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ABSTRACT. In this paper, we develop a Frobenius matrix method for solving higher order
systems of differential equations of the Fuchs type. Generalized power series solution of the
problem are constructed without increasing the problem dimension. Solving appropriate
algebraic matrix equations a closed form expression for the matrix coefficient of the series are
found. By means of the concept of a k-fundamental set of solutions of the homogeneous problem

an explicit solution of initial value problems are given.
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1. INTRODUCTION.

Numerous problems from chemistry, physics and mechanics are related to systems of
differential equations of the type, ([10], [9]),
(") 4 qn - p, _ l(t)z("' Dy 4 Py(t)z=0, (11)

where the unknown z(t) is a C;; valued function and P j(t) is & Cpzyy values analytic matrix
function in the interval |¢| <a. Standard techniques are based on the consideration of the

change w, =z, tw} =w,, - -, tw’, _; = w,,, and the extended system
ge wy 1 2 n—-1 n Y
, o | I o - 0
“1 S R { : “1
t| (=] o | 0 r .1 : (1.2)
wh ' w
" A(t) | A s A, _(t n

where A i for 0<j<n-1, is a linear combination of P (6 with constant coefficients and are
therefore analytic in |t| < a, see ([1], [4] and [5]), for details.

The consideration of system (1.2) to study problems related to (1.1) or non-homogeneous
problems of the type

M =1p ()4 -+ Py(t)e = g(t), ted, g(t)eC (1.3)

mzl
has the computational drawback of the increase of the problem dimension apart from the lack of
explicitness of the series solution due to the relationship =z(t)=[I,0,---,0] W(t), where
W(t) = (wy(2), - - -,wn(t))T. Note that as it happens in the scalar case, the Frobenius approach does
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not provide explicit series solution for the corresponding problem (1.1) when one considers the
equivalent extended system (1.2). The aim of the paper is to construct explicit series solutions
for (1.1) and to obtain a closed form solution of initial value problems for the non-homogenecous
system (1.3) without increasing the problem dimension.
The organization of the paper is as follows. In section 2 we solve in a closed form way
algebraic matrix equations of the type
XP"+T, (XP"~14T, _,XP"~24 ... 4T XP4+TyX =S5, (1.4)

where PeCppp,SeCpnzp, Ti€Crnzm OF 0 <i<n—1, and the unknown X lies in Cpzp. Such equations
appear in the construction of matrix series solutions for system (1.1) without increasing the
problem dimension. Following the ideas developed in [6] for time invariant equations, we

introduce in section 3 the concept of a k-fundamental set of solutions for systems of the type

™, 0™V gyt =0, (1.5)

where Q j(t)scm,m is a continuous function on an interval J, for 0 < j <n—1. Section 4 deals with
the construction of matrix powers series solution of (1.1) as well as the proof of its convergence
and the construction of k-fundamental sets of solutions of (1.1) composed by generalized power
series matrix solutions of (1.1). Then a closed form solution of the general solution of initial
value problems for system (1.3) and without increasing the problem dimension is given.

If A is a matrix in C,,, and BH denotes the conjugate transpose ole, we denote by || B
its spectral norm, defined by the maximum eigenvalue of the set {|z|2: is an eigenvalue of
BH gy,

2. ALGEBRAIC RESULTS.
We begin this section with a closed form solution for the algebraic matrix equation (1.4).
THEOREM 1. Let PeCp,p, SeCppzpr Ti€Cppzm for 0<i<n—1, and let H be the matrix

0 | I
izl o | Co (2.1)
-T, -T, -T,_,
such that
o(H)no(P)=0 (2.2)

Then equation (1.4) has only one solution. If ¢(z) = E a; 2J is an annihilating polynomial of
H,M=(M;; is an invertible matrix in C,pzmn with M eC,mmJ, 1<i<n, 1<j<k, and

