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ABSTRACT. A function f: {0,1,2,r, ,a}n R is said to be uncorrelated if Prob [f(x) < u]= G(u).
This paper studies the effectiveness of simulated annealing as a strategy for optimizing uncorrelated

functions. A recurrence relation expressing the effectiveness of the algorithm in terms of the function G
is derived. Surprising numerical results are obtained, to the effect that for certain parametdzed families of
functions {Gc, c R}, where c represents the "steepness" of the curve G’(u), the effectiveness of

simulated annealing increases steadily with c These results suggest that on the average annealing is

effective whenever most points have very small objective function values, but a few points have very

large objective function values.
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1. INTRODUCTION
The simulated annealing algorithm has proved effective for optimizing a variety of complex

multiextremal functions[l], such as those involved in VLS1 design[2]. In this paper we explore the

application of simulated annealing to optimizing unorrelated functions functionsfso that

Prob (f(x)< u)= {0 if u < 0

G(u) if u > 0,
(1)

In itself, the study of the optimization of uncorrelated functions is of little practical interest. However, it

serves to reveal some interesting mathematical phenomena; and it is furthermore of intuitive relevance to

the understanding ofthe optimization of functions defined in terms of "noisy" data, which often behave in

an uncorrelated manner over portions oftheir domains.

In Section we describe the simulated annealing algorithm and explain its relation to the

evolutionary mutation algorithm of Hagen, Macken and Perelson [3]. In section 2 we derive a recurrence
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relation describing the effectiveness of the simulated annealing method in terms of the distribution G

Finally, in Section 3 we describe some intriguing numerical results, regarding the specific distributions

g(u)=G’(u)-(1-c)u-c, 0<c<l, 0<u<l (2)

g(u) G’(u) ce-cu, c > 0, u > 0 (3)

In both cases, the parameter c determines the "steepness" of g And in each case it is shown that, as c

increases, the effectiveness of simulated annealing increases correspondingly

2 EVOLUTIONARY MUTATION AND SIMULATED ANNEALING
The optimization of functions f {0,...,a}" - R is intimately related to statistical physics [4] The

function f is interpreted as the energy associated with some physical system, and one is concerned with

finding the minimum-energy configuration of the system The graph off is an "energy landscape This

terminology is often used in discussing simulated annealing, since the origin of the simulated annealing

algorithm was in statistical physics [5]
Here, however, we shall find it useful to approach discrete optimization from another point of

view that of molecular biology In Hagen, Macken and Perelson a molecule is represented as a sequence

ofn letters, each letter being chosen from an alphabet of size a. Each molecule x is assigned a fitness f(x)
according to formula (1) Instead of an "energy landscape" one speaks of a "fitness landscape", instead of

minimizing energy one speaks ofmaximizing fitness.

Evolution is assumed to occur by a simple process of point mutation. A single molecule is

considered, at each time step it mutates in exactly one location, meaning that exactly one of its letters is

changed If the mutant is fitter than the old molecule (according toj0, then the mutant is retained; if not

the old molecule is retained. Whichever molecule is retained becomes the object of the next step it is

mutated, and either it or its offspring is retained, etc A sequence of successively retained molecules is

called an "evolutionary walk."

This is clearly a caricuture of the evolutionary process. It incorporates mutation and survival of

the fittest, but in an oversimplified way: real evolution does not consist of a sequence of winner-take-all

contests between parents and their children. However, the advantage of such a simplified model is that

an exact mathematical analysis is possible One can give excellent estimates of such quantities as the

expected fitness of the local maximum arrived at by this evolutionary process (it is about 38% fitter than

the average local maximum). What makes the analysis particularly simple is that the nature of G is

irrelevant to much of the behavior of the evolutionary process: what matters most is the ordering induced

by G, not the relative magnitudes ofthe fitnesses of various points.

