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ABSTP,.ACT. Let q pn be a power of an odd prime p. We show that the
t(q)

vertices of every graph G can be partitioned into t(q) classes V(G)= 13 V such that the number of
t=l

edges in any induced subgraph < Vi> is divisible by q, where t(q)<_ (q-l) -(2(q-1)-1)4
if q 2n, then t(q) 2q- 1.

In particular, is is shown that t(3) 3 and 4 _< t(5) < 5.
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1. INTRODUCTION.
Long ago, Gallai proved the following partition theorem:

TItEOREM A. Let G be a graph. Then there exists a partition A O B V(G), A n B such

that in the subgraphs induced on < A > and < B > all the degrees are even (see [8] problem 5.17

o [6]).
Recently, this theorem received some attention ([4], [5]). A partial sample of the problems

evolved from Gallai’s theorem is:

PROBLEM 1: What is the maximum order of an induced subgraph // of a graph G, with n

non-isolated vertices, such that in//all the degrees are even, respectively odd. In particular is it

true that every tree on n > 2 vertices contains an induced subgraph on at least 2n- 2 vertices in3
which all the degrees are odd?

For some results concerning this problem, see [4] and [5].
PROBLEM 2: Let k > 2 be an integer. Does there exist a constant c c(k), depending only

on k, such that every graph can be partitioned into c(k) vertex-disjoint classes o V: V(G) in
t=l

such a way that in all the induced subgraphs < V >, < < c(k), all the degrees are divisible by
?

Clearly, Theorem A states that c(2) 2. The existence of c(k) for k > 3 is an interesting open

problem.
Motivated by Theorem A and the above problems, we consider the following related

question:

PROBLEM 3: Let k > 2 be an integer. Does there exist a constant ,(k) such that every
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graph G can be partitioned into t(k) vertex-disjoint classes, =w V V(G) in such a way that in each

of the induced subgraphs < v, >, < < the number of edges is divisible by k?

Obviously an affirmative answer to Problem 2 (at least for / odd) implies an affirmative

answer to Problem 3 with t(k)< c(k). Hence Problem 3 is weaker, and in fact more tractable,
than Problem 2.

It is convenient for later purpose to introduce the following notations. Denote by (a,:) the

smallest integer m such that the hypergraph a can be partitioned into rn classes V(G)= V in a

way that e( < V > )= O(modk), <i< m, where e( < V > is the number of edges in the induced

subhypergraph Vi. Observe that for every : >_ 2 and every hypergraph G,(G,k)< X(G), where

x(a) is the usual chromatic number of G, namely, the smallest number of colors such that each

edge has vertices of at least two colors. Hence, with those notations Problem 3 is:

does sup (G,k) t(k) < x .for a fixed k > 2?
G

Our main goal is to prove the existence of the constant t(k) introduced in Problem 3. We
shall do it explicitly for k being a prime power, using the Baker-Schmidt Theorem [3], and

indicate extensions to non-prime power moduli as well as to r-uniform hypergraphs. We shall
then consider in detail some particular cases in which we were able to further improve upon our

general upper bounds. In order to keep this introduction short and concise we shall only remark

that our notations follow [2] and others will be presented when needed.

2. PARTITION THEOREMS AND PROOFS.
We start with an exact formulations of the main results.

TttEOREM 1. Let r, q > 2 be positive integers.

(1) There exists a constant t(q,r), depending only on q and r, such that (H,q)< t(q,r), for

every r- uniform hypergraph H.

(2) If r 2, q 2k then t(q, 2)= 2q- 1.

THEOREM 2. If r 2, q ion, io is an odd prime, then

t(q,2) < (q- 1) -(2(q- 1)- 1)2 9
4 -t-.

THEOREM 3. t(3,2) 3 and 4 < t(5,2) < 5.

Before proving the theorems, we shall need the Baker-Schmidt theorem and some recent

result of [1] which is given here in full detail in order to keep the paper self-contained.

THEOREM B (Baker-Schmidt [3]). Let q be a prime pow,er. If s >d(q-1)+l and

hl(Zl, .,Zs),h2(Zl, ,Zs), /. ,hl(Zl, ,Zs) . Z[Zl, -,Xs] are polynomials satisfying

hl(0 hl(0 0, and : degh <_ d, then there exists a binary vector a # 0 such that

hl(a hl(a =_ O(rnod q).

