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ABSTRACT. In this paper, we develop a Frobenius matrix method for solving higher order
systems of differential equations of the Fuchs type. Generalized power series solution of the

problem are constructed without increasing the problem dimension. Solving appropriate

algebraic matrix equations a closed form expression for the matrix coefficient of the series are

found. By means of the concept of a k-fundamental set of solutions of the homogeneous problem
an explicit solution of initial value problems are given.
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1. INTRODUCTION.
Numerous problems from chemistry, physics and mechaxfics are re]a.ted to systems of

differential equations of the type, ([10], [9]),

tnz(n) + tn- 1Pn l(t)z(n- 1) +... + Po(t): 0, (1.1)

where the unknown =(t) is a Cruz valued function and Pj(t) is a Cruzm values analytic matrix

function in the interval It[< a. Standard techniques are based on the consideration of the

change t , tt0 t2,. ., twO_ wn, and the extended system

where Aj(t) for 0 _< j _< n-1, is a linear combination of Pj(t) with constant coefficients and are

therefore analytic in tl < a, see ([1], [4] and [5]), for details.

The consideration of system (1.2) to study problems related to (1.1) or non-homogeneous
problems of the type

tnz(n) +tn- 1Pn_ l(t)+ + Po(t)z g(t), tJ, g(t)eCm: (1.3)

has the computational drawback of the increase of the problem dimension apart from the lack of

explicitness of the series solution due to the relationship z(t)=[l,O,...,O] w(t), where

W(t) (Wl(t),...,wn(t))T. Note that as it happens in the scalar case, the Frobenius approach does



92 E. NAVARRO, L. JODAR AND R. COMPANY

not provide explicit series solution for the corresponding problem (1.1) when one considers the

equivalent extended system (1.2). The aim of the paper is to construct explicit series solutions

for (1.1) and to obtain a closed form solution of initial value problems for the non-homogeneous

system (1.3) without increasing the problem dimension.

The organization of the paper is as follows. In section 2 we solve in a closed form way

algebraic matrix equations of the type
xpn + Tn 1xpn- + Tn_2Xpn-2 + + T1XP + TOX S, (1.4)

where PeCpzp, SeCrnzp, TieCmrm or 0 < < n-1, and the unknown x lies in Cruzp. Such equations

appear in the construction of matrix series solutions for system (1.1) without increasing the

problem dimension. Following the ideas developed in [6] for time invariant equations, we

introduce in section 3 the concept of a k-fundamental set of solutions for systems of the type

y(n) +Qn_ (t)y(n- 1)+ +Qo(t)y=O (1.5)

where Qj(t)eCrnr.m is a continuous function on an interval J, for 0 < j <_ n- 1. Section 4 deals with

the construction of matrix powers series solution of (1.1) as well as the proof of its convergence

and the construction of/:-fundamental sets of solutions of (1.1) composed by generalized power

series matrix solutions of (1.1). Then a closed form solution of the general solution of initial

value problems for system (1.3) and without increasing the problem dimension is given.

If A is a matrix in Cm:n and BH denotes the conjugate transpose of B, we denote by B

its spectral norm, defined by the maximum eigenvalue of the set {Izl;z is an eigenvalue of

BHB}.
2. ALGEBRAIC RF_ULTS.

We begin this section with a closed form solution for the algebraic matrix equation (1.4).
THEOREM 1. Let PeCpzp, SeCrnzp, TieCrnzrn for 0 < _< n- 1, and let H be the matrix

such that

0 i

H 0 I (2.1)

TO T T.

it(H) n it(P) (2.2)

Then equation (1.4) has only one solution. If q(z)= ] a:zJ is an knnihilating polynomial of
./=0 "/

H,M (Mij) is an invertible matrix in Cmnzmn wth MijeCmznj, <_ <_., <_ j <_/:, and

W (Wsi) M- 1, WsieCnszrn, ZseCnzzns, <_ <_ k, such that

11 M1/: 11 W1
H diag(Z1,...,Z/:) (2.3)

LM"I "m L’",u w.,,_J
then the unique solution of (1.4) is given by

X Z ajMisZhs lWsnSPj -h
j--1 h-1 s-1 j=0 ajPJ} -1 (2.4)

the equation IxPh
is a solution of
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HY- YP -I!1 (2.5)

