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ABSTRACT. Let fl fl ..... ftn be a polycylinder in (n, that is each flj is bounded,
non-empty and open in (. The main result proved here is that, if Bp is the sheaf of germs of

LP-holomorphic functions on then Hq(,Bp) 0 for q _> 1. The proof of this is then used to

establish a Leray’s Isomorphism with LP-bounds theorem.
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A polycylinder in (n is a product set f ill x...x fin such that each flj is open and

bounded in {:, 5 _< n. If B is t.he sheaf of germs of bounded holomorphic functions on the

closure of a polycylinder fl, it is proved, among other things, in [1] that the cohomology group

HI(,B) 0. As part of the vanishing theorems in [7], this is generalized to Hq(,B) 0,

q _> 1, where f/is a member of a set of product domains not including all polycylinders and in

[3] this is generalized to all polycylinders.
For the product domains fl considered in [7], it is also shown that if Bp is the sheaf of

germs of Lp- holomorphic functions on , then Hq(,Bp) 0 for q _> 1 and 1 _< p _< (R). In this

paper we extend this result to all polycylinders as an application of a result which we call

Dolbeault-Grothendieck lemma with Lp Bounds. As applications of the vanishing theorem

Hq(,B(R)) 0, q _> 1, we state a theorem on the characterization of the generators of the

maximal ideals of the Banach Algebra H(R)(fl) of bounded holomorphic functions on f/, which we

have obtained elsewhere by different methods. Furthermore we state the fact that the

Weak--Corona-Problem is solvable on all polycylinders and not merely on the product domains

considered in [7]. We also state and prove a Leray’s Isomorphism Theorem with Lp bounds.

This is influenced by the work in [4] and [8] in which the acyclic covers for which the theorem is

proved, are more general, noting at this point that the acyclic covers made up of polycylinders

here cannot as yet be replaced by acyclic covers made up of strongly pseudoconvex domains,

even though Lp- estimates on strongly pseudoconvex domains are more advanced than Lp-

estimates on polycylinders.
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1. Definitions and Statements of The Theorems

and

1. If U c {:n is an open set and f C(R)(U) and _< p <_ (R) we define

[ifl[ (0) ilfll (o, o) ilflLP(u) LP(u) LP(u)
being the Lp norm of f on U,

LP(u)
[[f[[(0, r)_ max orf (0) for l<r<n

o. LP(u)LP(u) i1<" "’<it il r

(L =max Ilfll (’r)Ilfll
u) 0_< r<_n LP(u)

If f L fil...iqd’ll ^...^ d.l is a C(R)(O,q) form on U where I]’ means the summation

(il,... ,iq) q

is over increasing multi-indices, we write f as S’fid for short (il,... iq), and set

max

LP(0,q)(U U)

Then corresponding to theorem 1 in [3], there is the following"

THEOREM I- Let f be a polycylinder in Cn and _< p < (R). There is a K. > 0 such

that if fis a smooth -closed (0,q + l)-form on i with [[f][ (n) < (R), then there is a

smooth (O,q)-form u on f with u f and

ilull (n) < K,ilfll
LP(0,q)(12 L,(0,q+ 1)(f

2. Let fl be a polycylinder and U a set open in , then B(U) is the Banach space

of holomorphic functions f on fl fl U such that [[f[[ < (R), 1 < p <_ (R). If V is open in
LP(unfl)

with V U, the restriction map rvU: B(U) B(V)is defined. Then B {B(fl); rUV}
is then the canonical presheaf of Lp holomorphic functions on . The associated sheaf Bp is

the sheaf of germs of Lp holomorphic functions on . From Theorem 1 there is the following:

THEOREM 2: Let fl c l:n be a polycylinder and Bp, the sheaf of germs of Lp

holomorphic functions on . Then Hq(,Bp) 0 for q _> 1 and <_ p <_ (R).

3. Let fl be a polycylinder and w efl. Mw denotes the maximal ideal of the ring Dw of

germs of holomorphJc functions at w and Mw(fl is the maximal ideal of functions in H(R)(fl)
vanishing at w. If f is holomorphic in f, fw denotes the germ at w.

Using Theorem 2 and the Koszul’s complex constructed in [9] and used in [6] to solve

the Gleason Problem on strongly pseudo convex domains, we get
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THEOREM 3 Let w fl c (n and fl"’" fn H(R)(il)" Then fl""’ fn generate Mw(fl if

and only if (i) flw""’ fnw generate Mw and (ii) w is the only common zero of fl’"" fn in ft.

In particular z Wl,... zn wn generate Mw(fl ).

