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ABSTRACT. According to general terminology, a ring R is completely primary if its set of zero
divisors J forms an 1dcal. Let R be a finite completely primary ring. It is easy to establish that J is the
unigque maximal ideal of R and R has a cocefficient subring S (i.c. R/J isomorphic to S/pS) which is a
Galois ring. In this paper we give the construction of finite completcly primary rings in which the
product of any two zero divisors is in S and determine their enumeration. We also show that finite rings
in which the product of any two zero divisors is a power of a fixed prime p are completely primary rings
with either J*=0 or their cocfficient subring is Zn with n=2 or 3. A special case of these rings is the class

of finite rings, studied in [2], in which the product of any two zero divisors is zero.
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1. INTRODUCTION.

All rings considered in this paper are associative with identity. Let R be a finite completely primary ring.
It is easy to see (ct. [5]) that [RI=p™, JI=p™', and the characteristic of R is p", for some prime p and
positive integers m,n and r with 1<n<m. If n=m, then R is of the form Zyn[x]/(g) and R=Z[a], where Z
is the ring of integers modulo p", g is monic polynomial over Zn and irreducible modulo p and a is an
element of R of multiplicative order p™-1. In this case Aut R, the automorphism group of R, is cyclic and
is of order r. These rings are uniquely determined by the triplet p, n, r ; they are called Galois rings and
are denoted by GR(p",r).

Let R be a finite completely primary ring. It is already known that any two coefficient subrings of R are
conjugate (cf. [4]). Also if S is a coefficient subring of R; then there exist m,, ..., n,in Jand G, ..., G, in
Aut S such that

(o}

m
R=5®Z©Sn' (as S - modules ) and nr=r Inl
1=1

for all rin S and for all i=1, ..., m. (This result is a direct consequence of theorems 2-2 and 2-4 in [6]).
Moreover the automorphisms 6,,..., 6, are uniquely detcrmined by R and S (cf. [2]). Thus we call 6,,...,
o, the associated automorphisms of R and the automorphism o, is called the automorphism associated
with m. Throughout this paper, for a given finite completely primary ring R, we denote by Ty, the set of
all (S, m,..., m,) which come from the above description. In addition, let F=R/J, and let F* and G, denote
the multiplicative group of units of F and R respectively.



464 Y. ALKHAMEES

2. THE CONSTRTUCTION.

CONSTRUCTION A: Let S be a Galois ring of the form GR(p",r) and F be S/pS. Also assume that s, t,
w, m are non-negative integers such that m=s+t+w and supposc that f is an injective function from {s+1,

. s+t} 1o {s+1, .., m}. On the additive group R=S@®F", define the multiplication as follows:

o [} o, [

n1g ot . . .
r .S _)=(r s + . rs ,r r y e
( o’r'l’ ’rm)(so’s1' Sm) ( oso P Eulrlsl M ,E'HISI 051 M 150 'rosm+rmso )

where u, are elements of F, ¢, automorphisms of F such that 6,*=id; for all i=1, ..., s and o,,=0," for all

1=s+1,..., s+t and r* is the image of r under the canonical homomorphism from S to F.
It can be casily venified that R is a ring and it is commutative if and only if o,=id; for all i=1, ..., m.

THEOREM 1: Let R be a finite completely primary ring. Then the product of any two zero divisors is

an element of its coefficient subring S if and if it is one of the rings given by construction A.

PROOF: Let R be a finite completely primary ring with F contained in S and (S, #/, ..., @) be an
clement of T,. Since SNSw'=0) and the product of any two zero divisors is in S, pr,'=0 for all i=1, ..., m.
But n'n," is an clement of pS; thus ®'n) is an element of p™'S for all i,j=1, ..., m. Suppose m/rw,\m'n,’" are
non-zero elements of pS with j#k. Then n,'n'S=n'n,'S=p™'S and we get m'm'=n'm o, where o is an

clement of <a>. Thus ©'-m,'a is an element of ann &, and subsequently it is contained in

pS ® ) Sn;‘«

h=1,h }k

This implies that 7' is an clement of

pS®Y® Sn;‘,
h=1,h |

which contradicts the assumption that (S, &/, ..., %) is an element of T,. Therefore for all i=1, ..., m,
cither m'n; is zero for all j=1, ..., m or ®'%," is non-zero tor only one j=1, ..., m. Similarly, we prove that
for all i=1, ..., m, either R’ is zero tor all j=1, ..., m or m'%,’ is non-zero for exactly one j. Assume w is
the number of 7' such that &%, is zero for all j=1, ..., m and A is the number of other ;. Let us reindex
7', ..M, in such a way that for each i=1,...,A there exists only one j=1, ..., m with n,'n'=p'0, ,where o,
is an element of <a>, and let f be the function from {1, ..., A} to {1, ..., m} determined by f(i)=j. Clearly
f is injective. Also, for all i=1, ..., m

