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ABSTRACT. This paper is concerned with determining all integers n, with n > 2, such that if
R is a ring having the property that z™ = z and 2z = 0 for each £ € R, then R is boolean. The
solution to the above problem extends previous results obtained by Shiue and Chao in [5] and
that of MacHale in [4].
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1. INTRODUCTION.

A ring R is called a J-ring if there exists an integer n > 2 such that ™ = z for cach z € R.
It is well known that a J-ring is commutative, see [3].

Shiue and Chao showed in [5] that if R is a J-ring, where n = 29(m+1) 4 2™ with 1 < ¢ and
1 < m, then it is the case that R is of characteristic two and, in addition, z2 = z for each z € R,
that is, R is boolean. Recently, MacHale proved that if R is a ring of characteristic two and n
is a nonnegative integer such that z2"*! = z, for each z € R, then R is also boolean. In this
paper, we will extend both of the above results by determining all integers n, with n > 2, such
that if R is a ring having the property that " = z and 2z = 0, for each z € R, then z? = z for
each z € R. It should be noted that, in a related paper, Batbedat [2] used sheaf theory to obtain
some structure theorems for a ring R satisfying a"*! = a for each a € R. His results were used
to determine all values of n < 50 for which R is boolean.
2. A PRELIMINARY RESULT.

THEOREM 1. Let n denote an integer > 2. Then 2! —1{ n — 1 for each integer ¢ > 2 if and
only if for each ring R such that z" = z and 2z = 0 for each z € R implies that R is boolean.

PROOF. Suppose 2' — 1|n — 1 for some integer ¢ > 2. Let R denote the Galois field GF (2*).
If z € R, with z # 0, then ! = 1 and thus z"~! = 1 since 2! — 1|n — 1. Hence 2" = z. Since
0" = 0, we thus have that z" = z for each = € R. It is well known that GF(2') is of characteristic
2. Consequently, R = GF(2!) is a ring such that 2" = z and 2z = 0 for each 2 € R, however R

is not boolean.
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Next assume that 2 —1{n —1 for each t > 2. Suppose to the contrary that there exists a
nonboolcan ring R such that 2" = r and 2z = 0 for each £ € R. Then there exists an a € I such
that a? # a. Consider < a >, the subring of R generated by a. First, note that < a > is finite
and commutative. Also, < a > is semi-simple since, for each z €< a >, z"~! is idempotent and
the Jacobson radical of < a > does not contain non-zero idempotent elements. Hence, by the
Wedderburn-Artin theorem, < a > is a direct sum of finitely many Galois fields of characteristic
m

2, say, < a >= Y GF(2"). Clearly, 2% — 1jn — 1 for i = 1,2,---,m and thus t, = 1 for
1=1

i=1,2---,msince 2! —14{n —1 for each t > 2. Hence a> = a and this is a contradiction.

Therefore if R is a ring of characteristic two such that " = z for each z € R, then R is boolean.
3. A SPECIAL CLASS OF MATRICES.

Let k denote an integer > 2. For each such k, define the matrix My to be the matrix with
k columns whose rows are of the form [k — t1,k — t2,--- ,k — t], where each 1,25, - ,t1 is a
non-negative integer such that ¢; > ¢, > -+ > #; and 2"t +2'2 4+ ... 4 21 = 2% Furthermore,
ifr=[k—t,k—ty, -, k—t;) and r' = [k —t},k —t},--- ,k — t}] are two rows in My, then
r is a above r' if and only if either k —¢; < k—tj or k—t; = k—t, fori =1,2,--- ,m and
k—tmp <k—t, .

The following lemma and theorem will give an inductive method for constructing the above
type of matrices.

LEMMA 2. Let k denote an integer > 2. Let each of ¢ and t,,1,,- - ,t; denote a nonnegative
integer such that 2!t + 22 4 ... 4+ 2% = 2! where ) >t > --+ > t;. Then ty—1 = ;.

PROOF. Clearly t > t; for i = 1,2,---,k. From 2" + 2% 4 ... 4 2% = 2! we obtain
26—t o ota=te ... 4 o170 4 ] = 2!~ Since 2'7'* is even, then at least one of ¢; — tx,1 <
i < k —1, is zero, say, t;, — tx. Then t, = t; which implies that t;_; = t; since t; > ¢,y > tr.