W=(W”)_ -1 » W5ieCp zmr Z56Cp_gpny 1< 8 <K, such that
My - - - My Wi - =Wy,
H=| : i |diag(Zy, - -,2,)| : Cl (2.3)
My T My | TR ™

then the unique solution of (1.4) is given by

r J r N -1
x={ DS 2 a;M; 28~ 1w, sPI = "}{ 3 aJ-PJ} (2.4)

i=1 k=1 s=1 i=0

X
PROOF. Note that X is a solution of equation (1.4) if and only if y = X:P is a solution of
the equation xpr-1
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0
HY -YP=-|¢ (2.5)
S
From (2.2), equation (1.4) had only one solution, [12], [2], and from corollary 2 of [2], if Y is the
unique solution of (2.5), it follows that

| 0
I
H o I..Y -
”Ig = W—I;W= nm W_1= Inm Y (26)
__}__ 0o P 0 I, 0 I,
0| P

From (2.6) it follows that

_ H O —1_ qH) 0 -1_ 0 Yq(P)
q(V)_Wq(|:o P])W —W[ o q(P)]w _[ o q(P)] (2.7)

On the other hand, taking into account the block triangular structure of vV and the polynomial

calculus it follows that 0

|
H| :
WV)=q s =[q(H) N ] (2.8)
P

—_ { 0 q(P)
I

0
for some matrix NeCpppzp- From the spectral mapping theorem ([3], p. 569), and (2.2) it follows
that ¢(P) is invertible. Hence from (2.7), (2.8), we have
Yo(P)=N, Y=N(gP))~! (2:9)

Considering the powers v, 0<j<r, one gets that the (i,2) block entry of the operators v,

denoted by V{; 9 1<i<2, 1<j<r, satisfy
0

Vig=mviz'+|}|viz'i vi,y= P
s
a=0.vV3,=1n

By multiplying the matrix V{'g by the coefficients a 0<5<T, and by addition it follows that the
entry (1,2) of the block entry ¢(V) takes the form

r J 0 _h
N=3 Y amh-topi- (2.10)
j=1 h=1 S

From (2.10), (2.3) and the relationship X =[I,0,- - -,0]¥, Y = N(g(P))~ !, the result has been
established.
Now we recall some definitions recently given in [7).
DEFINITION 1. Let T jeCrnzm for 0<j<n-1. We say that (X,P) is a (m,p) co-solution of
the matrix equation
ZM+T, 2" 14 4TZ4Ty=0 (2.11)
if XeCpnzpr PECpzpr X # 0 and
XP" 4T, (XP""l4. . 4T XP4+T X =0 (2.12)

Let (X, P;) be a (m,n;) co-solution of (2.11) for 1 <i<k. We say that the set {(X;,P;);1<i<k}is
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a k-complete set of co-solutions of (2.11), if the block matrix W = W, i) with W, j=X J-P}‘ 1 for
1<i<n, 1<j<k,is invertible in € pmn.

The following result whose proof may be found in (7], provides k-complete sets of co-solutions
of equation (2.11).

THEOREM 2. ([7]) Let TeC,,;,, for 0<i<n-1, and let # and M be matrices given in
Theorem 1 and satisfying (2.3). Then {(M,,Z;); 1 <s <k} is a k-complete set of co-solutions of
equation (2.11).

REMARK 1. Note that if (X, P) is a (m,p) co-solution of equation (2.11), then

X X
XP | p_y| XP
XP;\-I xp;t—l

where H is the matrix defined by (2.1). Thus if v is an eigenvector of P corresponding to the
eigenvalue ), then

X X X
X:P v= X:P Py=2A X:P
XP;I-I xp;l-l xp;l—l

and if the rank of X is p < m, it follows that

X
XP 140, Xeo(H) and o(P) C o(H) (2.13)

xpn-1

Furthermore, if the matrix H satisfies the spectral condition
If z,weo(H) and z # w, then z —w is not an integer (2.14)

then, for any positive integer k > 1, from (2.13)-(2.14) it follows that
o(kl +P)No(H)=0 (2.15)
The following result is related to the concept of k-complete set of co-solutions for an equation
of the type (2.11) and will be used in section 4.
LEMMA 1. Let {(X;,P;);1<j<k} be a k-complete set of co-solutions of equation (2.11) with
XiCmzny PieCrgny 1Si<k nytngt - 4y =mn. Then the block matrix

