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ABSTRACT. In this paper, we study the existence of global weak solutions for the equation

ky(z)u" + ky(z)d + A@t)u + |u|Pu=f (I
in the non-cylinder domain Q in R"*'; k, and k, are bounded real functions, A(t) is the

symimetric operator

A(t) = - . i £—_ (at](xvt) 56';)
L,)=1"" '

where a,, and f are real functions given in Q. For the proof of existence of global weak solutions

we use the Faedo-Galerkin method, compactuess arguments and penalization.

KEY WORDS AND PHRASES. Existence of weak solutions, Faedo-Galerkin method,

compactness arguments.
1991 AMS SUBJECT CLASSIFICATION CODE. 35150.

INTRODUCTION AND TERMINOLOGY.

Let T > 0 be a positive real number, O a bounded open set of R" and @ C O x[0,T) a non-
cylindrical domain in R"+1, ‘

In the cylinder 2x(0,T), where 2 C R" is a bounded open set, Bensoussan et al. [1] and

Lions [7] have studied the homogenization for the following Cauchy problem:

ky(zu" + ky(z)' + Au= fin Q

II
u(z,0) = up(z) and ky(2)u(z,0) = ky/X(c)u(2), = € 0 W

Many authors have been investigating the solvability of solution for the nonlinear equations
associated with problem (I) see: Larkin [4], Lima [5], Medeiros [9], Medeiros [10], Medeiros [11],
Melo [12], Maciel [13], Neves [14] and Vagrov [16].

In the non-cylindrical domain @, Lions, J.L. [8] studied the existence and uniqueness of
global weak solutions for nonlinear equations associated with problem (II) with nonlinearity of
type |u|fu.

Let Q,=QnN{t=s} be a plane in R"*1 Analogously Qy=@N{t=0} and
Qr=QnN{t=T}0Q =T the boundary of Q;I,=0QN{t=s} the boundary de 0, and
Y = Ug<,<7l, lateral boundary of Q). Therefore Q is a subset of O x(0,T) whose boundary is
QNENN,.

Let’s denote by (-, ) and | - | the inner product and the norm in L*2) and by (( -, -)) and
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Il -]l the inner product and norm in Hi(Q). We identify L(Q,) and HY(€),) the sub-space of the
LYQ) and HYO) respectively. V0 <t < T.

We define LP(0.T; LQ,)) to be the space of functions » in L”(0.T: L*())) such that v(f) in
L*(),) a.c. on ¢, for 1 < p < oc. By analogy we define LP(0.T: HY(9,)).

In this work we study the following problem: Let fok kv, ¢ vy he tanetions in appropriate

spaces. We want to find the function w: Q—R such that:

Ey(eyud” + k(v + A)u + | ?u = fin Q. with 0 < p € R. where

1(.0) = wy(0). «,(.0) = uy(2) in Q and

(t)= — i %((z,,(a'.f)a—ar—) with a,,in Q

ny=1"/
We use Faedo-Galerkin's method and compactuess arguments. see Lions. J.L. [7]
1. ASSUMPTIONS AND MAIN RESULT.
If we assume the following hypothesis:
(H.1) Let Q; be the projection of the , on the hyperplane + = 0. We may assume ) < )] if
t<s.
_(H.2) For each t €[0,T].Q, has the following regularity: If v € H,(Q) and «=0in O~
a.e., then the restriction of u to §), belongs to HY(€,).
On the functions k,,k, and a,, we take:
(H.3) ky, ky € L(Q,);ky(z) > B> 0,3 € Riky(x) > 0 for each t € [0,T).
(H4)a,, =a, € L0 x(0,T)) and @/, = La,, € L¥(0 x(0,T)).
There is 0 < 6§ € R such that

n
Y a,(@tEE, 2601617+ + 16D (@) €OX(0.T),€ = (&. - - -.£,) ER®
n)=1
Let a(t,u,v) denote the bilinear form associated to the operator A(t) From (H.4) and, using
Cauchy-Schwartz, we obtain:
a(t,u,v) < Clu] - |l Vu,v € HYO).