From (2.2), equation (1.4) had only one solution, [12], [2], and from corollary 2 of [2], if Y is the

uique lution of (2.5), it follows that

[H 0 ] [I; _1 [l;m-Y]=w w 1; W= w (2.6)
0 P I I

From (2.6) it follows that

q(V) Wq W- W W- (2.7)o P ,(e) o ,(P) j
On the other hand, taking into account the block triangular structure of v and the polynomial
calculus it follows that

10

q(V) q (2.8)
0 q(P)

for some matrix NeCrnnxp. From the spectral mapping theorem ([3], p. 569), and (2.2) it follows

that q(P)is invertible. Hence from (2.7), (2.8), we have

Yq(P) N, Y N(q(P))- (2.9)

Considering the powers vj, 0 < j < r, one gets that the (i,2) block entry of the operators vj,
denoted by V,$, 2, < < 2, < j < r, satisfy

V, 2 H V, + V, V,2 PJ

By multiplying the matrix v, 2 by the coefficients aj, O _< j _< r, and by addition it follows that the

entry (1,2) of the block entry q(v) takes the form

N= ’ E ajHh- pj-h (2.10)
j=l h=l

From (2.10), (2.3) and the relationship X =[I,0,-.-,0]Y, Y N(q(P)) -1, the result has been
established.

Now we recall some definitions recently given in [7].
DF__IIN-ITION 1. Let TjeCtnzm for 0 _< j _< n-1. We say that (x,P) is a (re, p) co-solution of

the matrix equation

zn+T"_IZ"- +...+T1Z+T0=0 (2.11)

if XeCmzp, PeCpzp, X # 0 and

xpn + rn_ 1XPn- +... + T1XP + ToX 0 (2.12)

Let (Xi, Pi) be a (m, ni) co-solution of (2.11) for <i< t. We say that the set {(xi, Pi);1 < < t} is
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a k-complete set of co-solutions of (2.11), if the block matrix W (wi, j), with wij XjP-1, for

< < n, _< j < k, is invertible in Crnnzmn.
The following result whose proof may be found in [7], provides L-complete sets of co-solutions

of equation (2.11 ).
THEOREM 2. ([7]) Let TeCrnzm for 0_<iS n-1, and let H and M be matrices given in

Theorem and satisfying (2.3). Then {(Mls, Zs); _< s _< k} is a k-complete set of co-solutions of

equation (2.11 ).
REMARK 1. Note that if (x,P) is a (re, v) co-solution of equation (2.11), then

ph Xph

where H is the matrix defined by (2.1). Thus if v is an eigenvector of P corresponding to the

eigenvalue ,, then

XP XP XP= Pv= A v

p p p

and if the rank of x is v _< m, it follows that

xP

p
,etr(H) and a(P)c a(//) (2.13)

Furthermore, if the matrix H satisfies the spectral condition

If z, wea(H) and z # w, then z-w is not an integer (2.14)

then, for any positive integer k > 1, from (2.13)-(2.14) it follows that

(kl + P)fla(H) 0 (2.15)

The following result is related to the coucept of L-complete set of co-solutions for an equatiou

of the type (2.11) and will be used iu sectiou 4.

LEMMA 1. Let {(x.p);1 < j < k} be a L-complete set of co-solutious of equatiou (2.11) with

XieCrnzni, PieCnizni, < <_ k, n + n2 + + nk ran. Then the block matrix

X X2 Xk

X1P X2P2 XkPk
S X1PI(P I) X2P2(P2 I) XkPk(Pk I)

n--2 n--2 n--2x ,I’[0(P.= JD x2 l-I0(P2.= j,) x, =0H(Pk-
is invertible in Cmnzmn.

(2.16)

PROOF. Let h be an integer such that <_ h _< n-2 and let Bh the block bi-diagonal matrix

in Cmnzmn defined by

h+l blocks--
I

""Io I
I I

21 1
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where ! denotes the identity matrix in Crazra. If W is the block Vandermonde matrix defined by

W

X X2 Xk

X1.P1 X2P2 XPk

xP’- x2P xP
and associated to the k-complete set {(Xi, Pi);l _<i_<k} of co-solutions of equation (2.11), then,

straightforward computations show that

w Bn_2Bn_3. "B1S
Hence and the inyertibility of w and the matrices Bh one concludes the invertibility of the

matrix S. Thus the result is established

3. GENERAL RESULTS.
We begin this section with a definition which generalizes the concept of a fundamental set of

solutions given in [6] for second order matrix differential equations

DEFINITION 2. Let Qi(t) for 0 _< _< n- 1,Cruxm valued continuous functions on an interval