4. The Weak Corona Problem is formulated in [2]" Let X be a relatively compact

domain of a topological space Y. Let f0"’ fN be complex-valued continuous functions on

fl"’" fN verify the weak corona assumption (on X) if the following two conditions hold:

a) f0’"" fN have no common zeros on X;
b) a positive number > 0 exists so that for each z OX(= boundary of X in Y), an index

{0,..., N} i(z) and an open neighborhood Vz of z in Y are given such that [fi(w)
onV NX.

Z

Let A be a function algebra on X. The weak corona problem is solvable in A (on X)
when for f0"’" fN A which verify the weak corona assumption, f0"’" fN represent in A.
From the work in [2] and Theorem 2 we have

THEOREM 4- Let fl c (n be any polycylinder. Then the weak corona problem is

solvable in H(R)(fl).

5. Let D be the sheaf of germs of holomorphic functions in {:n. If U (n is open and

r > 0 is an integer let F(U,Or) be the sections of Dr on U, then

rp(u’or) :- (f (rl’" fr) r(u’or) IIfllLP(u) +..-+ IIfrllLP(v < (R)}

If is a coherent analytic sheaf on a neighborhood of the closure of a polycylinder t,
then by Cartan’s theorem A there is an exact sequence

om ,
of O-homomorphisms in a neighborhood of , where m is a positive integer. The LP-bounded
section of " over t, rp(,’) is defined by

rp(,) A(rp(,om)).
It can be shown easily that the definition of [’p(fl, does not depend on A and m.

Let X be an open set in In, g {Ui}id a locally finite covering of X by polycylinders

each of which is relatively compact in X. We define the LP-bounded alternate q--cochain

group C() of the covering 2 with values in " by

Cpq0/,) := {c (ca) cq(l/,’): ca rp(aa,), va (a0,, aq) Iq+l},
where U U N...N U and cq(/,) is the alternate q-cochain group of the coveringa a0 aq
with values in ’.

The coboundary operator

: cq() cq+(,)
maps Cpq(g,") into Cpq+l(’), hence we have a complex
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and H(.I,’) is the qth cohomology group of this complex. We then have the following:

THEOREM 5’ The natural map

H() Hq(X,)
is an isomorphism for q > 0 and < p <_ (R).

2. DOLBEAULT-GROTHENDIECK LEMMA WITH LP-BOUNDS.
We establish Theorem in this section. The proof parallels completely that of the

L(R)-version in [3], but we give a detailed proof because there are lots of misprints in [3].
The proof is by induction, the inductive statement being that the theorem is true if f

does not involve dk+l, dk+2,..., dn. When k 0, there is nothing to prove because then f

must be zero. If k n, then the statement is the theorem. We assume therefore that the

theorem is true if f does not involve dk,dk+l,..., dn and assume that

f= dk^g+h
where g is of type (0,q) and h is of type (0,q + 1), and g and h are independent of dk,..., dn-

g E" gid

h Z’ hjdJ
J

If is an increasing multi-index and is a positive integer not in I, (I,j) is the increasing

multi-index obtained by adding to the integers in and (I,Jl,J2) ((I,Jl),J2) when Jl is not in

and J2 is not (I,j1). Now on fl

n 0g n 0hj
0= 0--f=dk^(j=l] dj^(E’i .___,dI)) +jZld^(JE 0j

hence if 10 is an increasing multi-index of length q, 1 <_ J0 < k and J0 is not in 0 the coefficient

of dk ^ d
(I0’j0)

in -f is

0 z (,J)
__, 0 ()

1<(i,j):.i <k 0j 0-kI 0,J0

where (J0,k) (I0,J0,k), e(I,j) 1 and the summation is over 1 (_ < k and (I,j) (I0,J0);
because

--=0, j>k,

this apart from a factor of 1, being the coefficient of dgk ^ d ^ d
I in ’f O.

In 12 let

I ffl --Zk)-I gI(Zl 1’ Zn)dTk A drkGI(Z (Vk Zk_ ’k,Zk+
k

< K ll]gI]] for some constant K 1"Then clearly GIe C(R)(fl) and IlClI n) )

0GI-gI and 0 for j>k.

(2)

(3)
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and

Let G ,’ GldzI. Then IIG]l (n)

Lo,q)(
* (n)<- Kl[[f[[L0,q+l)(

n OG
(4)G--Z’ E d.^dI=dk^g+ h

j=lO..1

where h is the sum when runs from to k and it is independent of dk,..., dn. Hence

h h f G does not involve dk,... dn. If 0 is an increasing multi-index of length q,

d(I0,J0<_ J0 < k and J0 is not in 0 the coefficient of in h is

0G
Z e(I,j), (5)H(I’J0) < <k O.