Also by Poincaré-Friedrichs inequality and of (H.4), there exists a > 0. real, such that:

a(t,u,v) > a ||u|| % Vu e HYO).
Therefore, from the above inequalities, we conclude that a(f, -, - ) is continuous and coercive
in H}(0) x H}(0).
Now lets consider the main result.
THEOREM 1. Suppose the hypothesis (H.1)-(H.4) are satisfied and that

feL¥Q) (1.1)
uo € HY(D) (1.2)
u, € L¥$,) are given, with 0 < p < -~ 4 5 (1.3)
Then there exists a function u: Q—R such that
u € L0, T; H(Q,)) (14)
u' € L2(0,T: LXR,)). \fky(z)u’ € L=(0,T: L*(9,)) (1.5)
kyizy" € LP(0,T;H-Y(Q,)) with %+I§ =1, p=p+2andu (1.6)

is a solution (1) in the weak sense in @, i.e.,
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% (ko(@)u(t).v) + (ky(2he(t),v) + a(tou(t)v) + (Tu(t) [ Pu(t),v) = (f(t).0), (1.7)

in D'(0,T),Yv € HYQ,).
u(x,0) = uy(x); k(@) (2.0) = \fRy(x)u; in Q (1.8)

PROOF. The idea is to transform, the non-cylinder problem in the «vlinder problem.
through the penalization function, M € L*(O x(0,T)), that was introduced by J.L. Lions (8.
given by:

0, m@

M(z,t)=
(1 1, imOx(0,T\Q.

For each € > 0, we will find U in the cylinder O x (0,T), solution of the perturbed problem
(P,) below

Fo2)US + By (2)U5 + AU+ EMU + || US| U = f (1.9)
U<0) = i (1.10)

k,U3(0) = fRal)ty (1.11)

U€ = 0in the 30 x (0,T)) = £ (1.12)

Uy in Q

where ky (z) = ky(2) + U, = & U; Uy = % U ity = { o n O\,

Therefore, @y € HY(0). Analogously i, € L¥O);

= {f, in @
0, in Ox(0,T)\@;

Therefore f € L0 x (0,T));

(o) = {kl(r) i.n Q and Fy(z) = {kz(z) 'fn Q
B inOx(0,T\Q 0 in 0x(0,T\Q
So k, and k, € L=(0 x (0,T)).
The proof of Theorem 1 will be a consequence of the following Theorem:
THEOREM 2. For each € > 0, there exists one function U, O x (0,T)—R, solution of the
problem (P,), such that:

U< € L=(0,T; H(0)) (1.13)
U< € L*(0,T; LX0)), \ ko 2)Us € L=(0,T; L*(0)) (1.14)
ko 2)U% € LP(0,T; H~1(0)) (1.15)
with%+§—,= land p=p+2
Fo@)US, + Fy(2)US + AU + 1 MU+ (U< |?U = | (1.16)
in the weak sense in O x (0,T).
U¢(z,0) = iig(z) (1.17)

kol 2)Us(x,0) = y/ ks (2)iy () (1.18)
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REMARK 1. The condition US=0 in ¥ is a consequence of the fact that U in
L¥0,T; H{(O)).

REMARK 2. For the proof of Theorem 1 it is sufficient to prove that the solution U* in
Theorem 2 converges for U in the weak sense when e—0 and that the restriction of U to @
satisfies all the assertions of Theorem 1.

In this part, we use a result due to W.A. Strauss see [15].

PROOF OF THEOREM 2.

(i) Approximate Problem. It will be done by the Faedo-Galerkin method. Let
{w,}4 =7 C HY(O) be a basis of H'(O) and V,, the subspace spanned by the m first vectors
wy, Wy, * + -, w,. Let Us, be the function

mn
Un(@,t)= ) gymelthw,(a
=1
defined by the system !

(ka() gtg Usalt),w,) + (ka() % Ut(t)w,) +a(t,Us(t),w,)

_ , (1.19)
+€ M (m U:n(t)ij)+( IU:n(t) I pvw]) = (f(t)7w])7 v] = 17 WM

U(0) =U,,, = Z a,,w,—i, strong in H'(O) (1.20)

(% U (0)=U,,, jglﬂ‘,mwJ — \/T strong in L%0) (1.21)

The system (1.19)-(1.21) satisfies the condition of Caractheodory’s theorem see [2].
Therefore it has a solution U%, defined in [0,1,,,), where 0 < t,,, <T. The a priori estimates to be
obtained in the following step, show, in particular, that t,,, = T.

(i) A Priori Estimates. By multiplying both sides of (1.19) by 2g/,,(t), and adding from

j=1to j = m we obtain:

£ Veda ) +AVE@UA[ + 20Ut i)+ [ MU de
o

. (1.22)
+2 / 10 (&) |V (&)U = 2(F(E), Un(t),

where we wrote U,, instead of U¢, and denoted by U’, 6 U
REMARK 3. We have that

% a(t,U (2), U (?)) = &' (£, U (), U alt)) + 2a(2, U u(2), UL(2));
where
(U (), Un(t) = d(tU () = 37, 4 / 2 a(zt) £ UL 3% U m(t)ds.
Therefore,
20(t,U (t),U' (t )) = La(t,U,u(t) — a'(t,U ().