1 containing the origin of the real line, and let Yi(t) be a Crazn valued a-times continuously

differentiable function in I for < < k. We say that the set {Yi;1 _< _< k} is a k-fundamental set

of solutions of equation (1.5), if any razm sohtion Y(t) of equation (1.5) in J, there exist matrices

RieCnizra, uniquely determined by Y(t), such that n + n2 + + nk ran and

r(t) YI(t)R + Y2(t)R2 + + rk(t)Rk, teJ (3.1)

The following lemma provides an useful characterization of a k-fundamental set of solutions of

equation (1.5).
LEMMA 2. Let Yi(t) be a Crazn valued solution of equation (1.5) defined in I for _<iS k

and n + + nk ran. Let G(t) be the block matrix function defined by

r(t) v(t) r(t)

G(t) (3.2)

Then {Yi;1 _< _< k} is a k-fundamental set of solutions of (1.5) in l, if there exists a point tleJ
such that G(tl) is invertible in Cranzmn. In this case G(t) is invertible for all in I.

PROOF. Since Yi(t) is a Crazn valued solution of (1.5) for <i< k, it is clear that G(t)
defined by (3.2) satisfies

0 I 0 0

0 0 I 0

G()(t)
o o I

-Qo(t) -Q(t) Qn_(t

G(t);teJ (3.3)

If U(t,s) is the transition state matrix of system (3.3) such that U(t,t)= I,([8], p. 598), then we

have G(t)=r(t, tl)G(tl) for all tel. Given a solution Y and its initial conditions

Y(h)(tl) CheCrazrn, for O _< h _< n- 1, taking the matrices RieCrazn for _< _< k, such that
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R Co

R
(G(tl))-

2
one determines uniquely the matrices R such that satisfy (a.1) because the function

YI(t)RI + + Yk(t)Rk is a solution of (1.5) that satisfies the same initial conditions at as Y(t).
From the uniqueness for solutions of such a problem the result is concluded.

Now we consider the non-homogeneous problem

y(n) +Qn- (t)y(n- I) + +Qo(t)y f(t), teJ (3.4)

where f(t) is a continuous Crux valued function in the interval J.

Let us assume that {Yi;l _< _< k} is a k-fundamental set of solutions of the homogeneous equation

(1.5), and let us look for solutions of the non-homogeneous equation (3.4) of the form

y(t) Yl(t)Rl(t)+ Y2(t)R2(t)+ + Yk(t)Rk(t), (3.5)

where Yi(t)Crnzni and Ri(t)Cnizl for < <k. If we assume differentiability for the vector

functions R and we impose that R satisfy

at)(t) 1 0.
(3.6)a(t)

0

Rl)(t)J f(t)

From (3.6), the derivatives of y(t) defined by (3.5) take the form

Hence it follows that

k
II(h)(t) .E v!h)(t)Ri(t)’ < h < n- I, (3.7)

k
!t(n)(t) Z Y!n)(t)ni(t) + f(t) (3.8)

i=1

9(n)(t) + On- l(t)9(n 1)(t) + + Qo(t)Y(t)

k

E {Y!n)(t)+Qn- l(t)V!n- 1)(t)+ +Oo(t)Yi(t)}Ri(t)+ f(t)= f(t)

because each Yi(t) is a Crnxn solution of the homogeneous equation (1.5), for _< 5/:. Since

{Yi;1 _< j < k} is a t-fundamental set of solutions of (1.5), the matrix G(t) is invertible. Let

T(t) (Tij(t)) (G(t))- 1, with Tij(t)Cnixrn, for _< j < n, < _< k. Then by integration of (3.6) it

follows that

Ri(t qTin(S)f(s)ds + Di; DieCni:l, < < k, tleJ (3.9)

Taking D 0, for < < k, a particular solution yp(t) of (3.4) satisfying y(ph)(tl) O, 0 < h < n- 1,

is given by
k

it
k

lip(t) Yi(t)Ri(t)= t Y] Yi(t)Ti.(s)f(s)}ds (3.10)
i=1 i=1

From the previous comments and Lemma 2, the following result has been proved:
THF_,OREII 3. Let {Yi;1 <i< k} be a k fundamental set of solutions of equation (1.5) in J,

where Yi(t)Crnzni and nl+.-. +nk=nrn. If J’(t) is a continuous function in J and
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T(t) (Tij(t)) (G(t))- 1, with Tij(t)eCnizn, for < < k, < j < n, and G(t) is defined by (3.2),
then the general solution of (3.4) is defined by (3.5) and Ri(t takes the form (3.9) for < < k.