X, X, X,
X, Py XyPy X P
S=| X;Py(P;-1) XoPy(Py—1) X P(Pp—1) (2.16)
n-2: 3 n—2: . n—2: .
Xy l'l (Pl—JI) X2 H (Pg—ﬂ) Xk H (Pk-JI)
3=0 i=0 j=0

is invertible in C,,pzmn-
PROOF. Let h be an integer such that 1 <h<n-2 and let B, the block bi-diagonal matrix
in Cpyprmn defined by

htl blocks - -

I | 1
01 |
01

I
01
I

h+l blocks -

=}
]

I
h a1

.

| @h-DI T |
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where I denotes the identity matrix in C,,,,,. If W is the block Vandermonde matrix defined by

X1Py XyPy : : ‘ XePy
x, PPl x,pp-1 . . . xpp-l
171 2P2 Pk

and associated to the k-complete set {(X; P;);1 <i<k} of co-solutions of equation (2.11), then,
straightforward computations show that
W=B, 9B, 3 BS

Hence and the invertibility of W and the matrices B, one concludes the invertibility of the
matrix S. Thus the result is established.
3. GENERAL RESULTS.

We begin this section with a definition which generalizes the concept of a fundamental set of
solutions given in [6] for second order matrix differential equations.

DEFINITION 2. Let Qyt) for 0 <i<n-1,Cy,;,, valued continuous functions on an interval
J containing the origin of the real line, and let Y(t) be a Cmni valued n-times continuously
differentiable function in J for 1 <i <k We say that the set {Y;1<i<k} is a k-fundamental set
of solutions of equation (1.5), if any mzm solution Y(t) of equation (1.5) in J, there exist matrices
R,.sc,,'_m, uniquely determined by Y(t), such that n; + ny+ - - - +n, = mn and

Y() =Y (DR +Yo(ORy+ - - - + Y (DR, te] (3.1)

The following lemma provides an useful characterization of a k-fundamental set of solutions of
equation (1.5).

LEMMA 2. Let Y (t) be a Crmzn, valued solution of equation (1.5) defined in J for 1<i<k
and ny + - - - +n, =mn. Let G(t) be the block matrix function defined by

Y1) Y,(t) s Yi(t)

A RO ¢ 2(0) _ 140)
G(t) = ) ) (3.2)

A G ¢ St O NERERE ¢ S O
Then {Y;;1<i<k} is a k-fundamental set of solutions of (1.5) in J, if there exists a point ¢;eJ
such that G(t)) is invertible in C,;pz,,. In this case G(t) is invertible for all ¢ in J.

PROOF. Since Y(t) is a Cmmi valued solution of (1.5) for 1 <i<k, it is clear that G(t)
defined by (3.2) satisfies

0 I 0 . 0
0 0 1 0
¢Wy=| : : : | Greyted (33)
0 0 I
=Qo(t) —Qy(t) s =Qn (1)

If U(¢,s) is the transition state matrix of system (3.3) such that U(t,t) = I,([8], p. 598), then we
have G(t)=U(t,t))G(t)), for all teJ.  Given a solution Y and its initial conditions
Y(")(tl) =CeCryzmy for O <h <n-—1, taking the matrices Riscmm‘, for 1 <i <k, such that
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R, Co
R, dc
l=@ey =Y !

Rk n-1

one determines uniquely the matrices R; such that satisfy (3.1) because the function
Y ()Ry + - - - +Y ()R, is a solution of (1.5) that satisfies the same initial conditions at ¢, as Y(1).
From the uniqueness for solutions of such a problem the result is concluded.