The simulated annealing algorithm may be understood as a modification of this simple

evolutionary procedure. Under simulated annealing, at each time step a molecule creates an offspring (a
"one-mutant neighbor") by mutating in one location, and if the mutant is fitter then the old molecule, it is

retained. However, even if the mutant is less fit than the old molecule, the mutant is still retained with

(u-__.v] where v is the fitness of the old molecule, u is the fitness of the mutant,probabilityp(v,u)=exp T )’
k is the number of evolutionary steps so far, and 0 < Tk -+ 0 as k - o Simulated annealing gives an

advantage to the mutant simply for being different, and the extent of this advantage is determined by the

magnitude of Tk. As Tk approaches oq, the evolutionary process becomes a random search in which the

new mutant is always accepted; and as Tk -- 0 simulated annealing reduces to the method of Hagen,

Macken and Perelson. In practical optimization applications one usually sets

Tk bk TO, 0 < b < 1, k 1,2,3,L and this rule of thumb has recently been validated by Sorkin’s [6]
remarkable results regarding simulated annealing on fractal energy landscape
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3 A RECURRENCE RELATION
Let U,(uo) be the fitness attained on the k’th step of the evolutionary walk by simulated

annealing, starting from a fitness u0 Suppose

(., Prob
ttUk (uo)< u and the walk has at least k steps}

and
a

In order to calculate f (u, u0), let us analyze the evolutionary walk starting from uO.
First consider the case u > u0 In order to achieve a fitness in the range (u,u +du) within k steps,

one of two possibilities must hold It may be that in the first k-I steps the walk has achieved a fitness in

the range (u’,u’ +du’), u0 < u’< u with probability f,_(u’,uo)du’, in which case in the next step, the

evolutionary walk must achieve a higher fitness in the range (u, u + du) Or on the other hand, in the first

k-1 steps the walk must have achieved a fitness in the range (v’,v’ +dv’), u <u<v’ with probability

f_ (v’,uo)dv’, in which case in the next step the evolutionary walk must achieve a lower fitness in the

range (u, u + du)
The probability associated with achieving a higher fitness in the range (u,u +du) starting from a

lower fitness in the range (u’, u’ + du), in one step, is given by

f(u,u’) (’g(u")q(u",u’)du")’g(u)
t=O

1-Ig(u")q(u",u)du")-’

\.o’-" )
l,:(u’)g(u)

where q(v,u) 1-p(v,u) and D (a- 1)n is the number ofone mutant neighbors which a sequence has.

And the probability associated with achieving in one step a lower fitness in the range (u,u +du),
starting from a higher fitness in the range (v’, v’ + dv’), is given by

o-2 v’)dv"’]

By combining these formulas one obtains the recursion relation

(4)
+ A-(v’, %)K(v’)g(u)p(v’,

forall u>_u0, k >_2.

Similarly, for u < uO, one obtains

Z(u’u) o’f(v"u)g(u)K(v’)dv’
+f,_(u, o)K(u )g(u)p(u ,u)du.

Next, suppose h(u, Uo) f(u, uo)/g(u). Then for u > u0 and k > 2,

8,(U, Uo) ,_,(u ,uo)g(u )I,:(u )au

+?h,_, (v’, uo)K(v’)g(v’)p(v’, u)dv’
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Differentiating twice and doing some simple algebra, one obtains

h’’-- h +- g(u)K(u)hk_ 0 (5)

where h=hk(u, Uo) with the initial conditions hk(uo,Uo) h;(u0,u0) and h(uo,Uo) o,oh,_,(,Uo)
r,v’g’p(v’,.o)dv’ for a

Given the solution hk to this recurrence relation, one may determine the expected fitness of the
final solution provided by the simulated annealing algorithm as a function of g. Let U,(u0)denote the

fitness attained on the k’th step of the walk starting from initial fitness u0, let U,(Uo) denote the fitness

attained on the final step of a walk starting from initial fitness u0. Then we may set

and obtain

Finally, this yields

1/0 )D-I+(,__l f(u; )og(U"q(u’,u)du’ (6)

Equation (5) is analytically intractable; and, furthermore, there is no apparent stable method for

numerically approximating its solution. Obtaining hk from hk_1 numerically, inaccuracies will tend to

compound, leading to meaningless answers for large k the only k which are interesting.

