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ABSTRACT. A classical Fock space consists of functions of the form,

(0, 1,..., Cq),
where 0 e C and Cq e Lp (Rq), q _> 1. We will replace the q, q >_ 1 with test functions having
Hankel transforms. This space is a natural generalization of a classical Fock space as seen by

expanding functionals having abstract Taylor Series. The particular coefficients of such series

are multilinear functionals having distributions as their domain. Convergence requirements set

forth are somewhat in the spirit of ultra differentiable functions and ultra distribution theory.
The Hankel transform oftentimes implemented in Cauchy problems will be introduced into this

setting. A theorem will be proven relating the convergence of the transform to the inductive

limit parameter, s, which sweeps out a scale of generalized Fock spaces.

KEY WORDS AND PHRASES. Generalized Fock Spaces, ultra distributions, Hankel

transforms, Abelian theorems.
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1. INTRODUCTION.
The test space, g,/ e (-o0,oo) consisting of continuous complex-valued function defined on

the q-dimensional orthant, Eq {t e Rq: 0 < 7 < o0, (1 < 3’ < q)} and its dual space, :, are

excellent candidates for examining the Hankel transform (Brychkov and Prudnikov [1], Koh [2],
Pathak and Singh [3] and Zemanian [4]). The Hankel transform in this setting investigates

spaces having test functions, e g, defined on a finite number of independent variables. By
this we mean the independent variables of a test function, (tl,...,tq) e has finitely many

independent variables, (tl,...,tq), belonging to Eq. Our present development will indicate a

process whereby the independent variables, t.r, 1 < 7 _< q, can become infinite in the sense that

the dimension, q

The Hankel transform in classical analysis is oftentimes implemented to study abstract

Cauchy problems involving the Bessel differential operator (Pathak [5]). Our main effort,

however, will be to extend the transform to our spaces defined as generalized Fock spaces.

The need for this is essential in modern physics. A system whereby the number of particles

are theoretically described to become infinite can be modeled by a state vector belonging to a

direct sum of Hilbert spaces. The basic Hilbert space, : n, usually selected is the space of

Lebesgue p-integrable functions, LP(q) and the state vector, q, belongs to a direct sum of these

Hilbert spaces, n. This direct sum is generally called a Fock space. A complete
1--0
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development in this setting can be found in reference (Bogolubov et al [6]). A state vector,

belonging to this Fock space is described by an arbitrary sequence, I, {I,q}q 0, satisfying the

condition, I, a__ y q’q < o. The Fock space is equipped with the natural scalar
q=0

product given by the fdrmula,

(,) aq (q,q),

where each (,I,q,tI,q), q > 0 is the inner product given with the Hilbert space, :Bq. A principal

problem with this development together with the test space, :Bg, is that the kernel of the Hankel

transform is not a member of the test space, , and the Dirac delta is not a member of the

space, LP(Iq), (Zemanian [4]). These problems are overcome when one defines the

distributional Hankel transform, H, p_>-1/2. These will be briefly reviewed in section 3.

However the number of independent variables belonging to the q-dimensional orthant still

remains to be finite.

Our present development will implement the procedures developed in Schmeelk [7] together
with a general setting developed in Schmeelk and Takai [8]. With these settings in place, we

will then extend the Hankel transform into inductive and projective limit spaces (Zarinov [9]).
These spaces will enjoy all of the classical Hankel transform results together with an approach
to solve the infinite number of independent variables problem.

We will conclude our paper with a generalization of the Hankel transform for the Dirac

delta functional, 6(k)(m+P), into our setting. The transform for 6(k)(m=+P) is developed in

Aguirre and Trione [10] and is based on the notion of distributions applied to surfaces (Gelfand
and Shilov [11]). The extension of a particular case of 6(k)(m2+P) will then enjoy the infinite

number of independent variable setting.
2. SOME NOTIONS AND NOTATIONS.