LEMMA 3. Let k denote an integer > 2. If [ is an integer, with 2 < ! < k, and if each
of t1,t3, -, is a nonnegative integer such that 2!t 4 2'2 4 ... 4 2% = 2% then ¢; > 0 for all
,1<i< L

PROOQF. The proof is by induction on k. Let S denote the set such that k € S if and only
if k> 2and 2% +2% 4 ... 4+ 2% = 2% implies that ¢, > 0 for 1 < i < I, where 2 < I < k. For
k = 2, the only equation, since | = 2, is 2!t 4 2!z = 22 and this implies that ¢; = t; = 1. Thus
2€ S. Let k€ S. Next,let 2 <I' < k+ 1 and suppose t{ > t) > --- > t}, > 0 such that
21 426 ... 42t = 2%+1 Now, suppose there exits a ¢} which is zero. Then either all of the t!’s
are zero, and thus I’ would be even in that case or there exists a j such that ¢; > 0 with ¢}, =0
and this would imply that there exists again an even number of ¢}’s equal to zero. Hence, in cither
ease, we can group the 2°’s in pairs and obtain either (2° +2°) +(2° 4 2°) 4 - +(2° +2°) = 2¥+!
or 24 4 2% 4 ... 4 24 4+ (2°+2°)+---+(2°4+2°) = 2F+1 Since 2° + 2° = 2, we have either
21 421 ... 421 = 2K+ or 24 4 2% 4 ... 4 24 421 ... 421 = 2k+1 and this gives, on dividing
both sides by 2, either 2° 4 2° 4 .-+ +2° = 2% or oti=1 fota=1 4 ... 94-1 1904 ... 1 90— 9k
Note that the number of terms on the left in either equation is now < k. Hence we have arrived at
a contradiction since k € S implies that all of the exponents in either equation must be positive.
Therefore k + 1 € S and this completes the induction argument.

COROLLARY 4. M, =[1,1].

PROOF. For k = 2, we consider 2! 4 22 = 22, From Lemma 2, we have that t; = t,.
Thus 241*! = 22 which implies that ¢; = 1. Since t, = t;, we have that t, = 1. Hence M, =
[k=ti,k—t)=[2-1,2-1] =[1,1].
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THEOREM 5. Suppose Mj = [s(k)] Then the rows of My4, are precisely the rows obtained

from the rows of M} by replacing one entry s by the 1 x 2 matrix [sfk) + l,sf;) + 1], and

following this by a suitable rearrangement of the entries.
PROOF. First, we will show that a row obtained from the i** row of M by replacing the entry
(k) by [s(k) +1,s (k) + 1] is, follwed by a suitable rearrangement of the entries, a row in the matrix

Mk+1, that is, [sff), . ,sfk,)_l, S:)+1 s(k)+l sfk])“, . ]follwed by rearranging the numbers

in ascending order w111 be a row in My4;. To see that thls is the case, con31der from the definition

J
of M1, the sumzz"“ M oI g k=Gl Z A =Zz"+"’“

g=1 g=j+1 g=1
k+1—s{®) < k+1—s(0) = k+1-s(® d k—s{®) k k41
+2 i+ Z 2 ‘e =Z2 i =2Z2 e = 2.2% = 27", Hence, from the
g=j+1

definition of M1, we have confirmed what we stated above.

Next, we need to show that each row of My, is obtained from a certain row of M, by the

above described replacement. Let r; = [s(k“), S:H), . fk,::l)] be the i** row of My4;. Then,
k+1
from the definition of My;; and Lemma 3, 22"“—"(“‘) 2! and 1 < sff“) < sgﬂ) <
¢=1
. < s(k'H) < sk::l) <k.By Lemma 2, k+1— sS:'H) =k+1- fkk':l]) ors (k“) = fkktll) Thus
k+1 k-1
—_glk+1) _g(k+1) - .
ok+1 — Zz"‘“ et = 22"“ et +2k+2 " Since lc+1—s$:+l) >1forg=1,2,---,k,
q=1 q=1
ot Ees D) pg k1) ot K—sMHD | k(s
we thus have that 2% = 22 R S A 22 “oe ok Gn T,
9=1 9=1
Hence, after a suitable rearrangement of the entries, [s(L“), . ,sfk::_l,),
k+1 k+1 k+1 k+1 k k k
SSI: ) —1] will be a row in Mg, that is, [3( ), . ,sfk 1), Ek ) -1]={s ,(w)(l)"" I(D’:(k_l),s:.l(k)]
for some p and some permutation o on the set {1,2,---  k}.
By noting that s(k“) = 3::’2(1:) + 1 and s(k'“) = Sk,:_l,), we can thus conclude that r; is

obtained from the p** —row of M} by replacing the entry s a(k) by the matrix [s a(”+1, sf,kg(k)-i-l]
and followed by a suitable rearrangement of the entries.
As a result of Corollary 4 and Theorem 5, we can easily exhibit the matrices M. For

123 3 1 2 3 4 4
example, M, = [1,1], M3 = [1,2,2], My = (2 2 9 2), andMs;=(1 3 3 3 3
2 2 2 33

LEMMA 6. Let each of m,m' and t denote a positive integer. Then 2™ = 2™ mod(2! — 1)
if and only if m = m' modt.

