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ABSTRACT. Let 2 =Q x..x @ be a polycylinder in C", that is each Q. is bounded,
non—empty and open in . The main result proved here is that, if B D is the sheaf of germs of

LP-holomorphic functions on {I then Hq(ﬁ,Bp) = 0for q > 1. The proof of this is then used to

establish a Leray’s Isomorphism with LP—bounds theorem.
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A polycylinder in €™ is a product set Q = Ql x..x n such that each Q. is open and
bounded in (, 1 < j < n. If B is the sheaf of germs of bounded holomorphic functions on the
closure of a polycylinder 2, it is proved, among other things, in [1] that the cohomology group

Hl(ﬁ,B) = 0. As part of the vanishing theorems in [7], this is generalized to HY(,B) = 0,
q 2 1, where Q is a member of a set of product domains not including all polycylinders and in
[3] this is generalized to all polycylinders.

For the product domains Q considered in (7], it is also shown that if B N is the sheaf of

germs of L — holomorphic functions on I, then Hq(ﬁ,Bp) =0forq>1land1<p< o Inthis
paper we extend this result to all polycylinders as an application of a result which we call

Dolbeault—Grothendieck lemma with LP — Bounds. As applications of the vanishing theorem

Hq(ﬁ,Bm) =0, q> 1, we state a theorem on the characterization of the generators of the

maximal ideals of the Banach Algebra H”(Q) of bounded holomorphic functions on Q, which we
have obtained elsewhere by different methods. Furthermore we state the fact that the
Weak—Corona—Problem is solvable on all polycylinders and not merely on the product domains

considered in [7]. We also state and prove a Leray’s Isomorphism Theorem with LP — bounds.
This is influenced by the work in [4] and [8] in which the acyclic covers for which the theorem is
proved, are more general, noting at this point that the acyclic covers made up of polycylinders
here cannot as yet be replaced by acyclic covers made up of strongly pseudoconvex domains,

even though LP — estimates on strongly pseudoconvex domains are more advanced than P -
estimates on polycylinders.
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§1. Definitions and Statements of The Theorems

1. If U ¢ €"is an open set and f ¢ C°(U) and 1 < p < o we define

(0 = yg(0.0) -
1850y =10 =10 5

1 being the LP — norm of fon U,
LP(U)

0 = max [— O o 1gren
P(U) <. ..<i oz ... &z [ILP(U)
T 11 lr
and
0
() = max (S )
L¥(U) o0<r<n LF(U)
Iff= Z £, dz A.Adz isa C®(0,q) — form on U where £’ means the summation
. .y 1I77q 1 q
(ip--- ’lq)
is over increasing multi—indices, we write f as !)'t‘ld'z'I for short I = (il,..., i q), and set
I
() = max ey (2)
P00 0

Then corresponding to theorem 1 in [3], there is the following:

THEOREM 1: Let Q be a polycylinder in "and1¢ p ¢ o. Thereis a Ky > 0 such

that if f is a smooth d—closed (0,q + 1)—form on Q with ||f]| (n) < o, then thereis a
Y 0ar1)@

smooth (0,q)—form u on © with u = f and

g (2) < Kalj) () .
Log® LPogr)@

2. Let Q be a polycylinder and U # ¢ a set open in {2, then BS(U) is the Banach space
of holomorphic functions f on Q n U such that ||f]| <w,1<p<w IfVisopenin{
LP(unq)
with @ # V ¢ U, the restriction map rgz BR(U) - BR(V) is defined. Then Bf := {Bf(Q); :8}
is then the canonical presheaf of LP — holomorphic functions on Q1. The associated sheaf Bp is

the sheaf of germs of LP — holomorphic functions on . From Theorem 1 there is the following:

THEOREM 2: Let Q ¢ (" be a polycylinder and B P the sheaf of germs of LP —

holomorphic functions on 1. Then HY(2,B p) =0forq>land 1<p¢m.

3. Let Q be a polycylinder and w ¢ Q. M denotes the maximal ideal of the ring O of

germs of holomorphic functions at w and M w(S'l) is the maximal ideal of functions in H®(Q)
vanishing at w. If f is holomorphic in Q, fw denotes the germ at w.