We begin with recalling some fundamental conditions placed on our sequences of positive

constants and sequences of functions. The prerequisites on the sequences lead us in a natural

way into the approach in [12] and then into our generalized Fock spaces.

Throughout the paper we suppose that a monotonically increasing sequence of positive real

numbers, r (mq)qd0, is given. We assume that conditions (Ma)-(Mz) from [12] are satisfied:

(M) m2q < mq_mq+ 1, q 1,...

(Ms) 3A, H mq < A.Hq.mq, =0,.
mq_ + q

(Ma) q----l #
It is convenient to take mo 1. One easily checks that, for instance, the sequence

mq q!a, a > 1, satisfy the three conditions, (M)-(Ma).
We next suppose that a sequence, o (Mp(’))peo, of continuous functions on q is

given. We require the usual conditions, (e),(i) and (i) hold as in reference [13] as well as the

inequalities,

Mo(t)_< M(t)_< tRq.

Then, an infinitely differentiable function, 4(t), on n is in the space, %(Mp), if for every p 0
the following norms are finite,

b p sup{Mp(t)lDJbl:t e Rq, J7 -< P’ _< 7 _< q}, (2.1)
where

Djq, _a__ 0jl+’’’+jq

Oti’... OtJqq *(t ,tq).
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The family of norms, ([[. p)peN0, defines a locally convex topology on %(Mp)which in view of

condition (P) turns this space into a Fr6chet space. It also has several other mathematical

properties. For a detailed account of spaces of type %(Mp)see references [11, 14].
Let us denote by [[. following norm on %’(Mp),-p

x II-p sup {l(x,)l: p --< 11}.

Observe that the sequence of norms,{ I1" II-p}pe0, satisfies x 0 _> x II- -> for any x e

%’(Mp). The sequence of positive numbers, r (mq)qdlo, and the sequence of continuous

functions,-’0 (Mp(’))pd0, will play an essential role in the definition of the generalized
Fock space, Fr’’g, in Section 4. Throughout the paper the notation, N, will indicate the

natural numbers and No indicates the natural numbers and zero.

3. THE SPACES,Yz AND Y.
We briefly recall the definition of the spce, . For brevity let Iq denote the set of q-

tuples, i= (i, ...,iq) of nonnegative integers, iT, 1 q. A continuous complex vMued

function, (), defined on Eq will belong to the space, , if for ech pair of q-tuples,

p (p,...,p) d k e Iq, hen the condition,

a sup[[t]p[S((t))[:teEq,kT<p l<7<q]< ,(t) p

is satisfied. Herein the notation denotes,

P P
[t]p .....tq, p e No,

and

sk((t)) [ t-’--O k -,-1/2.=i( " 0t,) (t,) (tl,...,tq).

The Hkel trsform, H#, - is then defined on the space, #,

tyv Jz(tTy)dt,...,dtq._N__.Y,...,Yq_
0 0

The Nncion, Jo(y), (1 7 q), -, is he Bessel Nnction of the first kind given by the

formula,

oo (_l)n 2n+;u
J.(w) n!r(n++l) ()n=+

Several properties regarding this definition of the Hankel transform on functions defined on R’

can be found in reference [4] and the Rq, q > 2, case in reference [2].
For/ _> -1/2 the generalized Hankel transform, H defined on distributions, Fe , is taken

to be the adjoint of the Hankel transform, H/ given by the equation,

(HF,) a= (F,H), (3.2)
for every e / and F e . A survey of the many properties for this definition of the

generalized Hankel transform can be found in references [4, 5, 14, 1].
4. GENERALIZED FOCK SPACES, Fr’’At.