Let Zq be the set of integers rood q considered as an additive group.

THEOREM C (Alon and Caro [1]). Let q be a prime power, and let U =(V,E) by a

hypergraph of rank r (the size of the largest edge) and let f:EZq be a Zq-coloring of E(H). Then
there is a subset U of V, where U > vI r(q- 1) such that < U > =O(mod q). The same holds
for q a non-prime power provided U > IV rq31og2q.

PROOF OF THEOREM C. For q a prime power, let m be the maximum integer such that
there exists a set M of m vertices of H so that < M > _= O(modq). If m > IV I-r(q-1) there is

nothing to prove. Otherwise, there are more than r(q-1) vertices in V\M. Define W V\M and
let F be the set of all edges of H that contain at least one vertex of W. Associate each vertex w

in w with a variable Zw and consider the following polynomial equation

h= y f(e) H Zw O(md q).
e.F w.e

The trivial vector zw 0 for all w e W, is clearly a solution of this equation. Since the degree of h
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is at most r, Theorem B (for t= 1) implies that there is a nontrivial solution in which each
variable xw is either 0 or 1. Let W’ be the set of all the vertices for which xw= in this

solution. Note that for those vertices, the polynomial h counts, mod q, the weight of the edges
added to < M >, when adding w’ to M. Thus, e < M U W’ > O(rnod q), contradicting the

maximality of m. This proves the assertion of the theorem for q a prime power. For the second
part of the theorem refer to [1]. 13

PROOF OF THEOREM 1.

(1) To prove this part, we adopt a greedy strategy, namely, we shall try to delete, in each

stage, the largest possible induced subhypergraph whose number of edges is divisible by q. Using
the above result, if q is a prime power then H contains an induced subhypergraph G, such that

[G _> H r(q- 1) and <//\G > < r(q- 1). Thus, < H\G > can be decomposed into subsets

of order at most r-1, which contain no edges. Since H is r-uniform we conclude that in this

case, (q is a prime power ), t(q,r) < +r(q- 1) rq- If q is a non-prime power, then the samer-1 --r-l"
rq31og2q

argument yields t(q,r) < + r-

(2) We already know by part (1) that t(q,2)<2q-1 for q=2k. It remains to present a

graph that realizes the upper bound. Consider the complete graph K2q 1" Observe that for
< < 2q- 1, () O(mod q), q 2k. Hence in a decomposition of K2q_ each class consists a single

vertex and we actually need 2q- classes. Hence t(2k,2) 2k + 1. 13

Before proving Theorem 2, we need a lemma.
A vertez-coloring of a graph G is a function g:V(G){I,2,...,k} in which adjacent vertices

have different colors. A color-class is a class of vertices having the same color. By w w(G) we

denote the clique-number of G.

LEMMA. Suppose G is a graph on n vertices. Let x be a minimum vertex coloring of G

using x(G) colors such that the number, Xll, of color classes of size one is as small as possible.
Then,

(i) Each vertex in any color class C, ICI >_ 3 is adjacent to all vertices of x1.

(ii) At least one vertex in any color class C, ICI 2 is adjacent to all vertices of X 1.

(iii) If G
n+ [XI[ n+w-1(iv) If G # Kn then eb(G,q) < 2 < 2

PROOF.

(i) Suppose there were vertices C, ICI > 3, and w x such that (v,w). E(G). Then we

can take (v,w) as a color class, leaving (G) as before, but xll is reduced by one, a contradiction

to the minimality of

(ii) Let C {u, v}. If there is a vertex w X such that (w, u), (w, v) E(G) then the vertices

{w,u,v} form a color class reducing x(G).
Suppose now that there are vertices w,z X such that (w,u),(z,v) E(G). Then we can take

{w,u} and {z,v} as color classes, and again x(G) is reduced. This contradiction shows that at least
one of the vertices u, v is adjacent to all x1.