Using Theorem 2 and the Koszul’s complex constructed in [9] and used in [6] to solve
the Gleason Problem on strongly pseudo convex domains, we get
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THEOREM 3: Let w ¢ 2 (" and f},..., f, ¢ H(Q). Thenf,,.., f generate M (Q) if
and only if (i) f) @ [y generate M and (ii) w is the only common zero of f},..., f in €.
In particular z; — w,,..., 2, —w  generate M ().

4. The Weak Corona Problem is formulated in [2]: Let X be a relatively compact
domain of a topological space Y. Letf,,..., fN be complex—valued continuous functions on X;
f},-., fyy verify the weak corona assumption (on X) if the following two conditions hold:

a) fO,..., fN have no common zeros on X;

b) a positive number § > 0 exists so that for each z ¢ 0X(= boundary of X in Y), an index
i €{0,..., N} i =i(z) and an open neighborhood Vv, of zin Y are given such that |fi(w)| 26
on Vz nX.

Let A be a function algebra on X. The weak corona problem is solvable in A (on X)
when for fo,..., fN € A which verify the weak corona assumption, fO,..., fN represent 1in A.
From the work in [2] and Theorem 2 we have

THEOREM 4: Let Q ¢ (" be any polycylinder. Then the weak corona problem is
solvable in H(Q).

5. Let O be the sheaf of germs of holomorphic functions in ¢ 1f U c (" is open and
r > 0 is an integer let [(U,9) be the sections of O on U, then

rp(U,o’) i={f = (£}, £,) e T(U00): +o+ (£l < o}

LP(U) LP(V)

If §is a coherent analytic sheaf on a neighborhood of the closure € of a polycylinder Q,
then by Cartan’s theorem A there is an exact sequence
oA 5
of D—homomorphisms in a neighborhood of 7, where m is a positive integer. The LP—bounded
section of § over Q, Fp(ﬂ,&) is defined by
ry(.3) = ,\(Fp(Q,Dm)).

It can be shown easily that the definition of I‘p(Q,E) does not depend on A and m.

Let X be an open set in (%, 4 = {Ui}id a locally finite covering of X by polycylinders
each of which is relatively compact in X. We define the LP—bounded alternate g—ochain
group Cg(il,{s") of the covering U with values in § by

CI3) = {e = (cp) € CUB): ¢ € T (U, F), Vo= (ag,, a) ¢ 19+l
where Ua =U o n..n Ua and cq(zgs) is the alternate q—cochain group of the covering 4

q
with values in §.

The coboundary operator
6 CY(§) —— cI ()
maps Cg(Ll,S) into Cg+1(il,3), hence we have a complex
co(ssd) —— el — . —— cdun —- el Uy — ..
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and Hg(u,{’f) is the qth cohomology group of this complex. We then have the following:

THEOREM 5: The natural map

HY(3) —— BY(X,3)
is an isomorphism forq> 0and 1 < p € .

§2. DOLBEAULT-GROTHENDIECK LEMMA WITH LP-BOUNDS.
We establish Theorem 1 in this section. The proof parallels completely that of the

L®—version in [3], but we give a detailed proof because there are lots of misprints in [3].
The proof is by induction, the inductive statement being that the theorem is true if f

does not involve dik oy dik Lo din. When k = 0, there is nothing to prove because then f
must be zero. If k = n, then the statement is the theorem. We assume therefore that the

theorem is true if f does not involve dik,dik L1 din and assume that

f=dz Ag+h
where g is of type (0,q) and h is of type (0,q + 1), and g and h are independent of dik,..., din.
-1
g= 513 grdz
=J
h=% h.dz
J J

If I is an increasing multi—index and j is a positive integer not in I, (I,j) is the increasing
multi—index obtained by adding j to the integers in I and (Lj;.Jp) = ((Lj}),p) when j, is not in
I'and j, is not (I’jl)’ Now on Q
0= 3f = dz, A (.lz1 &z A (5 fgﬂdz‘)) + _§ @A (2 My dz),
=1 I &, =1 J Gz,
hence if Iyis an increasing multi—index of length q, 1 € j; < k and j; is not in I0 the coefficient