Now we consider the non-homogeneous problem

M@, V4= £(1),  ted (34)

where f(t) is a continuous C__; valued function in the interval J.
Let us assume that {Y;1<i <k} is a k-fundamental set of solutions of the homogeneous equation
(1.5), and let us look for solutions of the non-homogeneous equation (3.4) of the form

y(t) = Y (DR (1) + Yo(t)Ro(D) + - - - + Y ()R(2), (3.5)

where y,.(t)ec,,,,,,,_ and Ry(t)eC, . for 1<i<k. If we assume differentiability for the vector
functions R; and we impose that'R.. satisfy
’R{Ve) 0
cvy| = 0 (3.6)
R’ ) 10

From (3.6), the derivatives of y(t) defined by (3.5) take the form

k
o= Y vPorw,  1<hcn-, 3.7
(g - o
y (t)=.2:lv$ (DR, + (1) (3.8)
1=

Hence it follows that

V0 +Q, _ 10y "D+ - +@pw =
ko (n) (n-1)
.Zl{y, ©+@ 1YV + - -+ QY (IR + £() = (1)
i= ’

because each Y (t) is a szn‘- solution of the homogeneous equation (1.5), for 1 <i<k. Since
{Y;1<j<k} is a k-fundamental set of solutions of (1.5), the matrix G(t) is invertible. Let
T(t) = (T;(1) = (G(1) ~ 1, with T, /eCnzmy for 1<j<m, 1<i<k Then by integration of (3.6) it
follows that
t
Rt = J 1 Tin(0)f(5}s + Dy DieCp oy, 1<k tyed (3.9)

Taking D; =0, for 1<i <k, a particular solution y,(t) of (3.4) satisfying Yg,h)(tl) =0, 0<h<n-1,
is given by i ‘
t
yp(t) = ‘):ly,‘(t)n,.(t) = J . {.Zlyi(t)T’-n(a)f(s)}ds (3.10)
1= 1=

From the previous comments and Lemma 2, the following result has been proved:
THEOREM 3. Let {Y;1<i<k} be a k fundamental set of solutions of equation (1.5) in J,
where Yi()eCrman, and nj+.--+np=nm. If f(t) is a continuous function in J and
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T(t):(Tij(t))=(G(t))‘1, with T;{()6Cn zns for 1<i<k, 1<j<n, and G(t) is defined by (3.2),
then the general solution of (3.4) is defined by (3.5) and R(t) takes the form (3.9) for 1<i<k.

4. MATRIX SERIES SOLUTIONS: CONSTRUCTION, CONVERGENCE AND
APPLICATIONS.

Let us suppose that Pj(t) is an analytic matrix function in |t| <a, for 0 < j<n-1, and let us

consider the power expansion

Py =Y Ph,jtj, lt] <a, Py ;Comgm 0Sh<n—1, ;>0 (4.1)
i20
Let zeC,,p with p <m, and let us look for solutions of equation (1.1) of the type
X(t) —( Z c tf> 1Z0<t<aC; ECmzpr (4.2)
j>0

where tZ = ezp(Z1n(t)). Taking formal derivatives of X(t) given by (4.2) and substituting into
(1.1) one gets

_1
"y "H (Z+G- s)I)tZ+(J—n)I+t""1{Z Pyt }

i>0 s- ji>0

{Z C; H Z+(G-nZtl-n 1)1}+...+t

8_

{ Z Py it }{ ZC-(Z+jI)tZ+U—I)I}+{'Z Po'jtj}{’z CjtZ+j’}=0

—1 —2
{20 C; 1'[ Z+3G-9)D)+ 2 Pn_1,j-Ca H(Z+(q—s)1)+
iSol sz

J J .
+ ) P CyZ+aD+ Y Py i Colt tZ =9 (4.3)
q=0 ’ q=0 !
that may be written in the form
— J .
zZ
[Z { H (Z+G-s))+ Z E v i—q q H (Z+(q-9D+ ) Po,j_ch} ,J}, =0,
i20 a = s=0 ¢g=0
(4.4)
Equating to the zero matrix the coefficient of t0 appearing in (4.4), it follows that coefficients C f

must satisfy

Co 1'[ (Z-sI)+ ZP .0Co 1'[ (Z—sI)+ Py oCy=0 (4.5)
=0

Now we are interested in writing equation (4.5) in the form of equation of the type (1.4) for C,.
If we denote by M, (2)- ﬁ (Z = sI), then equation (4.5) takes'the form
s8=0

n-1
CoM,, _1(2)+ ZIP',’ 0CoM, _1(2)+ Py ¢Co=0 (4.6)
r=

If we equate to the zero matrix the coefficient of t/ for j>1in (4.4), we have

n—1
CiM, _((Z+iD)+ Elpr,OCer—l(Z+jl)+ Py, oCj=D;i>1 (4.7)
r=
where
_ j-1
Z v j—CaMr_1(Z+a)+Py ;_ Coand D;= — EoAq (4.8)
r= q:
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depends on the previous coefficients Cg,C|, - - -,C -1