However, it may nonetheless be possible to squeeze a little insight into the optimization process

out of equation (5). For example, one may explore the manner

in which hk depends on k. Let h(v; v0) h(u)[z(u)- Substituting into (5) yields
(k-l)!

(k- 2)z’2 +zz"-l---zz +c2z =0 (7)

K(u) and the stated initial condition implies Z(Uo)= z’(u). This equation is easily seen towherec2= Tk
have a solution in some neighborhood of uo. So, locally at least, the dependence of hk on k is rather

simple.

4 SOME PUZZLING NUMERICAL RESULTS
It appears to be very difficult to get accurate numerical results out of equation (5). Therefore, in

order to compare the effectiveness of simulated annealing with that of the ascent method of Hagen,
Macken and Perelson, we have resorted to direct optimization experiments with particular distributions

G. In particular, we have considered the uniform density g(u) 1, and the exponential and

power-function densities given by formulas (2) and (3). Results of these tests for various values of c,

b and n are given in Tables 1-3.

For the uniform distribution, simulated annealing and the ascent method tend to provide final

answers of approximately equal fitness. However, simulated annealing takes a much longer time arriving
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at its final answer In this example, the higher-temperature steps are largely, perhaps even entirely,

wasted The surprise is that when one varies g from the uniform, the same conclusion does not always

hold

This is somewhat counterintuitive Two reasons are generally given for the effectiveness of

simulated annealing [2,6] its implicit "divide-and-conquer" methodology, and its ability to climb out of

the basins of shallow local optima Both of these properties are of dubious value in an uncorrlated

setting For example, what’s the point of climbing out of a shallow basin when the fitness of u point on

the rim of the basin is drawn from the same distribution as the fitness of an arbitrary point?
However, even uncorrelated functions possess a certain combinatorial structure regarding

optimization For instance, as pointed out in [3], fitter local maxima tend to have larger basins This

combinatorial structure apparently comes into play when optimizing uncorrelated functions drawn from
the exponential and power-function densities (2) and (3) Let EAs(G, uo) denote the expected fitness of

the final answer provided by the ascent algorithm of Hagen, Macken and Perelson, for an uncorrelated

function f with distribution G, beginning from an initial point selected from a uniform distibution on

{0,1,---,a} Let Ev(G, To,b denote the expected fitness of the final answer provided by the annealing

algorithm with parameters To and b, under identical conditions. Finally, let

Rr(c)
EAu(E’ T’b)

R(c) EAu(P,To,b)
EAs(P)

Our numerical results, reported in Tables 1,2 and 3 and more extensively in [7], indicate that for a variety
of a,n, TO > 0 and b > 0, RE and Rp are increasing functions of c

Intuitively, in each case an increase in c corresponds to a "steeper" curve g. The larger c is, the

less likely are sequences of relatively high fitness, but the greater is the disparity in fitness between the

fittest and the least fit sequences. Annealing pays off better when reasonably fit sequences are rare but

nearly always very, very fit If one could solve equation (5), one could explore this phenomenon

analytically, using the formula for Pfin obtained above. However, as observed above, this equation

presents formidable difficulties: it remains a challenge.
In the abscence of an explanation in terms of equation (5), the best one can do is to give an

intuitive, heuristic explanation of the phenomenon. For example, one may construct a deterministic

function similar to the uncorrelated functions in our experiments Suppose f {0, l}n -- R is so that

a) there are P points x in {0,1}n for whichf(x) > L,

b) for all other points x in {0,1}n,

f(x)
if x is of even parity

where 0<s<LandP<2n Then it is easy to see that, for fixed s,T0>0 and

O<b<l, Rf(L) EAN(f to’b)" .s an increasing function ofL. For ---s 2"
where c is

EAS(f)
the number of points on uphill evolutionary walks leading to an x so that f(x)> L (by elementary

combinatoric considerations, c <_n(n- 1)P) And similarly, Es(L where c > c
2

The ease of this contrived function is particularly easy because there are no uphill walks of length

greater than 2. But, intuitively, the situation should be basically the same whenever there are P points x
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in {O, 1,L ,a}n so that f(x)> L, and for all other points f(x)<s < L To see why, suppose s << L