4. MATRIX SERIES SOLUTIONS: CONSTRUCTION, CONVERGENCE AND
APPLICATIONS.
Let us suppose that Pj(t) is an analytic matrix function in tl < a, for 0 < j < n- 1, and let us

consider the power expansion

Ph(t)= E Ph, jt3’ Itl <a, Ph, ffCmrm, O<h<n-1, j>0 (4.1)
j>O

Let zcpzp with p _< m, and let us look for solutions of equation (1.1) of the type

X(t) =( y cjtJl tZ, o < < a, CjCmzp, (4.2)
\j>0 /

where tz= ep(Zln(t)). Taking formal derivatives of x(t) given by (4.2) and substituting into

(1.1) one gets

n-1

Cj (Z+(j-s)l)tZ+(j-n-1)l +... +t
j s=0

l>-. .Jl>-
(Z+(q-s)l)+

tirOL "s O q O l’j-qCqs o

the mey wfie i the

+(j-s)t)+ Pr, j_qCq +(q-s)l)+ Po, j_qCq j tZ=o,
r=0q=0 s=0 q=0

(4.4)

to the zero matrix the ccient of 0 aping in (4.4), it’follows that ccients CiEquating
must satisfy

n-1 n-1 r-1

CO n (Z- sl) + Pr, oCo n (Z- sl) + Po, oCo O (4.5)
s=o r=l s=O

Now we are interested in writing equation (4.5) in the form of equation of the type (1.4) for C0.
If we denote by Mn(Z)- 1 (Z sI), then equation (4.5) takes’ the form

n-1

CoMn- (z) + Z Pr, OCOMr (Z) + Po, oCo 0 (4.6)
r-1

If we equate to the zero matrix the coefficient of j for j > in (4.4), we have

n-1

CjMn-I(Z+JI)+ E Pr, oCjMr-1(Z+jl)+ Po, oCj Dj, j> (4.7)
r=l

where
n-1 j-1

Aq= E Pr, j-qCqMr (Z +ql)+ PO, j_qCq and Dj= Z Aq
r=l q=O

(4.8)
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depends on the previous coefficients C0, Cl, "’ Cj I"
Easy computations show that

and

Mn(Z) H (Z-sl)= (Z-sl))Z Pn(Z)Z, Pn(Z)= H (Z-sl)
s=O s=l s=l

Pn(Z)=Zn+An _1Zn- +... +AIZ+AO,

where

Ac =(-1)n-cS Sn, n E ili2 .in cl, <c<n-1,
l_<i1< <in_c_<n

Sn, n n!l, Sn, 0 I

and the sequence Sn, c is related by the recurrence relationship

Sn, O l’Sn, c nSn- l,c- +(n- 1)Sn_2,c_ + +cSc- 1,c- 1’ for <_ c _< n

Hence equation (4.6) for CO may be written as an algebraic matrix equation of polynomial type of

the form

n-1

COzn + . TjCoZ + ToC0 O; (4.9)
1-1

TO PO, O and rj .Pr, OB(r,j),B(r,j) 1)r- JSr_ 1,r- j’ _< j _< n- (4.10)

while (4.7) may be written in the form
n-1

Cj(Z + jl)n + E TqCj(Z + jl)q + Po, oCj Dj, (4.11)
q=l

with
n-1 n-1 j-1

Aq .E T,(j-q,i)Cq(Z +ql) + PO, j_qCq, T,(j-q,i) 2.Pr,j_qB(r,i)Dj Aq (4.12)
=1 r=, q=0

Note that from Definition 1, equation (4.9) means that (Co, Z is a (m,) co-solution of equation

Vn-1 (4.13)Vn + Tn +’’" + T V + TO O

where TjeCm,m is defined by (4.10), for 0 < j < n- 1. If we take P z + jleCpzp, and we assume
jthat the matrix//defined by (2.1) satisfies the condition (2.14), q(z) E__oajZ is an annihilating

polynomial of H, and M (Mij),W (Wsi) M-1, and D=diag(Z1,...,Zt) satisfy the condition

(2.3), then, from Theorem 1, the unique solution Cj of the matrix equation (4.11) is given by