Let the sequencer= (mq)qe and .Ao (Mp( .))pel be given with the properties given

in Section 2. We then define
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aq: %’(Mp).x "L" x %’(Mp) - C
q-copies

to be a multilinear continuous functional, q e N, and by definition select ao C.

formal sum

aq[ ],
q=0 q-spaces

is in the space, Fs’r’Ag, ) 1, if the norm,

(P) {.[[aqllpmq:qeO}sqI1111,, up

(4.1)

Then the

(4.2)

(4.3)

is finite for every p e No. Here

[[aq[) sup {[aq[x,...,x][" [[x[[ _p _< 1, xe%(Mp)). (4.4)

Recall the definition of x _p as given in expression (2.2).
REMARK. Physicists prefer to represent the elements from our generalized Fock space,

I’s’r’Ag, as column vectors, for instance,

Since this is convenient also when working with the Hankel transform, we shall do likewise.

Let us first observe that in view of (4.3) and (4.4), the canonical inclusion

rs’r’A - rs’,r’Ah, (4.5)

is continuous provided that s’ > s > 1. So in view of reference [9], we can now give the

following definition.

DEFINITION 4.1. A generalized Fock space, Fr’Mh, is the inductive limit of the spaces,

Fs’r’A, i.e.,

Fr’’A ind Fs’r’’A’.

For the development of the inductive limit one can consult reference [9].
the state vectors, as already indicated, satisfy constraints of the form,

In quantum theory

(,) Ik0l + [kq(tl,...,tq) dtl,...,dtq< o.
q= 1Rq

In keeping with the spirit of such a constraint, we shall indicate that the elements from the

inductive limit, I"r’Ab, are Lr summable for any re(1,oc). For this result we cite a well known

lemma.

LEMMA 4.1. Conditions (M1) and (M3) on the sequence, r {mq}qeN0 imply that for

any real number, t, we have
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Itlq
(4.6)mq< c.

PROOF. See reference [8].

The state vectors, (I’ Fr’ML, can also enjoy an alternate representation called its kernel

representation. However for this to be true we must require that each member, Mp(.)e ML0,
decrease sufficiently fast as infinity so that our test space, %(Mp), for example contain the rapid

descent test functions [7]. Assuming this to be true, we briefly review the kernel construction.

Since each aq, q >_ is a multilinear functional on %’(Mp) x...x%’(Mp) we can define

q-copies

Cq(to,...,tl _a_ aq [St’ "’"Styli
where each 5to (1

_
7

_
q) is the translate of the Dirac delta distribution.

translate satisfies

(4.7)

Recall this

(6t (t)> (t97) (4.8)

for every test function, (t) e %(Mp). As was shown in reference [S], each Cq(tl,...,tt defined

in expression (4.7)is a rapid descent test function. Thus for each C e--(Fr"AL), we have an

alternate representation,

o

, (4.9)
Cq

where ao & o is a scalar and Cq, q _> 1 are each defined in expression (4.7). We use this

alternate representation given in expression (4.9) when,addressing the dual space of Fr’’Ah.
\

5. GENERALIZED DUAL FOCK SPACE
We now examine the dual of the inductive limit space, "rr’0)’, by first analyzing the dual

to each space, rs’r’l’. The dual is presented in the spirit of ,reference [7]. In our present

environment a member, F, belonging to the dual, "\rs’r’l’), will also enjoy a sequence

representation,

F (Fo,F1,...,Fq,...)

where Fo is a scalar and Fq, q _> are tempered distributions of order _< m. Moreover, F
satisfies the constraint,

sup (p)

E (s)q(m)IIFq[[p < oo.
q=O

(5.1)

The value, ((F,)), is computed as
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((F,H}) (Fq, Hq) (5.2)
q=0

where Fo and o are scalars and Fq, Hq q _> are the already respectively(, defined tempered

distributions and rapid descent test functions. We can now equip, (Fr’Ml’) with a projective

limit. Again projective limits are extensively developedin reference [9].
6. THE HANKEL TRANSFORM IN (rr")’.