PROOF. Assume m > m'. Suppose m = m' mod t. Then, m = m'+kt for some integer k > 0.
Thus 2™ — 2™’ = 2m'+kt _gm’ _ gm’(9kt _ 1) Now 2¢ — 1|2* — 1 and s0 2™ = 2™ mod(2' — 1).
Conversely, suppose 2™ = 2™ mod(2! — 1). Then 2! — 1|2™ — 2™ = 2™'(2m=™' _ 1), Since gcd
(2'=1,2™') = 1, we thus have that 2! —1|2™~™' —1. Hence ¢|m —m’ and therefore m = m' mod t.

THEOREM 7. Let n = 2™t 4 2™2 4 ... 4 2™ where k > 2, and each m; is a nonnegative
integer. Also, let ¢ denote an integer > 2. Then 2* — 1|n — 1 if and only if

tlged(moqy + 58 Moy + 550, Maqry + 58))

for some i and some permutation o on the set {1,2,..- k}, where [sff), fzk), <o, 8 k)]lS the 74
row of M.

PROOF. Suppose there exists a row i in My and a permutation o on the set {1,2,---,k}
such that ged (m,q) + sff),m,(z) + sg), ce L, Mery + sgz)) = d is divisible by the integer t,¢t >
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2. Let g denote a positive integer such that gt > k. Then m,(; = gt — s ) mod t for j =
1,2,--- k. Hence by Lemma 6, we have that n — 1 = 2Me(1) 4 2Me@) 4 ... 4 2Met) — 1 =
20t=slD) 4 gat=sl2) .. 4 get—sl) _ 1mod(2* — 1). Now, from the definition of the matrices
Mg, we have that 2"“ W ok + -+ ok—ol) = ok Multiplying both sides by 29'~* gives
20t=el? y oat=ol ... 4 90t=slY = 20 Hence n — 1 = 2¢' — 1mod(2' — 1). Since 2* — 1|29 — 1,
we thus have that 2! — 1|n -1

Next, assume 2! —1|n—1, where ¢ is an integer > 2. Also, suppose n = 2"“ +2M2 4. 2K
where each m; is a nonnegative integer. We want to show that t|ged(m, (1) +s,1 RN m,(k)+sft))
for some permutation ¢ and some row i of M. We will proceed by induction on k.

Suppose k = 2 and n = 2™ + 2™2, Let m; = m|modt and m,; = m) modt, where 0 <
m},m}y < t—1. Then, by Lemma 6, n = 2™ + 2™ mod (2' —1). If m} # m}, then 2™ 42m2 —1 <
2071 42072 1 < 2!71 4271 1 = 2! — 1 and this is a contradiction since 2! — 1|2™1 4 2™2 — 1,
Hence m} = mj and 0 = n — 1 = 2™*! — 1mod(2' — 1). Thus 2¢ — 1]2™1*+! — 1 which implies
that t/mj + 1. Since 1 < m{ +1 < t, we can conclude that m} +1 = t. Thus m} = m} =t —1 and
consequently m;+1 = my+1 = 0mod t. Therefore t|gcd(m; +1,m,+1) = ged(m, +s§2l ,m2+s§22))
from the definition of M.

Now suppose k > 2,n = 2™142™24...42™* and 2'—1|n—1, where t > 2. Let m; = m! mod t
fori=1,2,---,k, where 0 < m} <t — 1. We claim that the numbers m! cannot be all distinct.
For, suppose that they were all distinct. Then 2™ +2™2 4 ... 4 2™% — 1 < 201 4. 21=2 4 ... 4
2!k — 1 < 2! — 1. Now, by Lemma 6, m; = m! mod t implies that 2™ = 2™ mod (2' — 1) for
1=1,2,--- k. Thus 2!'— l|2""l +2M3 4...42™k —1 and this contradicts the above statement that
2™ 42™3 4 ... 42 —1 < 2¢ — 1. Hence there exists an £ such that mj, = mj,,. For convenience,
we will assume ¢ = k — 1. Then 2™ 4 2™ 4 ... 4 2™k — 1 = 2™ 4 2™3 4 ... 4 2Mi-a 4
2mi-1+1 _ 1, Now, by the induction hypothesis there is a pemutation o on the set {1,2,-- k-
1} and a row 7 in Mi_; such that t|gcd(ma(l) + s(" ’),.. )ma()) +1+ s(" l)’ .. ’"‘;(k—l) +

f"k 11)) where o(j) = k — 1 Since m,(;) = ma(l) modt, - ;Mgx_1) = ma(k_l)modt, we thus
see that t|gcd(mgq(yy + s ), My + 14 s” 1),--- yMo(k-1) + sfkk 11)) Now recalling that