REMARK 4. We have that § 4 [1Un()|Pdz = [ [Un(s) |7~ Ig:zgl U (s)de =
f [Un(8) | °U () - Urn(8)d.

Therefore, in the remarks (3 and 4) below, we have, integrating (1.22) from 0 to ¢,
0<t<t,, that:

|VEalo) Uto)f +2 /] F@U(s)[ds + alt, U (1)) + 3 [10F dz
0 o
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+2 /0 / MU' (: ))2(11(13=}\/I;-z,(.r)U.,,,r+a(0,Uon,)+ (1.23)

3 [1Uanl do+ [" (s Unshds +2 [T (FEUln()ds
[e] 1] 1]

REMARK 5. From (20). (21) and the Sobolev Immersion, H'(O)—L*(0).V § = %——%, we
obtain:
” UOm ” L”(O) S C

Vo) U < 6 Jat0.U)] < C.

Here, the letter C denotes different constants.
REMARK 6. By using (H.4), we obtain:

[ UnDas <€ [ NUs) s
0 0o

Therefore, from the remarks (5 and 6) below, we can write (1.23) like

|V/Fole) Ut) +2/ |VE@ULE] ds +alt,Un(t) )+,,/|U,,, P ds

(1.24)
2 ¢ 1 (o)\2 2 1 2
+€ MU(s)dzds < C+C | ||[Un(s)||?ds+ X[ |UL(s)]?ds
I [ [
From (1.24), if we choose A = 8 > 0 (the 8 > 0 of H.3) we obtain:
[1Une1Ms<c+c [ NUas)* ds, (1.25)
[} 0
and
t 2 o 2
atUn() SC+C [ UWs) 1+ 8 [ |Un(s) | %ds (1.26)
0 )
Being a(t,u,v) coercive, we obtain from (1.25) and (1.26), that:
NUm(®12SC+C [“lun(s) I %ds, VEE[0,t,m) (127)
Gronwall’s inequality implies that °
UGN <C, VmeN, Ve >0, Vte|[0,t,,,). (1.28)
Returning to (1.25) we obtain:
t
/ ]% U:,,(s)rds <c, (1.29)
Vm €N, Ve >0, Vt€(0.t,,,).
The priori estimative (1.24) shows that ¢,,, = T. Therefore,
| Fade) L U, t)r + 2/'] b L Uf,,(s)rds +a(t,US(t))
(1.30)
+2 / |U(s) | Pdz +2 / /M( U:,,(s)) dzds < C
Vm € N,Ve > 0 and V¢ €[0,T].
We obtain from (1.28), (1.29) and (1.30) the estimates,
U <C, VmeN, €>0. (1.31)

L0, T; H}(0)) =
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’l(’)t m 20, T; L3(0)) = <C, VmeN. Ve>0 (1.32)
— 0
“ ka ot Ul L0, T; 1.4(0)) <C, VmeN, Ve>0 (1.33)
M L2 “L <C, VmeN, Ve>0: (1.34)
L0 1 140)) = .

where C is a constant independent of m € N and € > 0.
By the estimates (1.31)-(1.34), there exist a subsequence of (U¢,). still denoted by (U%,). and

a function U* such that

Us, — U weak-star in L(0, T; HY(O)), (1.35)
(% Ue, — 5"? U* weak in L(0,T; L¥(0)), (1.36)
\/ M2, - f M 2 U weak-star in L2(0,T; L*(0)). (1.37)
THE NONLINEAR TERM.

" By (1.30) and noting that %+;§7 =1, we obtain

I IU:,.I"U;IIZ’,,:/IU;,I"’“’P'd.r=/|U;|“’“""dw=/lUf,,l"dwsc,
(0] 0 o

which implies:
U1 PU . <C, VmeN, Ve>0. (1.38)
L0, T; L? (0))

From (1.31), (1.32) and the Aubin-Lions Theorem (see [7]) we obtain:

| U, | PUs— | U< | U< a.e. in O % (0,T), (1.39)
and
|Us, | PUS,—»W weak-star in L(0,T; L? (0)) (1.40)

The difficulty is to prove that W = |U¢|?U®. This is a consequence of the following result
due to W.A. Strauss (see [15]).