,,.1a e _ %% e n-1a°|°f(-)
Paa =mm, 3= T Likay’

which implies that 6,,=6;" for all i=1, ..., A. Let s be the number of i in {1, ..., A} such that f(i)=i and t be
A-s. We reindex &', ..., T, such that f(i)=i for all i=1, ..., s and suppose o=y, for all i=1, ..., s. Put m=n'
foralli=1, ...,s and n=x ¢ for all i=s+1, ..., m, where if ¢ is in the image of f, say e=f(i), then

J -1

h h+1 .
o =M(a,, , )g( ), where g(h)=(-1)"""Tlo, , and a =1 otherwise.
€ ha1 o f ()F () a=h £ (1) e
It is easy to see that (S, 7,, ..., 7,,) is an element of T, with T, =p" for all i=s+1, ...,A. Now it follows

that R is isomorphic to one of the rings given by construction A.

The converse is easy to check.
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3. FINITE RINGS IN WHICH THE PRODUCT OF ANY TWO ZERO DIVISORS IS A POWER
OF A FIXED PRIME.

LEMMA 1: Let R be a finite ring of characteristic p"in which the product of any two zero divisors is a
power of p. Then R is completely primary.

PROOF: Let x and y be zero divisors in R. To show that x+y is a zero divisor, we can usc the
distributive properties to write (x+y)™ as a sum of products, each containing 2n factors (which are x's or
y's). Since each xy or yx is of the form p*, each of the summands of (x+y)> is product of the form
p*tp*2...p'n=0. Therefore x+y is zero divisor and hence R is completely primary.

PROPOSITION 1: Let R be a finite ring of characteristic p* in which the product of any two zero
divisors is a power of p. Then R is completely primary with either J*=0 or the coefficient subring of R is
Z.n, where n=2,3.

PROOF: Suppose J=#0; then there exist x,y in J with xy=p*#0. Since for any unit a in R, ax is a zero
divisor, we have (ox)y=p*. On the other hand, xy=p* implies that axy=op* and so op*=p*. Without loss
of generality, we can assume P2\ and deduce that p*(o-p**)=0. Since p*#0, we have o-p** is an element
of J. If u#A, this would imply that o is an clement of J which is not possible; hence p=A and a is an
element of 1+J. However a is an arbitrary unit and therefore Gg=1+J. Since R=G,UJ (disjoint union),
we have

IRI = IGgl+1 = 11431401 = 211

Thus 2 divides IRl and consequently char R is 2" If n>4, then 2,6 are zero divisors of R with (2)(6)=12
which is not a power of 2. Also n=1 implies that J=0. Thus n=2,3. Let S=Z,n[a] be a coefficient subring
of R, where a is an element of R of multiplicative order 2'-1 and let x,y be elements of J with xy=2"#0.
But (ax)y=2" implies a2*=2* and hence a=1. Thus the coefficient subring of R is Z,n with n=2,3.

4. THE ENUMERATION.

NOTATIONS: Retaining the above notations, assume k is the number of elements in {s+t+1, ..., m}
which are not in the image of f. Let all the &, in which i is not in the image of f be renamed as 8,, ..., 6,
and assume T,, ...,T, are the respective automorphisms associated with them. Thus we suppose that (S, «,,
e Mo Oy, ..., 6) is an element of Ty and G, .., Guy, T)s ..., T, are the automophisms associated with &, ...,
T Oy, ..., 6, respectively. We call (p, n, r, s, t, k, m, f) the invariants of R. In what follows we shall use
these notations.

PROPOSITION 2: Let R be a finite completely primary ring in which the product of any two zero
divisors is an element of its coefficient subring. Then (S, &/, ..., T, 6, ..., 6, ) is an element of T if and
only if

n; =Am + Zgijej + p'”&i (after possible reindexing),
g =q

0 = Zuo, + p"'1mi (after possible reindexing ).

=1

where A, are elements of F* and §,, &, |1, , are elements of F such that &, is zero if 6, is not the trivial
automorphism and @, is zero if 7, is not the trivial automorphism.
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PROOF: Using the fact that m'a=a" ', we deduce that for all i=1, ..., m-k, we have

T=)2AT +
1 =y
Gl-ﬂ

‘Eﬁ%+fkf

where A&, and &, are elements of F such that § is zero if o, is not the trivial automorphism. For all
i=1,....s+, lann m, 1=UV/p and so =, m,,=0 for all but one j, say j=h. Thus m,'m,, is a non-zero element of
p™'S, m,'m=0 for all j#{(i) and 6,=(0,,)"'=0, Thus A,=0 for all j except j=h. Let us put A,,=A, and redenote
7, by &'. Therefore

' n-1
m=%m+2%%+p g

Y =q
We can prove the rest of the proposition by using a similar argument.