my_; = mj implies that mg_; + 1 + s(f D= mp + 1+ s(k ’)modt we finally obtain that
(k-1) (k-1) (k-1) (k~1)

tlged(myy+s5; e ,mE— 1H1+s T me 48T Mgk n+si - 1)- This completes
the proof since {m,(l), + ,ME_1, Mg, -+ ,Myk—1)} is a rearrangement of {my, ma,--- ,m;} and
(i1 (k= l), ce 8 f'; 11),1 +s (" D 1+s(k l),sf§+1,), . ,sffk__ll)] is, on being rearranged in ascending

order, a certain row of the matrix My which is obtained from the i** row of Mi_,; by replacing
the j'* entry by the 1 x 2 matrix [1 + s(k 2 (k ‘)]
4. MAIN RESULT.

THEOREM 8. Let k denote an integer > 2 and let n = 2™! +2™2 ... 4. 2™+ where each m;
is a nonnegative integer. Also, let C denote the set such that R € C if and only if R is a ring of
characteristic two and z™ = z for each z € R. Then the following two statements are equivalent.

1) Each member in C is boolean.
2) gcd(m,(l) + s,f yMo(2) + s,: vty Mek) + 3 ) 1 for each permutation ¢ on the set

{1,2,--- ,k} and for each row [3:1 , f;), N S:)] in M.

PROOF. Suppose each member in C is boolean. Then, by Theorem 1, there does not exist

an integer t > 2 such that 2! — 1jn — 1. Hence, by Theorem 7 if t > 2, then ¢t { ged(my(y) +
k

gl),. o
1 and o.

8 Mo (k) +3 ) for each o and each i. Thus ged(m, (1) +s.1 y y Mg(k) +s§:)) =1 for each

Conversely, if ged(m,(1) + sff), ce Mgk) + SS:)) =1 for each i and o, then, by Theorem 7,
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2! —1{n —1 for each integer t > 2. Hence, by Theorem 1, R is boolean for cach R € C.
5.  EXAMPLES ILLUSTRATING THEOREM 8.

LEMMA 9. Let R denote a ring and let £ € R such that 2™ = z for some integer n > 2. If
each of h and k is a positive integer such that h =k mod (n — 1), then z* = z*.

This result can be obtained easily by induction, see [1].

LEMMA 10. Let R denote a J-ring of characteristic two and suppose n is a positive integer
> 2. The following two statements are equivalent.

1) 2™ = z for each z € R.

2) 22! =z for each z € R.

PROOF. Suppose (1) holds. Then (2) is immediate by Lemma 9. Next, suppose z2"~! =z
for each £ € R. Then z?" = z? and thus (¢ + :1:")2 = 22 4 22" = 0 since R is of characteristic
two. Hence ™ = z since a J-ring does not contain non-zero nilpotent elements.

THEOREM 11. Let R denote a ring of characteristic two. Suppose each of s and t is a
positive integer with s # t and ged(s,t) =1. f z = 22 = zzt for each z € R, then R is boolean.

PROOF. We may assume that s > 1. Then r = P xztzzs" = zzt“s" =
Iz(zt T142° TH-1 for each = € R. Hence, by Lemma 10, z = 1:2t T'42° 7 for each = € R. Now
M, =[1,1} and ged(t — 1+ 1,s — 1 + 1) = gcd(t,s) = 1. Consequently, by Theorem 8, we have
that R is boolean.

The following examples illustrate the use of some of the preceding theorems.

EXAMPLE 1. Let R denote a ring of characteristic two such that 2% = z for each z € R.
Since 595 = 2(298) — 1 and z%% = z for each z € R is equivalent, by Lemma 10, to 22 = z
for each £ € R, we can thus apply our results to z2°® = z. Now 208 = 2! 4- 28 4 25 4 23, Using
the matrix M, and applying Theorem 8, we obtain ged(1 + sﬁ“l),s + sg‘;),S + sﬁ,),B + sgi)) =
ged(1+1,84+ 2,5+ 3,34 3) = ged(2,10,8,6) = 2 # 1. Hence R is not necessarily boolean.

EXAMPLE 2. Let m denote a nonnegative integer. Let R denote a ring of characteristic
two and suppose z" = z for each z € R, where n = 2™ + 2™+ 4. 2m+2 Take M; = [1,2,2]. Now
gedm+1,m+142m+2+2)=1,gcdim+2+1,m+1+2,m+2)=1and gedim+1+1,m+
2+42,m + 2) = ged(m + 2,m + 4). Thus, by Theorem 8, R is boolean if ged(m +2,m +4) =1,

that is, if m is odd, and not necessarily boolean if m is even.
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