LEMMA 1. Let Q be a bounded open set of R”. Lets g,, and g € LP(Q2), 1 < p < oo satisfy
the following conditions:

(i) gm—gae infd

(i) lgmll LP(Q) <C,VmeN

Then

(iii) g¢,,—g¢ strongly in L), 1 <g<p

(iv) 9,—g weakly in LP(Q).

Lemma 1 with ¢ —”—+—2 =p;Q=0x(0,T) and g,,= |U,,|? U,,, we obtain from (1.38) and
(1.39) that

|Us, | PUS— | US| ?U* weak-start in L0, T; L?(0)) (1.41)
and consequently weak in L?'(0,T; L?'(0)).
By multiplying both sides of (1.19) by 6 € C3°(0,T'), integrating from ¢ = 0 to t = T, passing
to the limit and using the convergences (1.35)-(1.37), (1.41) and noting that {w,}3_, is a basis of
HY(0), we obtain:
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/ T(i'Q,(r)z)é%Lf‘(t), 8)dt + / Tl (o) 20e(t),v8)t + / To(t,U(t), 0)dt +
0 0 0 (1.42)

/0 T(%M%U‘(t),vﬁ)dt+ + /0 T vety | PU<(t). v8)dt = /0 T(5(t).v0)dt,

Vv € HYO), V8 € CF(0,T).
Then, from (1.35)-(1.37) and from (1.42), we obtain U® satisfying (1.9)-(1.10) and (1.12).
Noting that
L¥0,T; L¥(0))—L¥0,T; H ~(0)),
we obtain
—IMU—k\(2)U¢ € LY0.T; H~1(0)).
The fact that a, (z,) a% U¥(t) € L¥O) implies that

3 il 9 ye 2 -1
oy & (ot U ) e LT H1(O)),

(see [3]). Also from (1.16), (1.41) and f € L*(0,T; L*0)) we obtain

kada) 25Ut € L0, T, HY0)),

which proves (1.15).
The estimates (1.31)-(1.34) and (1.38) are independent form e >0, we obtain the same
convergences (1.35)-(1.37) and (1.41) by changing U%, by U¢ and U by W. Therefore, we have

U—W weak-star in L=(0,T; H}(0)) (1.43)
Ui—W, weak in L*(0,T; L*0)) (1.44)
ko (2)Us — (Jko(z)W, weak-star in L(0,T; L*(0)). (1.45)

Note that ‘/kk(x) = \/ ky(2) + e—q/l;:,(a:) strong in L*(0,T;L*(%)).

|U¢|PUs— | W | PW weak-star in L=(0,T; L*(0)) (1.46)

Also, we obtain the essential estimates:
M(U$)dzdt < Ce. (1.47)

0x(0,T)
From (1.44) we have: M(US?—M(W,)? weak in L*(0,T;L*0)).
Therefore, from (1.47) we obtain
MW ,)*dzdt = 0.
0x(0,T)

From this and the definition of M, we deduce: W, =0 a.e. in Ox(0.T) D Q. Consequently
W(z,t) is constant in the variable t in Ox(0,T) D Q. Being W(z,0) = @iy(z) in O, we conclude
that W(z,0) = 0 in O\Q,. From this and from (H-1), we get:

W(z,t)=0a.e. in Ox(0,T)D Q. (1.48)
We conclude from (1.43) and (1.44) that W(¢t) € H(O). Let u be the restriction of W to Q.
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Then from (1.48) and (H-2), we obtain that u € L=(0,T; H(£,)): which proves (1.4) in Theorem
1. Moreover, from (1.44) and (1.45). we conclude that u satisfies (1.5).

Let U be the restriction of U to Q. Then, restricting the equation of Theorem 2 to the
domain @, we obtain:
(k)i 0) + (k)T 1), 0) + a(t.T4().0) + (MT(8), ) +
(1T 120(t).0) = (F(1).v),

Vv € H(O), in the sense of the D'(0,T).
By taking the limit when €é—0 in (1.49), and using the convergences (1.43)-(1.46) we get:
L (k) (8).0) + (y ()i (£),0) + alt, u(t),v) + (| u(t) | Pu(t),v) = (F(2),0),

(1.49)

in D'(0,T),Vv € Hy(f,). which proves (1.7).
The proof of (1.6) is analogous to (1.15) of the cylinder problem.
(iii) The Initial Conditions.
Let o € C'([0,T};R) be such that o(0) =1 and o(T) = 0. We have

/ T(% U:,,(t),v) o(t)dt = — (US(0),0) — / Twe(t)v)o'(t)dt, Vo e L¥O).
0
By passing to the limit in the above equality and using the convergences (1.20), (1.35) and

(1.36) we obtain:

/0 T(% U‘(t),v) o(t)dt = — (iigyv) /0 Twew),v)o'(tat, ¥oe L¥0).