sr.0We first exaxmne the Harkel transform n each pace, I" T e space , already

defined in section 3 consists of functions defined on the q-dimensional orthant, Eq, and each

member satisfies

q
t-10t} (t) (t,,...,tq) :teEq,k7 < p, < 7 < q} < cP=sup

for every p e No In this section we identify a H e Fs’r’Ml if and only if it has the

representation,

o

H (6.1)
q

where 0 is a scalar and Hq e Y.# (IRq), q > 1, # > -1/2.
condition,

Moreover each H must satisfy the

=sup "qelo < cxz, (6.2)

for every p

LEMMA 6.1 If H e Fs’r’Ml’, then H enjoys the sum integrable property

Illlll 101 + IHq(t,...,tq)l dtl,...,dtq< cx. (6.3)
q-I

PROOF. We decompose the q-dimensional orthant, Eq, into its q-dimensional unit sphere,

Sq={0< Ht+...+,l<l and CSq={l_<v/t+...+tt<oo}. Thus we have Eq=Sq oCSq.
First since Hq(ta,...,tq) e :gu(Rq) we have that

I
Sq

I[t+/2 ""t+/2][t#-/2 ""ttu-1/2](t"’"tq)dt’" .,dtq

-< f
Sq

f tf+’/z t+’/’dt"" .,dtq < . (6.4)

Secondly (t,...,tq) is of rapid descent t [4] so by a generalization of the prf in

reference [17, pg. 434] the desired result easily follows.

DEFINITION 6.1. The Hkel trsform , - is defined on each rs,r,0
follows;



HANKEL TRANSFORMS IN GENERALIZED FOCK SPACES 265

where

Ht(O), - (6.5)

0q [Hp Cq)J
H#(q) I Cq(t, ,tq) I (ty7 )’/J# (t.ry)at, dtq (6.6)

.7=1Eq
forq_> 1.

LEMMA 6.2. E, p > -1/2 is well defined for every Fs,r,Ah0.
PROOF. We decompose the q-dimensional orthant, Eq, into the portion contained in the

q-dimensional unit sphere, Sq {0 < Ct+...+tl < 1} and its complement, CSq {1 <
+... + tl < oo}. We then have Eq Sq o CSq. We will estimate the integrals over Sq and

CSq. The estimate over Sq will use the formula (18, pg 75] for the volume of a unit sphere Rq.
It is given by the formula

2 rSq q r()’ (6.7)

where I’() is the classical Gamma function. We select a e[’s’r’’0 and our norm requirement

given in expression (6.:2) for p 0 implies

fi l(t.)-tt-’/2(t1,...,tq)3’=
sup
q q

-mq
< C

thus sup
q

and likewise for p 2 we have

(t.r)-t-x/2(t,,. .,tq)
7=1

Csq-< mq

(6.8)

sup
q (t7)2 (t)-g-’/2(t,,...,tq) Csq< mq

Next we examine each component in Eq Sq t3 CSq. We see that

)1/2Htt(q)= I Cq(ta"’"tq) 1ty7 J/t (t-rYT)dtl"" dtq
Eq 7

I
Sq

ICq(tl"’"tq)
7=1
fi t’y7 Jtt(t’yT) dtl""dtq

+ I
CSq

ICq(tl"’"tq)
7=1
fi t’y7 Jtt (t’ryT) dt,.., dtq. (6.9)

We also have for # > -1/2 that

J#(tTYT) O(t+’/) (6.10)
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as t - 0+ and

J,(ty3. 0(1)

as 3, cx) for _< "y _< q. Employing these two observations into expression (6.9) gives us

3,=1
]tP+’/[ la;q(tl tq) dt,.., dtq

4- I
CSq

I (K’)q ]q(tl tq) Idtl... dtq

t/-1/Kq I
Sq

I fi [tt+l/212i#-l/21q(tl,’",tq)ldtl"’dtq7=1

4-(K’)q I
CSq

I fi t1/2
"),=1 t- Iq(t,,...,tq)[ dr,.., dtq

=Kql SqJfi t.r2#4-1 t/t-’/: ICq(tl,...,tq) dt,.., dtq

+ (K’)qIcsq I fi 1 ’tr ,dr1. dtq
t=l 7 [ql(tl .,tq)