(iii) Clearly, x forms a complete subgraph. If G # Kn then by (i) or (ii), we can always
add some vertex to x to form a larger complete subgraph. Hence, Ix + _<

n- Xll and for any q q(G,q)< X(G) we obtain the required result using(iv) Asx< Xll-I 2
(iii). 13

In the proof of the Lemma we have used the trivial bound (G) < +

Hence, we raise the following problem:
PROBLEM 4: What is the upper bound of x(G) in the case when w(G)=cn, c some

constant?
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The relevant constant for our problems is about half.

PROOF OF THEOREM 2. Observe first that if q is an odd integer, then ()--O(nodq) and

(q+l
2 =- O(modq). Consider a graph G and estimate (G,q). Suppose we have deleted the lgest

subgraph sured by Theorem C. Then we are left with a collection A of 2q-l 2q-2 vertices.

We may assume w.l.o.g, that AI= 2q-2 by adding isolated vertices. If < A > contains a

complete graph Kt, q then we may delete a Kq from < A > and take all the remaining vertices

as singles. We have at most 2+(2q-2)-q=q closes which is smaller than the stated bound.

Hence we may assume that thelgest cliquein <A> is of order at most q-1. Put a=q-1,

Suppose that we have in < a >, vertex disjoint independent sets of order 3. Delete those sets

fom < A >, the resulting graph is denoted A 1. Consider a minimum vertex coloring of A in

the Lemma. Call a vertex v in AleX strongif it is adjacent to all vertices of x and let Y be the

set of MI strong vertices. Put z IX I. Thus, (aI) + w( < Y > ). By the lemma and the fact

that A 2a- 3k, we find:

(1) (G,q)k+2a-3k+l=2(a-k)+l.

Also, we have the trivial bound on

(2) (G’q)<l+k+2a-3k+-
2 =l+a+r-k2

Let 0(Y) be the cardinality of the mimal independent set in < Y >. Then, O0(Y) 5 2 since

independent sets of size 3 have been removed. We shM1 use a lower bound for 0(F) obtned

from Turk’s Theorem (see [2]) and the fact that < > is trigle fr, nely,
(3) O(Y m,d} Y

where d is the average degr in < Y >. Hence, w( < Y > Y . By (ii) of the lemma,

YI > 2a- 3k- z Hence,

2

Rewrite (4) follows:

(5) 4,2 2,(4. + ) + 42 + + 0.

Then, either 8a-24k-3 < 0, or

4a + + (8a- 24k 3)(6) 4

or 4a + (Sa 24k 3)(7) ,x
5Observe first that if 8a-24k-3<0, that is a<3+ then by (2) we obtn that

wch is obviously better th the und of the threm. Otherwise, since r 5 a (6), must be

ignored. Now to obtn the required result substitute (7) with 0 the st choice, into (1).
MA 1.

(i) It is ey to show, by simple deletion of independent prs, that O(G,q)53(q .1), for q

d prime. So the result of Threm 2 is better th this triviM bound only for q > 11.

(ii) The ave unds c slightly improved using a result of Sheer [9] concerning the

indendent number of a trigle-fr graph. The computations are simple but tedious.

PROOF OF THEOM 3. Observe first that we may sume before that Mter deleting
the lgest subaph guested by Threm C, we e leK with exactly 2q-2 vertices. So that

for q 3 we have 4 vertices that remn. A direct checking of 1 graphs on 4- vertices reveMs
that M1 of them e ptitionable into at most two induced subgraphs in which the number of

edges is divisible by 3. Hence, t(3,2)5 3.
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The wheel Ws:

shows that indeed t(3, 2) 3.

The case q 5 is more complicated since we have more than 12,000 graphs on 8 vertices and

hand-checking is tedious. Our goal is to show that for every graph G on 8 vertices (G,5)< 4.

This would imply (5,2) _< 5. We split the proof into several cases:

(i) w>5.

In this case, we are done since e(KS) 10, G\Ks] <_ 3 and (G,5) < 4.

(ii) < 4.

Then by Lemma 1, IX l[ _< 3.

(iia) If [Xl[ 0 by (iv) of the Lemma we are done.

(iib) If [Xl[ then we have at most 7 vertices in at most 3 color classes with sizes at

least 2, so that again we are done.