Integrating by parts the last integral above, we conclude that

(U4(0),v) = (ity,v), Yv € L¥O).
From this it follows (1.17). The initial condition u(z,0) = ug(z) of Theorem 1 is done

analogously.
Finally, we will verify condition (1.18). Initially we verify that [(ky(z)+ €)U,](0) does make

sense.
Let U* be a solution of the perturbated problem. Then

_ / T<I~c2€(z)U§(t),0’(t)v> dt + / T<ic,(z)U;(t),a(t)v> dt + / T(A(t)U‘(t),a(t)v> dt +
0 0 0

/ T<% MU:(t),o(t)v> dt + / T< |U<)] ”U‘(t),0(t)v> dt = / T<}(t),o(t)v> dt
0 0 0

Vv € HYO) and V8 € C$(0,T); where < -, - > is the duality between H}(O) and H ~Y(0). So

<— [Trawiwpie+ [Th@Uieawd:+
0 0
/ T Atyue()(t)dt + / T 1 Mussce)dt +
0 0

/T|U<(t oU(t)8(t)dt v> < / T(6)8(t)dt, v>

Vv € HY(0) and V6 € C2(0,T).
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Therefore, we have
< =k ()US(0).0(t) > + <k (2)U5(1).6(8) > + < AT(1).6(t) > +

< % MU(t),8(t) > + < |U(t) | PU2),6(t) > = < F(1),0(t) > .
V0 € CF(0,T); where, here < -,- > denotes the vectorial distribution of (0,T) in H ~Y(O)
evaluated in scalar test application of (0,T). Being ky, € L%(0 % (0,T)) and U} € L¥0,T: L¥0)),
we have — k, U € L¥0.T; L*0)).
So — I:'zzU; defines a vectorial distribution of (0,T) in L*(0), whose derivative is:
< —kUL8 > = <(kUjn8>, V8eCFO,T).
Therefore,
<(k,U)nb> + <kUs0> + <At)U<0> +
<IMULO> + < |US|?U8> = < F,0>,Y6€CT(0,T).
Or,
(kalU9), + B US + AQUS + IMUS + (U< | oV = §,

in L{0,T;H-Y0)). As J,kUsIMUS | US| ?U* € IX(0,T; I(0)) and AU € L3(0,T:H ~\(0)),

we obtain, from the last equality above that: (k,U$), € L¥0,T; H ~'(0))—L*(0.T; H ~*(0)),
which proves (1.15). It is easy to see that k, U$ € C%([0,T}; H ~(0)). Therefore, [k, U¢)(0) makes
sense. Let now 8 € C'([0,t]);R) be such that (0) = 1 and 6(T') = 0. Then,

[Ttk Z Uit 000t = — (R, & U0, 0)
0

- / (ﬁh 2y, t),v)o’(t)dt,Vve v,
From this and taking v = w, in the approximate equation, we obtain:
—(I}hgtU‘ (0),v)—/0T(I:'2€gtU‘ )0 dt+/ (‘lgtw t),u)o(t)dt+
JTattUso, vt + | ( M 2 U, ) Bt + [T(1U5(0) P05, 0)8(2)dt =
0 0 0
/ T (3(t),v)8(t)dt, VoeV,,
0

By passing to the limit in the above equality and using the convergences (1.21), (1.35)-(1.37)
and (1.41) we obtain:

~(VEanyw)= [T, 08 @t + [T (k@) 0000t +
0 0

/ To(t,U%(t), v)8(t)dt + / T (1 MUs(t),v) B(t)dt +
0 0

JTavervmvemdt= [T vema
0 0
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As = [T, U). )0 (t)dt = < (ko US(1)v > 8(t)Vo €V, and € C'([0.TER) such that

8(0) = 1 and 8(T) = 0, we have. using the fact that U* is solution of the perturbed equation. that:

Or,

= <Vhy(2)i o> + <k (2)U30).0> =0Ve e,

<y 2U5(0) = [ hg(x)iy,0 > =0,

Vv € HY(Q). This proves (1.18) and, therefore, the proof of Theorem 2 is complete.
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