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ABSTRACT. It is proved that if R is a semiprime ELT-ring and every simple right R-module is

flat then R is regular. Is R regular if R is a semiprime ELT-ring and every simple right R-module

is flat? In this note, we give a positive answer to the question.
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1. INTRODUCTION.
In [1] Yue Chi Ming proposed the following question: Is R regular if R is a semiprime ELT-

ring and every simple right R-module is flat? In this note, we give a positive answer to the

question.

All rings considered in this paper are associative with identity, and all modules are unital.

A ring R is (Von Neumann) regular provided that for every a R there exists R such that

a aba (see [2]). R is called a strongly regular ring if for each a R,a a2R. Following [1], call R

and ELT-ring if every essential left ideal is an ideal of R. We call R a right SF-ring if every

simple right R-module is flat (see [31).
2. MAIN RESULTS.

We begin by stating following lemmas which will be used in proof of our main result.

LEMMA 1. ([4], p.30, Exercise 19) If R is a semiprime ring, then Soc(RR Soc(RR).
LEMMA 2. ([5], Corollary 8.5) If R is a semiprime ring, then.every minimal left (right)

ideal is generated by an idempotent.

LEMMA 3. ([3], Proposition 3.2) Let R be a left (right) SF-ring. If I is an ideal of R, then

R/I also is a left (right) SF-ring.
LEMMA 4. ([3], Theorem 4.10) Let R be a left (right) SF-ring. If every maximal right

(left) ideal of R is an ideal, then R strongly regular.
LEMMA 5. If R is a semiprime ELT and right SF-ring, then R is fully left (right)

idempotent.

PROOF. From Lemma 1, Soc(RR)=Soc(RR). Now we write instead of Soc(nR). By
Lemma 2, S is fully left (right) idempotent. Since R is an ELT-ring, and every maximal left

ideal of R/S is an image of a maximal essential left ideal of R under the natural map v:R--R/S,

hence every maximal left ideal of R/S is an ideal. By Lemma 3, R/S is a right SF-ring. It

follows from Lemma 4 that R/S is strongly regular, whence R/S is fully left (right) idempotent.

Since S is fully left (right) idempotent, then R is fully left (right) idempotent.

Now we prove our main result which gives a positive answer to the question raised in [1].
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THEOREM 2.1. If R is a semiprime ELT and right SF-ring, then R is regular.

PROOF. From Lemma 5, R is a fully left (right) idempotent ring. If P is a prime ideal of

R, then it is easy to know that RIP is a fully right idempotent ring. Since R is ELT, this implies

that R/P is an ELT-ring. By (see [6], Corollary 6), R/P is regular. Considering that R is fully

idempotent, thus R is a regular ring (see [21, Corollary 1.18).
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