Then the probability of an 31 evolutionary walk leaving one of the P points is very low; it is less than

s-L

e -;F--’ L s

Tk Tk

at any one step But on the other hand, the probability of leaving one of the unfit points to go to another

is greater than
-s

e T. _1____s

at any one step So if, say, s << Tk L, then SA will walk randomly through the unfit points, but when it

hits one of the P very fit points it will stay there
5 CONCLUSIONS

Finally, let us put these results in perspective. They are of little direct practical utility. They do

not imply that simulated annealing is necessarily a good strategy for optimizing uncorrelated functions, in

any situation. It can yield better answers than simple evolutionary ascent, but it also generally takes more

steps. And in any case, optimizing uncorrelated functions is of rather little practical interest.

However, the results do have interesting biological implications As Hagen, Macken and Perelson

[3] observe, the fitness landscapes associated with proteins tend to be highly correlated in some regions,

uncorrelated in others, and partially correlated in yet others. Our results indicate that, in the uncorrelated

and partially correlated regions, proteins might benefit from following a strategy similar to simulated

annealing by being progressively less liberal in the acceptance of mutations. It is tempting to

conjecture that some proteins do follow such a strategy.

And finally, we suggest that the main value of these results is heuristic. We conjecture that the

phenomenon observed in the numerical experiments described above is in fact much more general: that,

for uncorrelated functions and noisy objective functions in general, simulated annealing will be more

effective when most points are very unfit, but a few points are very fit.

It is not clear how one would go about demonstrating this conjecture, but a comprehensive

analysis of (5) would be a good start. In particular, we propose the following
CONJECTURE: Where g is given by (2) or (3), simulated annealing outperforms evolutionary ascent.

That is, E[Pn(U;Uo)]>_ EI’n(U;Uo) where Pfin is given by (6)and/3, the final fitness of evolutionary

ascent, is given in [3 as

./o(,,;,,o)6(,,o) +
k=l

wherez g(u)h(uo) 1-q-1

(k-l)! 1-q

However, when g: 1, E[P,(U;Uo) E[’,(U;Uo)]
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Table 1 Average fitness for uniform distribution

Ev(U, To,b)"

0.9640

0.9631

(n 20, a 2, b 0 99)
,

E.4s (U)

0 9683

0.9654

E(U, To,b)

0.9918

0 9939

* These expected values were calculated using 100 iterations.

Table 2: Average fitness for the exponential function
(n 20, a 2, b 0.99)

0.1

3.0

5.0

0.1

3.0

5.0

0.1

3.0

5.0

E(E,To, b)*

41.7075

1.8669

1.1125

47.6544

1.8931

1.1509

55.1330

1.9057

1.1343

40.4471

1.3535

0.8069

40.4773

1.4070

0.8090

40.2780

1.3751

0.8010

RE(C)

1.03

1.37

1.37

1.17

1.34

1.42

1.36

1.38

1.41

* Using 500 iterations, these expected values were calculated.
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Table 3 Average fitness for the power function
(n=20, a=2, b=099)

O9

0 99

0 999

0.9

0 99

0.999

09

0.99

0.999

E.u(Ec, To,b)

08811

06161

03110

0 8925

0 6471

0 2930

0.8823

0 6389

0.3039

0.7484

0 2498

0.0284

0.7513

0 2680

0.0288

0 7763

0.2584

0.0331

RE(c)

117

2 46

10.96

118

241

10.17

113

247

9.18

* Using 500 iterations, these expected values were calculated.
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