(6.11)

(6.12)

(6.13)

(6.14)

Kqcsq I fi It’r2/ + 11 dr"’" dtq (6.15)< mq I
Sq 7=I

(K’)qc’sq I 1 dtl. dtqmq ICSq 7=1-
Kqcsq [- ’q/:] (K’)qc’sq

< mq r()J + mq (6.16)

r() + (K’)q C’

(s)q [2Kqcrq/2 + (K’)q C’]

(6.17)

(6.18)

(K")q. C"sq
< mq (6.19)

where K" a__ max{Kr, K’} and C" a_4 max{C, C’}. We now consider the sum of the components
for the vector,
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which gives us

Iol q(t, .,tq) It.ry7 (t,yo) dt.., dt7 (6.21)
q= 7=1

oo (K,,)q C-sq c (K,,s)q_< Iol + mq -Iol + c" mq < oo (6.22)
q=l q=l

whenever we select s’ K"s and the use of lemma 4.1.

THEOREM 6.1. The Hankel transform ,,, u _> -, is a lineax continuous transformation

on Fr’Mt’.
PROOF. We consider the Hankel transform, p, /z _> -1/2, restricted to anyone of the

spaces, Fs’r’’cg, s >_ 1, comprising the components of the inductive limit space, Fr’. Then as

in reference [2] we have

P,/ {llH/(q) llp mq }sup q Mo (6.23)IIIxv(O)llls,,r,.% (s’)q

where

H,() sup
p kT_< p

l_<7_<q

I’Iy
q p Y,- (yT)-p-/2 H/(q)

7=1 7
(6.24)

q P -1 )’Y7’-/-/2sup I’I Y7k7 < p 7=1y7
_<7_<q

q )112f q (tl,...,tq) 7rllt,y7 j/ (t.ryT)dry.. dtq
Eq

kT<P Eq 7=I
l_<7_<q

(6.25)

q k
l’I t.r7 y kf+P

j/+k77=1 (t’rYT) dt’’" dtq

sup jqq(t,...,tq)( 1)k ( lt-/*-/2kT<p 7
l_<7_<q

(6.26)
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I’I t yt-ko’ )dr,. dtq
7=1 J/+kT+p(Xy7

k7 < p Eq\-I
l_<o’_<q

J/+k7+p (tyT) dt dtq.

Equation (6.27) was obtained by integration by parts as in reference [2, pg 430-431] and so the

limit terms vanished since (t) is rapid descent as -, cx while

x/2 J/ + l(to’yo’) O(to’) (6.28)

and (t) =O(1) (6.29)

as to’ -, 0+, 1 _< O’ _< q. Also if po’ is an integer no less than/ + p + 1/2(P+l) then

for to’ > 0 and _< O’ _< q. Thus equation (6.27) gives us

(6.30)

J/+ko’+p (tyo’) dt.., dtq.

q PO’+
< J l’Ii(1 + to, (t- Dt)l [t]-U-l/2(t).
Eq q

O’I l+t1/2 dtl"’" dtq. (6.31)

tT)p7 +We now expd (1 + 7 , g 7 q, using the binomiM theorem d obtMn the

estimates,

P+I (p+l)(p:l; (p+l +1 +lt forl7 q.(1 + tT) + +’"+
P7 +

7 S 2P7 P7 + )

Implementing this estimate into equation (6.31) will give us

po’+l
(1 + to’) (t-lDt)p [t]-#-/(t).

-1
(6.32)
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q B7
7-I

q 2(p7+1)
71t7 (t-’Dt)P [t]-#"/2(t).

q 2pT+.B7II +t d... d
7=1

+

Now we return to our initial endeavor and compute

p,u {I]H/(Tq) ll mq No}I(o) I,,,.o-- sup
(s’)q

:qe

_< sup { (P7+1)’mq
/

qello}(s’)q

(6.33)

Cq .mq:(P,7+’)
sup sq (s,)q :qeNo (6.34)

Selecting s’ > { 2pT+’. B7 will give us the desired result.