_ (Iypdg)
ofdzk/\di 0°0% 40 Bt is
ch
o M
0= ) € (1,j) — & —2 (1)
.lgz'<k. 0z. a;k
(I:J)= Io»Jo) J

where (Jo,k) = (IO,jO,k), ¢(Lj) = ¢ 1 and the summation is over 1 ¢ j < k and (L,j) = (IO,jO);
because

o8
g = O,J > k,
J
this apart from a factor of + 1, being the coefficient of dik A dij A d'z'I in 9f = 0.
In Q let
Gyl2) = g [ (ry ~2) " 812y it 2 )d7, Adr )
I I Jo kT B e T %k 1 P/ YTk Tk
k *
*
Then clearly G; e C*(f2) and ||G "(n) <K,llg "(n) for some constant K.
I I p LS U 1
LP(Q) LP(Q)
oGy Gy
— =g and —=0 for j> k. 3)
9z, ZTz'J.
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ool *
Let G =3 Gydzl. Then ||G||(g) ( <K g1 ()

i (0,9)() L{0,q+1)(®)

- NCS) SN S
G =% ¥ —dz.Adz =dz Ag+ by (4)
1j=137j J

where h1 is the sum when j runs from 1 to k — 1 and it is independent of dEk,.‘., din. Hence

h—h = f — "8G does not involve dik,..., din. If Iyis an increasing multi~index of length q,

. o . i)
1< jg < k and j; is not in I the coefficient of dz inh,is
H D)k (5)
3 = € Iy.] —
(Ligh 1<k o7,
(I,J)={ I 0:30)
the meaning of the symbols being as in (1). From (1) it follows that
ohy
Hy @)= gob f (1 =2)7 =2 (2} Ty 2)dTy A d7 (6)
(i)™ = 2 Jg k™) 5= e T 2T M O
k k
where (Io,jo,k) = (JO,k).
From (3), (5) and (6) it follows that
Iy (2 < (2)
? Q) LY Q)
. (0.0+1) (0.a+1)
for some constant K2, hence
It~ 361 (3) <l () + Kyl (3 <a.
(0.a+)®  L(oq+n)® L(o.q+n)®

By the induction hypothesis, since f — G does not involve dik,..., d’z'n and
B9(f —3G) = 0 on Q, there is a smooth (0,q) — form v such that dv = f — 3G on Q and
_ *
M ckgle-36) () <Ky(1+ Kl (D)
() 3 L? Q) 3 20 (@)
(0,9) (0,q+1) (0,q+1)
*
for some constant K3.

Now let u = v + G, then du = fon Q and

(™ &+ K1+ KR
Rog@® 1 TR )@

* * *
which completes the proof of Theorem 1 with Ky = (K1 + K3(1 +Ky)).

§3. VANISHING THEOREMS:

1. To prove Theorem 2, let E_ be the sheaf of germs of smooth (0,r) forms in ¢" and F

the sheaf of germs of smooth d—closed (0,r) forms, r » 0. If U is open in ", define
Hp(U,Fr) and Ap(U,Er) by
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I (UF,) i= {f e T(U}F,): ||f1|(“) < 0}

(0 r)(ﬂ)
A (UE):={fer(UE 01" <o, an(%) < o).
P L2, L00,c+1)(®

Let U = {Ui}ieI be a finite covering of {I by polycylinders where Q is a polycylinder in (" For

each a = (ig,.., 1 ) € 19140 =QnU. n..nU. andlet Yo = {2 U} Let
q a 1y lq
cq(uQ,F ) and Dq(uQ E_) defined by c‘l(un F)):={c=(c,) e CP(y,F,): cpe Ml p(AF):

for each @ = (ig,... i) ¢ Iq“} DX(Un.E,) = {e = (c,) e CP(UGE,): ¢,y € A (QE,), for each

1
a= (10,..., lq) e19F }.
2. The coboundary operator & Cq(iln,Lt) _ Cq"'l(un,Lr), where L is E_ or F , maps

. 1 . 1
Ca(uq F,) into cg+ (84, F,) and DY(84,E ) into Dg+ (4.E,). We then define HI(U0E )
as the qth cohomology group of the complex:
0 [ +1

CplthgFp) == Cg(ﬂn»Fr) — cg (U F) - s

and Gg(un,E r) as the qth cohomology group of the complex:
0 q 5 q+1
D (UgE,) - DI(tg B ) — = DIT (UG B ) ...