(iic) If Ix 2 and we have a color class of size > 3, than take by Lemma, a K4\e (with
edges) and the rest of the (at most) four vertices contain at least one color class of size 2 and

again we are done. Otherwise, all remaining color classes are of size 2. Then is is known from

the Lemma 1 that there is at least one vertex in each color class that is adjacent to all vertices of

X1. Let u and v be such vertices of distinct color classes. If (u,v). E(G) then we have a K4\e and

we are done. Otherwise all such vertices are adjacent and together with X create a complete

subgraph of size 5 and we are in case (i).
(iid) If [Xl[ 3, then either there is a single color class of size 5 and we are done or there

is two color classes each of size at least two. Again, it is known from the Lemma that there is at

least one vertex in each color class that is adjacent to all vertices of X1. Let u and v be such

vertices. If (u,v). E(G) then we have a K4\e and we are done. Otherwise < X1U{u,v} > induces

a complete subgraph of size 5 and we are in case (i).
4Now to show that t(5,2) >_ 4, consider the graph Ksn + 4" Take V(Ksn + 4) =/ lAi where,

[AI[ =5n+l and [Ai[ 1,i-2,3,4, and the number of edges of the induced subgraphs on the

vertex sets A is divisible by 5. This gives k(Ksn + 4,5) _< 4. In order to show that (Ksn + 4,5) _> 4,

and the orders of the sets are z z2,z3, respectively. Then,suppose that V(KSn + 4) lAi’
(8) z + z2 + z3 5n + 4.

On the other hand, each of the numbers Zl,Z2,z3, should have been 0 or (rood 5). So that (8) is

impossible. I:i

REMARK 2. We could not find a graph such that (G,5)= 5. Its existence can give a

complete answer in that case.

THEOREM 4. Let q be an odd prime power and let G be a graph such that all its induced

subgraphs of order at most 2q-2 axe perfect graphs. Then (G,q)<_ q. In particular this holds for

perfect graphs.
PROOF. By Theorem C, G has a subgraph H, [HI _> [G[ -2q + 2 such that e(U) O(modq).

Clearly [G\H[ _< 2q- 2. If G\H contains a clique Kt, >_ q take a Kq and all the remaining vertices

as singles to obtain a partition into at most q classes. Otherwise by perfectness,

(G\U,q) x(G\H) w(G\U) _< q- which yields again a partition into at most q classes.

We now characterize (G,2) for every graph.
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THEOREM 5. Let G be a graph. Then,

(i) O(G,2) if[ e(G)=_ O(mod 2).

(ii) <b(G,2) 2 iff e(G) =_ l(mod 2) and there is a vertex of odd degree.

(iii) O(G,2) 3 iff e(G) =_ l(rnod 2) and all degrees are even.

PROOF.
(i) Trivial.

(ii) Clearly, if e(G)=_ l(mod 2) then (G,2)>_ 2 and if deg u= l(mod 2) then the required

partition is G\{u}, {u}=(G,2)= 2.

(iii) As e(G)= l(mod 2) we have (G,2)> 2. We will show that (G,2)= 2 is impossible and

by t(2,2) 3 we must have (G,2) 3.

Indeed suppose b(G,2)= 2 and let A,B be the vertex classes. As e < A > e < B > 0(rnod 2)

and e(G)= l(mod 2) we must have odd number of edges between A and B. But this is possible iff

an odd number of vertices of A have an odd degree in < A > and for each of them there is odd

number of edges connecting it to < B >. But this is impossible since in < A > there will be an

odd number of vertices of odd degree. El

REMARK 3.

(1) By imitation of the proof of Theorem 2 we can show that if q is prime power and
-1then t(q, r) <_ q + r(qr_ )"

(2) A deep theorem of Kierstead [7] states that if G is both K1,3-free and Ks\e-free
then w(G)_< x(G)< w(G)+ 1. Hence using the arguments of Theorem 4 we obtain that for such a

graph G and for q an odd prime power (G,q) < q + 1.

Finally, we pose the following conjecture.

CONJECTURE. If q # 2/ then t(q,2) < q(1 +o(I)).
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