Easy computations show that

n
M. (2)= I'[o(z-sn H (Z -s1))Z = Pp(2)Z,Pp(2) = I'[ (Z -sl)
s= s=1
and

Pp(Z)=2"+A, 2" '+ 44244,
where
Ac=(-1)""Sp n_Spn—c= 3> ijig- - rip_cJ,1<c<n—1,
1<ij<-"<ip_c<n
Spn=nl,S, g=1

and the sequence S,, . is related by the recurrence relationship

S5p,0=DSnc=nS,_j - 1+(r=1S, o 1+ - +cS pfori<e<n

c—-1,¢c—-
Hence equation (4.6) for Cy may be written as an algebraic matrix equation of polynomial type of
the form

CoZ™ + 5_: T,CoZ? +TyCy=0; (4.9)

J-
Ty=Pggoand T;= ZP 0B(r,;).B(r,;)—(-1)'“15,_1 oy 1<i<n-1 (4.10)

J!
while (4.7) may be written in the form
n—1
CAZ+iN"+ qgquc {Z+iDT+ Py oCi=D;, (4.11)
with

= zlr,(j—q..‘)cq(z+q1)‘+Po' i—CoTali-ai)= ZP, j_gBriD;= - Z Aq (4.12)

Note that from Definition 1, equation (4.9) means that (Cy, 2) is a (m, p) co-solution of equation

VAT, VP le 4TV Ty=0 (4.13)

where T €Cmzm is defined by (4.10), for 0 < j<n-1. If we take P = Z+jIesz,,, and we assume
that the matrix H defined by (2.1) satisfies the condition (2.14), ¢(2) = }3 o% 7 is an annihilating
polynomial of H, and M = M WW=W,)=M" 1 and D= diag(Z,, - - Zk), satxsfy the condition
(2.3), then, from Theorem 1, the unique solution C; of the matrix equation (4.11) is given by

r v r

CJ.={ DD 2 a,My, 20~ w, oDAZ+3D" ™ "}{ 3 a,,(z+j1)"}'1. i1 (4.14)
v=1 h=1 s= v=0

Note that from Theorem 2, a k-complete set of co-solutions of the algebraic matrix equation

(4.13), is defined by {(M,,,Z,);1 <s <k}, where M,, and Z, are given by (2.3). Thus we may

take as Z as each of the matrices Z; and C((s) = My, for 1<s <k, in the series solution given in

(4.2), we obtain
X(t,5) = U(t, s)t%s =( b Cj(s)tj>izs, O<t<a, 1<s<k (4.15)
d J2>0
an
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r v r
cj(,)={ Z_: Z Z ayM 1, 287 WD (s)(Z, + jI)""'}{ 3 av(Zs+jI)"}"l, (4.16)

h= =1 v=
n—1 . j-1
Ags) = 'ZlT‘(j - 0.i)Cy(s)(Zs+ql) + Py, j— ¢Cql8). Djs) = - ZoAq(s). 1<s<k (4.17)
1= q =

where T,(j - ¢,i) is defined in (4.12).

Now we prove that if (Cy,2) is a (m,p) co-solution of (4.13) and C; is given by (4.14), for
j 21, then X(t) defined by (4.2) is a Cy,;, valued solution of (1.1). From the analyticity of Py(t),
for 0 < h <n -1, the coefficients Py ; of (4.1) satisfy the inequalities

"Ph‘j”ijL. for0<p<a, 0<h<n-1, j>0 (4.18)
Let M be an upper bound of || T; || for 0<j<n-1, then from the definition of T, we have
NTWG-ai)ll SNGT™9, N=nM, 0<g<j-1, 1<i<n-1 (4.19)