Cj E E avMlsZhs 1Ws2Dj(Z + Jl)V-h av(Z + jl)V 1, j >_ (4.14)
v=l h=l s=l v

Note that from Theorem 2, a t-complete set of co-solutions of the algebraic matrix equation

(4.13), is defined by {(M18,Zs);1 <_ s < t}, where Mls and z are given by (2.3). Thus we may

take as Z as each of the matrices Zs and C0(s Mls, for < s _< t, in the series solution given in

(4.2), we obtain

(4.15)
\-0 /j_

and
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Cj(s) E E avMlwZW + Jl)V-h av(Zs + Jl)v
v=l h=l w=l v

Aq(s) E T*(J-q’i)Cq(s)(Zs +ql)i + Po, j-qCq(s),Dj(s) E Aq(s),l <_ s <_ k (4.17)
i=1 q:0

where T.(j-q,i) is defined in (4.12).
Now we prove that if (C0,z) is a (re, p) co-solution of (4.13) and Cj is given by (4.14), for

j >_ 1, then X(t) defined by (4.2) is a Cruxp valued solution of (1.1). From the analyticity of Ph(t),
for 0 < h < n- 1, the coefficients ph, j of (4.1) satisfy the inequalities

[[Ph, jllpJ<_L, for0<p<a, O<_h<_n-l, j>_O (4.18)

Let M be an upper bound of Tj for 0 < j _< n- 1, then from the definition of T. we have

IlT.(j-,i)l <_Npq-j, N=ng, O<_q<j-1, l<_i<_n-1 (4.19)

Taking norms in (4.11) it follows that

n-1

Di -> cj(z + )" TqC5(Z + i)q Po, oC5 >_
q=l

q=l q=l

{ }_> jn_ nq .n-q z q- N Z / jz q- P0,o Cj (4.20)
q q=l

From (4.12) and (4.19) it follows that
j-1 n-1

IIDjll _< IIY,(j-q,i)l] IlCqll IIZ+qllli+ IlPo, j_qll IICqll
q=Oi=l

<_ pq-JlNllZ+qlllil +L

j-1
< E pq l(nN( Z + q)n + L)II Cq (4.21)
q=0

Let J0 be the first positive integer j such that

n n-1z,,,- z + ,,,- ,o,o >o
q q=l

and let us define by {Tj} the sequence of positive scalars such that

(4.22)

7j Ilcjll,J o,,2,.. ",Jo-
and for j > Jo let 7j be defined by the equation

J" "q "" q z q + N E z + jl q + Po, 0 j
q=l

E pq-j(nN(iiz[[ +q)n-l+L[Tq
q=O

From the definition of 7j it follows that

IlCjll <vj, j>0

(4.23)

(4.24)
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On the other hand, from the definition of 7j it follows that

Taking limits as j--<x3 in (4.26) we obtain that this limit is It lip and thus the series

U(t,Z) Cjtj is convergent for tl < p < a

j>_0

Let us consider {(Mls, Zs); <_ s <_ t} be the t-complete set of co-solutions of the algebraic matrix

equation (4.13) where Tj for 0 _< j _<--1, are given by (4.10). Let us construct the set of series

solution of equation (1.1) of the form

X(t,s)=U(t,s)tzs=( Cj(s)tJZs, Co(s)= Mls, 0<t<a, <s<k, (4.27)
\ -O

where M (Mij) and (Zl,. .,Zk) satisfy (2.3) with W (Wsi) M- 1. Now we prove that the set

{X(,s);l _< s < t} is a t-fundamental set of solutions of equation (1.1) in the interval J (0,a).

From Lemma 2, it is sufficient to prove that the block matrix function G(t) given by

G(t) (Gis(t)),Gis(t) X(i- 1)(t,s); < <_ n,l <_ s <_ k, Gis(t)Cmzni
n + + nk mn, O < < a, (4.28)

is invertible in Crnn.rnn for some tle(0,a).
Direct computations show that G(t)= (Gis(t)) defined by (4.28) may be written in the form

G(t) diag(l,t- 1I,... ,t- n + ll)(His(t))diag(tZ1, ,tZt) (4.29)
where

ltls(t) U(t,s)

a2s(t U(1)(t,s)t + U(t,s)Zs

H3s(t).= U(2)(t,s)t2 + 2U(1)(t,s)Zs +U(t,s)Zs(Zs I) (4.30)

Note that from (4.29), G(t) is invertible at te(O,a), if and only if H(t)= (His(t)) is invertible at t.