THEOREM 2: Let R,R' be finite completely primary rings constructed over the same coefficicnt
subring S and having the same associated automorphisms. Suppose that (J(R))? and (J(RY)? are contained
in S and R,R' have the same invariants p, n, 1, s, t, k, m, [. Also suppose that (S, &/, ..., T,,, 6/, ....8,) is
an element of T, with ©t'2 =p'v, for all i=1, ..., s. Then R is isomorphic to R’ if and only if there exist
isomorphisms ¢, from S® S, to S®Sr,' (after possible reindexing) for all i=1, ..., m-k such that ¢,(m)=Am',
where A, are elements of F" such that

J

S _ .p -1 S _
xlxl =u v and Ahxf(h) =1

for all i=1, ..., s and h=s+1, ..., s+t, oSj<r.

PROOF: Let y be an isomorphism from R to R'. Then y(S) is a coefticient subring of R' and hence
there exists a unit x in R’ such that y(S)=xSx". Let ¢ be the composition of the conjugation by x and .
Clearly ¢ is an isomorphism from R to R' which sends S to itself and thus (S, ¢(w), ..., ¢(m,,). $(6,), ...,
®(6,)) is an element of T. Therefore for all i=1, ..., m-k

' ' n1
¢(ni) =)~in§ +5,Zﬂ|§‘jej +p éi

where A are elements of F* and & are elements of F such that § is zero if o, is not the trivial

automorphism. Forall i=1, ..., s

n-1,C

U
"W =p" o(u) = o(n?) = (o(m )2 =0ux ) =p" AT A, -

p
Thus

O, p' -1 .
AL = uv for some 0O<j<r.

Also for all i=s+1, ..., s+t

P = 0(x?) = (o(m )2 = )7 = AN 2 =p" AN
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It is easy to see that, for all i=1, ..., s+t, the mappings ¢, from S®ST 10 S®Sw' determined by ¢,(m)=Am,
are isomorphisms.

Conversely,let ¢, be the isomorphisms from S®Sr, to S®Sn, defined in the statement of the theorem,
where i=1, ..., m-k. It is easy to check that the mapping ¢ determined by

¢(ro+2r'n' + Zrlei) =r+ Zr' ¢'(n') + Zrle;
is an isomorphism from R to R".

NOTATIONS: Let R be a finite completely primary ring in which the product of any two zero divisors
is in its coefficient subring and let p, n, r, s, t, k, m, { be invariants of R. Assume p is the permutation on
the maximal subset of {s+1, ..., s+t} which is stable under f and ¢ is the number of cycles of p. Finally,
let

r
cl

a =a° foralli =1, ..58,

and N, be the number of mutually non-isomorphic rings of the form S®Sr, with the same associated
automorphisms ¢,, where n=p™'u,. Then from theorem 2 in [3], we have

1 if pis even and o is the trivial automorphism,
: 2 if pisoddand ¢ is the trivial automorphism,

p 41 if o, is not the trivial automorphism.

THEOREM 3: The number of mutually non-isomorphic finite completely primary rings in which the
product of any two zero divisors is in its coefficient subring, having the same invariants p, n, r, s, t, k, m,
f and with the same associated automorphisms is

(pr_ Z)t-c 131 N;'

=1
PROOF: If u,v, are elements of F, define u, v, if and only if

upl v'= )»ph”

| [} 1

for all i=1, ..., s, where O<j<r. By using similar method as in the proof of theorem 2 in [3], one can
deduce that the number of equivalence classes of this equivalent relation is N,. Define w, xt," if and only if
n=Amx, for all i=s+1, ..., s+t, where A, is an element of F such that AX,,=1. Let n, be the number of the
equivalence classes of this equivalent relation. Then n,=1 if i is not in the image of f and n=p*-2 if i is in
the image of f. But when f restricted to {s+1, ..., s+t} the number of elements in the image of f is t-c.
Thus
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s+t

Mn = (-2)7°

1=s+1

In view of the last theorem the required number is

s+t

(TN ([Tn) = @-2) TIN,

1=s+1

COROLLARY: The finite ring of characteristic p" in which the product of any two zero divisors 1s a
power of p is completely determined by its associated automorphisms and its invariants.

REMARK: Let R be a finite ring which has a p-ring as its coefficient subring and the product of any
two zero divisors of R is in its coefficient subring. By using similar argument as in the proof of lemma 1,
one can prove that R is completely primary. Thus the construction and the enumeration of such rings 1s
determined.
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