Taking norms in (4.11) it follows that
n—1
DIl 2 €2 +iD"| - "q;quCj(Z‘*ﬂ)qll = 11PgoC;ll 2
n n ) — n-1 )
2 16 (" + Z(q)] qzq)" - Z DTN NCHl N2+~ 1Py ol 1IC;I
Z{J’"- (q)J" MNzy?- ZN||Z+JI(I"—||P00II}IIC il (4.20)
q =
From (4.12) and (4.19) it follows that

J=ln-1 .
121 € 3 3 ITG-ad NG NZ +al N4 1P Il 1Cql

< Z {Zp" IINNZ+al|} |+L}uc I

i=1
< Zop““(nzv( 1z1 +9" =1+ D)lic,ll (4.21)
q

Let ji be the first positive integer j such that

n n—1
M- Zo(:,')j"-"uzu"— L NIZ+511= 1Py ol >0 (4.22)
9= 9=

and let us define by {y ;} the sequence of positive scalars such that

7;=11C;l,i=0,1,2,-- -, jp—1 (4.23)

and for j > jj let o j be defined by the equation

{, '(JZ ) "uzu"+~2 IIZ+JIII"+||P00”)} 7j

z P TIN(Z ] +0" T 4 Ly (4.24)
q=0

From the definition of y j it follows that
llell Svjp 320 (4.25)



100 E. NAVARRO, L. JODAR AND R. COMPANY

On the other hand, from the definition of y j it follows that

j—1 .
Y AT T NI ZI " T e D+ o T I NN Z )+ )T L

j+1
vj+1ltl ¢=0

= |t
7j|t’J I I . n L ny . n—gq q n=l . q
GHO"- Zl(,,)mn Nz|?+nN 21||Z+u+1)1|| + 11 Pooll 2;
= q:

n n—1
j"—( S MZNHN Y Nz )0+ IIPo,olI)MN(IlZlI +" Ly
_'” g=1 g=1
=

n n—1
{u+x)"-(azl(:;)m1)""'||zuv+~ L 124G 1 Pyl }7,. (4.26)
= q:

Taking limits as j—oo in (4.26) we obtain that this limit is |¢|/p and thus the series
U(t,2) = z I Cjtj || is convergent for |t| <p<a
i20
Let us consider {(M,,,Z,); 1 <s <k} be the k-complete set of co-solutions of the algebraic matrix
equation (4.13) where T f for 0< j<n-1, are given by (4.10). Let us construct the set of series
solution of equation (1.1) of the form

X(t,8) = U(t,c)tz L ( .z>:0c j(s)tf)nz 5, Cyls) =M, 0<t<a 1<s<k, (4.27)
j2

where M = (M) and (Zy, - - +,2;) satisfy (2.3) with W =(W ;) =M~ 1. Now we prove that the set
{X(,s);1 <s<k} is a k-fundamental set of solutions of equation (1.1) in the interval J =(0,a).
From Lemma 2, it is sufficient to prove that the block matrix function G(t) given by

Glt) = (G Gy® = X0~ V(1,551 <3 < m,1 <5 S K Gy (DeCmen,

N+ tn=mn0<i<a, (4.28)

is invertible in Cp, 7y, for some ¢,€(0,q).
Direct computations show that G(t) = (G;(t)) defined by (4.28) may be written in the form

G(t) = diag(I,t =11, .. ¢t—n+ 11)(H,.,(¢))diag(zz 1.0k (4.29)
where
Hy,(0)=U(ts)
Hy () =0V, )t +U(1,5)Z,
Hy,(0) = U (1,902 + 20 (1,0)2, + U(1,0)2,(2,- 1) (4.30)

Hy()) = U~ Vit =L (T o= D)2, =24 - 4 (2= Do, 0)2,(2, - 1)+ - (2, - (= 2)0)

Note that from (4.29), G(t) is invertible at t¢(0,a), if and only if H(t) = (H,,(1)) is invertible at ¢.
On the other hand, from (4.30) it follows that