COROLLARY 6.2. The Hankel transform y./,/ >-1/2 is an automorphism on the space, rr’0.
PROOF Since we apply our Hankel transform, :y./, t >-1/2 to each component, Cq(tl,..., tq), of

the vector, q, e rr’’%, we can apply the classical theorem [4, pg 141] to each component. As in

that "result the Hankel transform is its own inverse namely %/ %1 for/ > -1/2 on each of our

components. Since we have equipped, rr’*0, with an inductive limit topology in s we have for

each s and s’ such that our Hankel transform is one to one and 9nto between rs’r’*0 and

rs’’r’o. The theorem 6.1 in this paper proves the continuity in both directions making it an

automorphism on rr’’%.
7. THE HANKEL TRANSFORM OF THE GENERALIZED DIRAC DELTA

FUNCTIONAL.
One of the principal distributions utilized by physicists is the celebrated Dirac delta

functional. Clearly in a contemporary setting the Dirac functional must be admitted into a

generalized Fock space. There are several applications where this is beneficial and we merely

select the application of annihilation and creation requirements as put forth in reference [8].
0We select for > 0 our generalized Fock functional,

1

t,0.
6t (7.1)
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where o (R) (R) 6to is the tensor product of q-copies of the translated Dirac delta functional

already defined in xpression (4.8). We immediately verify that for p > 1,

(P) o0 sq
IIl-[s,r,0] q 0 q 0

making the generalized Delta given in expression (7.1) a member of ,Fr’"tt’/.
DEFINITION 7.1. The Hankel transform on the space,"\(I’r’Ml’), is defined by the

formula, ((HF, O>> a__ <<F, HtO>> for/ _> 2"
We see from reference [15] that this definition for the generalized Hankel transform applied

to the generalized Dirac functional given in expression (7.1) results in the vector,

t/Ju(ty,)
(7.2)

Again recalling tfi6-, J/(ty.)= O(y+’/’) as y,-*0+ and

as y.-, oo, 1 < 7 < q, it follows that the vector in expression (7.2) is a member 0) as a

regular generalized Fock functional. The term regular has the obvious definition extended from

the notion of regular distribution.

An alternate method must be selected for t9 when t91 =0. This is because our q-

dimensional orthant, Eq, does not contain the origin, lThus the delta functional concentrated at

the origin is not a member of H. If we include the origin and consider the closed q-dimensional

orthant, Eq, then the Hankel transform does not have unique inverses. For further

investigations surrounding this difficulty we refer the reader to reference [14].
To circumvent this difficulty we take an alternate definition for the distributional Hankel

transform of *(k)(m2+p) given in reference [10]. It is based upbn distributions on surfaces

developed in reference [11].
It defines the Hankel transform of a test function, $(t), to be

n-2

Hn- {(t)}(y) 1/2 I(t) -Y- Rn- (v/fi)dt
0

where Rm(W)a_ Jm(w) and Jm(w) is the Sessel function of the first kind given in expression
wm

(a.1).
We generalize this definition to the q-dimensional space, q >_ 2 to be

(1/2)q n-2

(Hn__2)(Y,,...,Yq) (t,,...,tq)I (t3,)-Rn__2 (yv/rtr)dt,,...,dtq.
0 0 7=1

The Hankel transform is then extended to the distributional setting using the same technique as

indicated in equation (3.2). Then the Hankel transform of the tensor product of q-copies of the

Dirac delta concentrated at the origin becomes
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1 (y,. y2...., yq)-n-.(2n/2)q[r()]q

Clearly for n2 > 0 and in particular if is an integer, we have a polynomial in [Yl so our

Hankel transform functional becomes a regular distribution and once again in our setting
( Ybecomes a member of rr’’0 However the functional

is still not a member of rr’’% given in section 6. Therefore we must use a domn space as

in reference [17]. This technique would provide procedures leading to excellent computational

results.
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