(I,j)L-( 0,J0
the meaning of the symbols being as in (1). From (1) it follows that

0hJ0
tt(io,Jo)(Z) (rk Zk)-i (Zl,... rk,... zn)d7k ^ drk (6)

where (Io,Jo,k) (Jo,k).
From (3), (5) and (6) it follows that

(n)IIL0,q+l)(,
for some constant K2, hence

(.)<- K2llfllL0,q+l)(fl
(n)

1)(fl)
(n)-< ][fl[L0,q+l)(fl

By the induction hypothesis, since f-G does not involve dk,..., dn and

(f- -G) 0 on fl, there is a smooth (0,q) form v such that -v f-G on fl and

* * (n)_< K3(1 + K2)llfllO0,q+)(fl)
for some constant K3.

Now letu=v+G, then Ou=fonfand
,(n) <(K*+ *

1+ K2))[[f[[(n)[[U[[L0,q)(f) 1 K3( L0,q+l)(fl
, ,

which completes the proof of Theorem 1 with K, (K1 + K3(1 + K2) ).

3. VANISHING THEOREMS:

1. To prove Theorem 2, let Er be the sheaf of germs of smooth (0,r) forms in fn and Fr

the sheaf of germs of smooth ----closed (0,r) forms, r _> 0. If U is open in (n, define

Hp(U,Fr) and Ap(U,Er) by
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n) < .}rlp(V,rr) := {re r(U,rr): Ilfll (Llo,rl(n)
(n) < (R), ii-gfll (n) < (R)}.Ap(U,Er) := {fe F(U,Er): IlfllL0,r)( L0,r+l)(fl)

Let g {Ui}id a finite covering of by lycylinders where fl is a polycylinder in n For

iq) =flaU. a aU. and let={aUi}id. Leteach a (io,..., iq+l let a 0 lq
C(n,Fr) and D(an,Er)dened by C(,r)"= {c (ca) CP(,r): ce p(n,r),
for each (io,..., iq) q+l} D(,r) {c (ea) CP(aa,Nr)" ce Ap(a,Nr), for each

(io,..., iq) e n+l}.
2. The coboundary operator L Cn(,Lr) Cq+l(,Lr), where L is E or Fr’ maps

C(a,Fr) into C+I(,F,)and D(,E,)into D+I(,E,). We then define

the qth cohomology group of the complex:
0 -...-Cp(fl,Fr) C(,Fr) 6 C+I(ufl,Fr

and G(fl,Er) as the qth cohomology group of the complex:

D(aa,Er ... D(,Er) 6 Dq+p l(aa,Er
LEMMA 1. G(Ii2,Er) 0 for q _> 1.

The proof of this is easy and does not involve the use of the 0-operator.

LEMMA 2: H(ti2,Fr) 0 for r _> 0.

PROOF: Let {oi}id be a C(R)
partition of unity subordinate to the covering of , so

that 0 <_ o <_ 1, supp o V and Z. o 1 on . If c cl"(5gfl’Fr)r, and & 0, c (ci;),j define

outside fl t3 Ui/3 Uj as zero and set

=$ci jeI jcij"
(n) < (R). Since 6c O,Then for each I, c is a C(R)- (O,r)- form and [[c [[LPo,r)(fli)t,

ci-cj Pk(Ckj+Cik)= ] VkCij=cijkeI keI

and so -gcj c on fl fl Uifl Uj. Hence there is a C(R) (0, r + 1) form f on fl such that

flU t3 fl ci. Hence on V t3 fl,- f= (-goj) ^ cji and [If][ (n) < (R) which
jeI L0,r+l)(flfUi)

implies [If[[ () < (R). From Theorem 1, there is a smooth (0,r)- form u on fl such that

L(0,r+)(fl)
Iluil () < and u f. Define c’.’ c: u on U. 1 fl for each I. Then

L(0,r)(n
:-f= eci- 0c =0onflt3Uiandac" c -u= ac
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(n)

IIc’llL0,r)(flNUi < (R).

Therefore if c"= (c’), then c"e Cp0(fl,Fr and

(&")ij c’! "= c -c-ci cij"
Therefore &" c and H_I(A,,Fr)p 0.

