA
0<z€ V “©G,. Then
A€A
I=zA+ ...... +xl_<xj:+"""+xf: .

where z; € G, (1<<i<<n). Let G, be the convex I-subgroup generated by z in \ ‘°G,. Sup-
1€
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pose that {z,|a€ A} is a disjoint subset of Gy. We assume z,<z for each a€ A (otherwise

let z,=z,Az). Put zi=z,Az}, i=1, «eee , n. For each a € A there at least exists z,
#0. Because if all z,=0 (i=1, -+, n), then
0<zo=12, N2z, N (zf + ooeeee + ) <z At A oeeeees +z. Azt =0,

a contradiction. It is clear that

2o Nze =2, Nzg Nzt =0(a#4a),
and so {z,|a€ A} is a disjoint subset of G, (zi) for i=1, +++, n. Since » G, (z}) is finite
for i=1, <+, n, |A| must be finite. Combining the above we see that A¥4(0)0‘=¢§4H°

(H,=Z or R) by Theorem 4. 2. Since any convex [-subgroup K of > H, is also a join of
o€ A
direct sums of R and | K |>3%%y, 2, H.cannot contain Z as a convex l-subgroup. Hence
a€A

V @¢,= >R, (R,=R) by Lemma 6. 1.
aC A

A€ A
Similarly to the proof of Theorem 5.2 we can show that & is the smallest 1’ 2-class

containing R.

LEMMA 6. 3. An l-groap G is an ideal subdirect product of R if and only of G is a
complete I-group which has no continuous convex I-subgroup and | K | > ¥}, for each convex
l-subgroup K of G.

The proof of this lemma is obvious by Theorem 4. 2.

THEOREM 6. 4. Zypr= {GIG_C;‘GIC:IAR.,. R.=R for all aE A}.

The proof of this theorem is similar to those of Theorem 5. 4 and Theorem 6. 2.

LEMMA 6. 5. An l-group G is a completely subdirect product of R if and only if G is
an Archimedean [-group which has no continuous convex l-subgroup and | K | > %}, for each
convex [-subgroup K of G.

The proof of this lemma is obvious by Theorem 4. 7.

THEOREM 6. 6. 2, = {GIQEARQQGQ’GIE'IAR“’ R.=R for all a€E A}.

The proof of this theorem is similar to those of Theorem 5. 6 and Theorem 6. 2.

Similarly to Theorem 5. 8 we have

THEOREM 6. 7. (1) R = {G|G is an order closure of a convex I-subgroup ‘;AR..
(R.=R) of an l-group H}.

(I) Z,xr= {G|G is an closure of a convex I-subgroup K of an l-group H where K
C* IR, (R,=R)}.

a€A
(M) R= {G|G is an order closure of a convex l-subgroup K of an l-group H

where ;R.,QKQ’ IIR, (R,=R)}.
a€EA a€A
Similary to Theorem 5. 9 we have
THEOREM 6. 8. (1) ZZ,;»x= {G|GC is a double polar of a convex I-subgroup ;R..
a€EA

(R,=R) of an l-group H}.

(1) Ryam=R = {G|G is a double polar of a convex [-subgroup K of an I-group
H where KC* IIR, (R,=R)}.

a€EA

() Rypyr=R 3= {G|G is a double polar of a convex l-subgroup K of an l-group

H where D R,CKC' ITR, (R.=R)}.
a€A aEA

Similarly to Theorem 5. 11 we have
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THEOREM 6. 9. &£ ,.m=§t’f,‘2ln= {G|each convex {-subgroup of G contains a convex
{-subgroup ';A_R. (R.,=R)}.
7. AN EXAMPLE

We consider the totall ordered group ZXZ. Zo= { (0. 2) |z€EZ)} ==Z is an l-ideal
of ZXZ. It is clear that Zy " =ZXZ and ZXZ/Zo=Z,. So ZXZE Ryznzand ZXZE
Rz, but Zizg-%mz- Hence 527 R 11352. Ry52=R 'z,

Similarly, RXRE &5z and RXRE R, .;x. Hence B AR yaswy Rrasn=R -

Note. Since Z and R have no proper convex l-subgroup, £,z and &, are closed un-
der [-homomorphisms. Therefore Xy z=R22=R 12z and L& 1134 =L 1208 = R 1 2.
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