LEMMA 1: Gg(uQ,Er) =0forq> 1.

The proof of this is easy and does not involve the use of the d—operator.

. gl =
LEMMA 2: Hp(ﬂn,Fr) =0forr>0.
PROOF: Let {goi}ieI be a C® — partition of unity subordinate to the covering i of Q, so

that 0 < ¢, <1, supp ¢; C U; and Ty, = 1 on Q. IHce Cll)(ﬂQ,Fr) and & =0,¢c= (cij)’ define
i

outside 2 n Ui nu j as zero and set

Then for eachi €I, c isa C® — (0,r) — form and ||c; ||(g) < o. Since éc = 0,

. Lo, (@)
I —-C. = . . = Y .= C..
¢ cj kel wl((CkJ + clk) kel ¢kclj cl

and so -5c'. =dc;onQnU;N U Hence there is a C® (0,1 + 1) — form f on Q such that

flu;na= Fc Henceon U;n @, —f = 2 (3go)/\c andllfll( < @ which
3 LP (any,
(0,r+1)
implies ||f||(n) < o. From Theorem 1, there is a smooth (0,r) — form u on § such that
(0 r+1)(
{lu "(n) < wand du ={ Define ¢! =c/—uonU,nQforeachiel Then

Yo0(®
dc" =75clf —3u=75ci —f= dej~dc; =00on 02N U;and
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e (s (
anu,)
(0 )
— 0
Therefore if ¢" = (c'i'), then c" ¢ Cp(ilQ,Fr) and
(&")ij =c'-c"=c¢c.=-c/ =c..

. J 1 J 1 1y
Therefore &" = ¢ and Hp(U’Q’Fr) =0.

3. To continue with the proof of Theorem 2, for each a = (1 ,i ) if
r I (Q oFr )= A (Qa’E ) is the inclusion map, since ea.ch Q 1s a polycylinder,
thete is, from Theorem 1, the following exact sequence

) ——0

El
0—— T (Q,F) X, Ap(QpE) —F— T (A F

for each a. From this we get the following exact sequence

0 —— CX(Un,F,) —1— DL(U.E)) _9, SLET ) pa—r ™

r+1

And from (7) we have the following long exact sequence
q q q
—— Bt F,) —— GYUpE) ——HIUGF ) ——  (8)
q+1 q+1 q+1
— HM g F) —— GIT (U B) —— HIV (W F ) ——
Since Gg(un,Er) = 0 for every q > 0, it follows that
q ~ gat!
Hp(ilQ,Fr+l) ] Hp ()Jn,Fr) for q> 1.

In particular

q — a4 ~ q_l NN 1
HY(140,0) = (s, Fo) 2 B (w0 F ) o o B (s F ) ©
Therefore from lemma 2
q —
Hp(ﬂn,D )=0 for q> 1. (10)

Since every finite open covering of { has a refinement whose members are polycylinders, if Bg
is the presheaf of LP — holomorphic functions on 0, (10) implies that
HY(®, B) =0
Therefore, since H(T, B p) N Hq(ﬁ,Bg) we get
Hq(ﬁ,Bp) =0 for q>land1<p¢a.