To continue with the proof of Theorem 2, for each a (i0,... iq) if
T. Hp(fla,Fr) Ap(fla,Er) is the inclusion map, since each fla is a polycylinder,
there is, from Theorem 1, the following exact sequence

0 IIp(fla, Fr) 3’ Ap(fla,Er 0 lIp(fla’Fr+
for each a. From this we get the following exact sequence

And from (7) we have the following long exact sequence

Hq+ Gq+ Hq+p l(fl’Fr) l(]12,Er) p l(IIl’Fr+l) :...

Since GDq(l,l,Er) 0 for every q > 0, it follows that

Hpq(.,Fr+l) Hpq+l(,Fr) for q _> 1.

In particular

’F0 q-i

Therefore from lemma 2

Hpq(!li2,O 0 for q _> I. (I0)

Since every finite open covering of has a refinement whose members are polycylinders, if B
is the presheaf of Lp holomorphic functions on , (I0) implies that

Hq(, BoP 0

Therefore, since Hq(, Bp) Hq(,B) we get

Hq(,Bp) =0 for q_> landl<_p<_

{]4. LERAY’S THEOREM WITH Lp- BOUNDS

I. To prove Theorem 5, let X be an open set in {:n and ii {Ui}ie be a locally finite

covering of X by polycylinders each of which is relatively compact in X, and " a coherent

analytic sheaf on X. Let a {Ui0,....,Uir} be in the nerve of so that the support

al Ui0f"’ Uir of a is not empty and let A al {lal N Ui}iei, then 21 al is a finite

covering of the closure of a by polycylinders. First we show that Hq(.tlI, al ) 0 for all

q>landl<p<(R):
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As in [4] and [5], there is a terminating chain of syzygies

P N P P0 N
0 D r r r-i 0, ..... 0 ()

in a neighborhood of the closure of el, where D is the structure sheaf on (n and is a natural

number. We use induction on the length r of the terminating chain of syzygies. When 0

the exact sequence (11) reduces to

DP0 NO0 -0

Thus, in this case we need only show that H;(Lt] al’ ore) 0 for q > 1, m > 1. This is done by

induction on m. When m 1, we know from (10) that HDq(L[I,: al ,O) 0. When m > from

the exact sequence of sheaves

0 D Dm Dm-1 0 (12)

we get for each Z (Z0"’" Eq) where U al uy ...n UZq an exact sequence

used the fact that Fp(U,_ Om-l)- defined by using the exacthaving sequence

om Dm-1
coincides with the original definition.

From (13) there is the exact sequence

0 c;(’Ul ,,1’ o) c(’Ul o-I ’Om)
From (14) there is a long exact sequence of Lp bounded cohomology groups

;, om-iH (.U ol’ O) H (1 ol’ m) H (U ol’ (15)

Hq+l(il O)

Hpq(A] a] O): H;+l(l]al, O) 0, hence HI(
Thus by induction, H;(II al Om) 0 for all q _> I, m > i, i <_ p <_ (R).

To conclude the proof of Hq(lll._, a] ’ 0 for all q > assume that Hq(llI= al ,D) 0 for

all q > 1, when D is a coherent analytic sheaf which has a terminating chain of syzygies of

length _< r 1. The exact sequence (11) can be reduced to the two shorter exact sequences
P N P P NIo o r r r-i .m 0 ()

P NO0 :O 0 ." O,

induction hypothesis Hq(|where is the kernel of NO By the ,al’)=0frq-> I. From
the short exact sequence in (16) it is easy to see that we have a long exact sequence

P
Hpq(la O 0) Hpq(A[al," Hq+I(L[[ ,) ,. (17)p a]

since, also H (11 al 0 for I q 1, we get the desired result that H (g] a ’) O.
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2. Since the cover H of X is acyclic with respect to the coherent analytic sheaf ’, the canonical

alternating resolution of relative to the cover

d d
0" 80 1---’"" ’r r+l -’""

is acyclic and we use this resolution to compute the cohomology groups of X with values in

up to isomorphisms. Also because 52 is locally finite each r’ >_ 0 is a coherent analytic sheaf.

Now Hq(AI_ al ’) 0 for q _> 1, 1 <_ p _< (R) and all a in the nerve of tl, implies that the following
two sequences are exact"

d1

0 r(X’r) C0p(Li’r) cl(H’r)v C(H’r) .... (19)

The two sets of sequences (18) and (19) can be written in the following double complex

In this double complex, all rows except the first are exact and all columns except the first are

exact and the whole diagram is commutative. Therefore as it is well known the natural map of

Huq(1, into the qth cohomology group of the complex which is the first row is an

isomorphism. That is to say, the natural map

(N n(X,
is an isomorphism for q _> 0. ,
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