On the other hand, from (4.30) it follows that

H(0)

C0(1) C0(2) c0(t

CO( I)Z CO(2)Z2 CO(t)Zt

CO(1)ZI(Z I) CO(2)Z2(Z2 I) Co(k)Zk(Zk I)

n-2 n-2 n-2
Co(X) H (ZI-JI) C0(2) H (Z2-JI) CO(t) H (Zt-JI)

j =o j =o j =o

(4.31)
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Since {(Co(s),2s);l <_ s <_ k} is a /:-complete set of solutions of equation (4.13) from Lemma 1, it

follows that the matrix H(0) is invertible in Cmnxmn. Note that H(t)= (His(t)) defined by (4.30) is

an analytic function in It < a and from the invertibility of H(0) and the perturbation lemma,

([10], p 32), there exists a positive number b with 0 < b _< a, such that U(t) is invertible in (0,b).

Taking in (0,b), it follows the invertibility of H(tl) and G(tl). Hence the following result has

been established:

THEOREM 4. Let Fh(t be art analytic Cruzm valued function in tl < a whose power series

expansion is given by (4.1) for 0 _< h < n-1, and let H be the matrix defined by (2.1) where Th is

defined by (4.10) for 0 < h < n- 1. Let q(z)= oaVzv be an annihilating polynomial of U and let

M (Mi, j),W (Wsi) M-1 and Zl,Z2,...,Zk be matrices satisfying (2.3) and let x(t,s) be the

generalized matrix power series of the form (4.15)-(4.17) constructed in terms of a k-complete set

of co-solutions {(Co(s),Zs),l<_s<k of the algebraic matrix equation (4.13). Then

{X(.,s);1 _< s </:} is a/:-fundamental set of solutions of equation (1.1) in the interval (0,a).
Now let us consider the non-homogeneous system (1.3) where e(t) is a continuous function in

(0,a). Let v(t)= (H(t))-1 where //(t) is defined by (4.30) in terms of the k-fundamental set of

solutions of (1.1) given in Theorem 4. Let us consider a block partition of v(t) of the form

V(t) (Vii(t)), Vij(t)fCnixm, <_ <_ k, <_ j <_ n

Then from Theorems 3 and 4, the general solution of (1.3) in (0,a) is given by

z(t) E X(t’i)Di+ E X(t,i) f u- Zivin(U)(g(u)/u)du, DiCnizl, (4.33)
i= i= tl

where we hve taken into account the following expression for the inverse of G(t) defined by

(4.28):

(G(t))- diag(t- Z1, .,t- Zk)(u(t))- ldiag(l, tl, ,tn- 1i) (4.34)

and that system (1.3) may be written in the form

(4.32)

z(n) + Ip. l(t) +... + nPo(t rig(t),

Since X(t,i)= U(t,i)tZi, expression (4.33) may be written in the form

z(t)= U(t,i)tZi Di+ u- (4.35)
i=1 tl

and from the comments previous to (3.10), a particular solution of (1.3) which satisfies

tt(h)(tl O, for 0 _< h < n- 1, is given by

k
yp(t) U(t,i) I (t/u)ZiVin(U)(g(u)/u)du (4.36)

i=1 tl
In order to construct the solution of (1.3) which satisfies the initial conditions

Z(tl) Co, z(1)(tl C1,... x(n 1)(tl) cn (4.37)

where ehrCmz for 0 _< h _< n- 1, it is sufficient to take in (4.35), constants DiCnixl, < <_ k, such
that

G(t (4.38)
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From (4.34) and (4.32), it follows that

Di (tl)- Zi E Vij(tl)(tl )j- llmcj- 1’ <_ <_ k, (4.39)
j=l

where Im denotes the identity matrix in Cruzm. Summarizing the following result has been

established:

THEOREM 5. Let us consider the hypotheses and the notation of Theorem 4, where f(t) is

a continuous function in the interval (0,a). Then the following results hold:

(i) The general solution of (1.3) is given by (4.35), where DiCnizl is an arbitrary vector

for <i<t.

(ii) A particular solution of (1.3) satisfying z(h)(tX =0 for 0 < h _< n-1, is given by (4.36).
The unique solution which satisfies the initial condition (4.37) is given by (4.35), where D is

determined by (4.39) for _<i< t.
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