- -
Co(1) Co2) . Co(k)
Co(1)Z, Co(2)Z, Co(k)Z,,
HO)=| Cy()Z2(Z2;-1) Cy(2)2x(Z5-1) . Co(k)Z(Z, - 1) (4.31)

n—2 n—-2 n—2
co [T z,-in cy@ 1 (z5-iD - Cok) T (2, - in
i=0 i=0 i=0 i



HIGHER ORDER FUCHS TYPE DIFFERENTIAL SYSTEMS 101

Since {(C((s),Z,);1 <s <k} is a k-complete set of solutions of equation (4.13) from Lemma 1, it
follows that the matrix H(0) is invertible in Cpppzp,,. Note that H(1) = (H, (1)) defined by (4.30) is
an analytic function in |t| <a and from the invertibility of H(0) and the perturbation lemma,
([10], p 32), there exists a positive number b with 0 <b < a, such that H(t) is invertible in (0,5).
Taking t; in (0,b), it follows the invertibility of H(t)) and G(t;). Hence the following result has
been established:

THEOREM 4. Let P,(t) be an analytic Cy,;,, valued function in |¢| < a whose power series
expansion is given by (4.1) for 0 <h<n-1, and let H be the matrix defined by (2.1) where T, is
defined by (4.10) for 0<h<n-1. Let ¢(z) = "éoavz" be an annihilating polynomial of H and let
M=(M; )W=W,)=M""and 2,2y, - - -,Z; be matrices satisfying (2.3) and let X(t,s) be the
generalized matrix power series of the form (4.15)-(4.17) constructed in terms of a k-complete set
of co-solutions {(Cy(s),Z5),1<s<k} of the algebraic matrix equation (4.13). Then
{X(-,8);1 <s <k} is a k-fundamental set of solutions of equation (1.1) in the interval (0,a).

Now let us consider the non-homogeneous system (1.3) where g(t) is a continuous function in
(0,a). Let V(t)=(H(t))~ ! where H(t) is defined by (4.30) in terms of the k-fundamental set of
solutions of (1.1) given in Theorem 4. Let us consider a block partition of V(t) of the form

V()= (VO Vij(eCngm 1<i<k 1<j<n (4.32)

Then from Theorems 3 and 4, the general solution of (1.3) in (0,q) is given by
t

k k - 2.
z(t) = Z X(t.i)D; + E X(t,4) I u Z'Vin(u)(g(u)/u)du,DieCnizl. (4.33)
i=1 i=1 i
1
where we have taken into account the following expression for the inverse of G(t) defined by
(4.28):

(G@)~ Y = diag(t~ z I z ky(H(t)) ™ Miag(I,t1, - - -, e~ 11) (4-34)

and that system (1.3) may be written in the form

MO p,_ )+ +17"Py(t) =t ™ "g(t),

Since X(t,i) = U(t, i)tz", expression (4.33) may be written in the form

k Z. t _z. ;
()= Y Ui D,.+Iu iV, (u)(g(u)/u)du (4.35)
i = l t
1

and from the comments previous to (3.10), a particular solution of (1.3) which satisfies
y(h)(tl) =0, for 0 <h<n-1, is given by
k L,
0= 3 U0 [0 fuatw) )i (4.36)
1= t
1
In order to construct the solution of (1.3) which satisfies the initial conditions

=(t) =gzt =y, - -a" D=, (4.37)

where €3eCpnzy for 0 <h <n—1, it is sufficient to take in (4.35), constants D;C 1<i<k, such

that

n;zl’
D, .
D, 0

G(tl . = M (4-38)

n—1
Dy
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From (4.34) and (4.32), it follows that
-2 L] ] -1 .
D;=(t)” 1Y Vi)Y " ey, 1<i<k (4.39)
i=1

where I,,, denotes the identity matrix in C,,,, Summarizing the following result has been
established:

THEOREM 5. Let us consider the hypotheses and the notation of Theorem 4, where g(t) is
a continuous function in the interval (0,a). Then the following results hold:

(i) The general solution of (1.3) is given by (4.35), where Di‘cnizl is an arbitrary vector
for1<i<k.

(ii) A particular solution of (1.3) satisfying ‘(h)(‘l) =0 for 0<h<n-1, is given by (4.36).
The unique solution which satisfies the initial condition (4.37) is given by (4.35), where D; is
determined by (4.39) for 1 <i<k.
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