§4. LERAY’S THEOREM WITH LP — BOUNDS

1. To prove Theorem 5, let X be an open set in (" and U = {Ui}iel be a locally finite
covering of X by polycylinders each of which is relatively compact in X, and § a coherent
analytic sheaf on X. Let 0 = {Ui . } be in the nerve of 4 so that the support

0 r

o] = UiOn...n Ui of ois not empty and let ill ol = {lel n U} p» then Lll ol is a finite

covering of the closure of | o| by polycylinders. First we show that Hq(uI | %) = 0 for all
gq2land1<p<w
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As in [4] and [5], there is a terminating chain of syzygies

P N P P0 N0

0 oI prl LD L F——0 (11)

in a neighborhood of the closute of | ¢|, where D is the structure sheaf on €™ and r is a natural
number. We use induction on the length r of the terminating chain of syzygies. Whenrt =0
the exact sequence (11) reduces to
P, N
0 SI

Thus, in this case we need only show that Hg().ll ol O™)=0forq>1, m> 1. Thisis done by

induction on m. When m = 1, we know from (10) that Hg().l| o ,0) = 0. When m > 1 from
the exact sequence of sheaves

0 o o ____pml_ g (12)

we get for each = (ﬂo,..., ﬂq) where U[} =|ag| N Uﬂ n..n Uﬂ an exact sequence
0 q

0 —— I (Ug0) —— T (U 0™) —— rp(Ué o hy g, (13)

having used the fact that Fp(Ub’ Dm_l) defined by using the exact sequence
coincides with the original definition.

From (13) there is the exact sequence
9) ——1 cg(u O — cg(u

0—— clu o™y o (1)

Lo’ lol’ lol’
From (14) there is a long exact sequence of LP — bounded cohomology groups

—-ng(ill o9 —4Hg(11 Dm)——»Hg(ﬂ oy —— (1)

lo]’ lol®

0) —....

q+1
e Hop
q o) = gl o) = q my 1
Hp(u' Ul y ) Hp (Lll UI, ) 0, hence Hp(ill UI, O ) ¥ Hp().l
Thus by induction, Hg(ﬂl o]’ Dm) =0forallq>1,m>1,1<p<aw

To conclude the proof of Hg(ﬂl p ,5) = 0 for all q > 1 assume that Hg(u' o ,8) = 0 for
all q > 1, when & is a coherent analytic sheaf which has a terminating chain of syzygies of
length < r — 1. The exact sequence (11) can be reduced to the two shorter exact sequences

P N P P, N
0— D~ o -l o ol

P N0

0— %R 0 — —0,

oy,

Lo’

Lm0 (16)

where R is the kernel of N, By the induction hypothesis Hg(ﬂl "k R) =0forq> 1. From

the short exact sequence in (16) it is easy to see that we have a long exact sequence

— 8% DPO)_—.Hq(u §) —— Wy ) —— (17)
p ol p ol P |a|’

P
since, also Hg(ﬂl ol O 0) = 0 for all q > 1, we get the desired result that Hg(ul ol ,5) =0.
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2. Since the cover Y of X is acyclic with respect to the coherent analytic sheaf §, the canonical
alternating resolution of J relative to the cover il

. d d
i~ 0 ~ 1 L e

. . 0 1 S, + S, S, S
is acyclic and we use this resolution to compute the cohomology groups of X with values in §,

up to isomorphisms. Also because U is locally finite each 61_, r > 0 is a coherent analytic sheaf.

dl'

—_— ...

Now Hg(ﬂl ol ,5)=0forq>1,1<p<woandall ¢in the nerve of 4, implies that the following

two sequences are exact:
* *

*x d d
0 —— Cp(ud) —= clusy) —— clue)) —— clus) — .. (18)

0 § Al § 2
0 —— P(X,8) —— Cp(U&) —— C (46,) —— C (&) —— .. (19)

The two sets of sequences (18) and (19) can be written in the following double complex

0 0 0 0
! !
* * *
i* do dy dy
0— I(X,3) -1 r(x,8) —I(X,8,) —I(X,5,) — ..
14 18 18 16
d 4 d;
0 i* 0 0. 0 1 -0
0——C () -C(U8) —CUS))  ——C(1S,) —.
Iy 18 1° 18
d* dt d;
o—clwy -Lclwe) —Lciuwe) —Lojus)

! ! ! !

In this double complex, all rows except the first are exact and all columns except the first are
exact and the whole diagram is commutative. Therefore as it is well known the natural map of

Hg(ﬂ,&) into the qth cohomology group of the complex which is the first row is an
isomorphism. That is to say, the natural map

HY(143) —— BY(X,9)

is an isomorphism for q > 0. «
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