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ABSTRAC'Y'. In the present paper, the concepts of s-closed sub-spaces, locally s-
closed spaces have been 1ntroduced and characterized. We have seen that local s-
closedness 1s a semi-regular property; the concept ot s-6-closed mapping has been
1ntroduced here and the following important properties are established :-

Let £ : X —» Y be an s-#-closed surjection with s-set (Maio and Noiri [8)) point
inverses. Then :

(a) it f 1s completely continuous (Arya and Gupta [1]) and Y 1s a locally compact

Té—space, then, X 1s locally s-closed.
(b) It £ 1s 9 -continuous (Ganguly and Basu [5]) and X 1s a locally compact T‘—

space, then, Y 1s locally s-closed.

KEY WORDS AND PHRASES. s-closed subspace, s-set, locally s-closed, s-8-closed
mapping, <9 -continuous and completely continuous mapplng, regular open set, s-6-open
set, local compactness.
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1. INTRODUCTION. S-closed spaces (Thompson |[14]) and s-closed (Maio and Noiri
18]) spaces originated from almost compact spaces by the use of semi-open sets as
introduced by Levine [7]. Ganster and Reilly [6] had shown, towards the distinction
between these concepts, that every infinite topological space can be embedded as a
closed connected subspace of an S-closed space which is not an s-closed space. Noiri
113] further generalized S-closed spaces to locally S-closed spaces. In this paper
we generalize s-closed spaces to locally s-closed spaces and study s-closed
subspaces. Certain important characterizations and properties of locally s-closed
spaces have also been established. s-0-closed mapping 1s 1introduced and
characterized and we have seen, under certain conditions on the domain and co-domain
spaces, that an s-8-closed mapping wouid be a continuous mapping. Completely
continuous and < -continuous mappings were 1ntroduced respectively by Arya and Gupta
LL] and Ganguly and Basu |5); by the help of these mappings we have been able Lo
establish certain properties which corelate locally compact Tz-spaces with locally

s-closed spaces.
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Throughout the present paper, by (X,T) or simply by X we shall mean a
topological space. A subset A of a topological space 1s said to be regular open
(resp. regular closed) 1f int(cl(A))=A (resp. cl(int(A))=A), where cl(A) (resp.
1nt(A)) denotes the closure (resp. 1interior) of A. A subset A of a space X is said
to be semi-open [7] 1f there exists an open set O such that OCACcl(0). The
complement of a semi-open set 1s called semi-closed (Crossley and Hildebrand (3]).
The semi-closure of a subset A of a space, denoted by sclA, 1s the intersection of
all semi-closed sets containing A (Crossley and Hildebrand [3]). A set A which is
both semi-open as well as semi-closed 1s called a semi-regular set (Maio and Noiri
[8]). The collection of all semi-open (resp. semi-regular, regular open) sets
containing a point x of X will be denoted by SO(x) (resp. SR(x), RO(x)) and for the
whole space X these will be denoted by SO(X) (resp. SR(X), RO(X)). A point x of X 1s
said to be s-6-cluster [8] point of a subset A of X 1if for every U €SO(x),
sclUNA#g. Since, for a semi-open set U, sclU is a semi-regular set (8], a point x
of X 1s said to be an s-8-cluster point of A 1ff RNA##, for all RE€SR(x). The

collection of all s-8-cluster points of A will be denoted by s-6-clA (lA]s for

-9 '

short). A set A is s-0-closed if A=[A]s_ . A complement of an s-8-closed set 1is

0
called an s-8-open set. For a space (X,T), RO(X,T) is a base for a topology TS on X

coarser than T and (x,TS) is called the semi-regularization space of (X,T). A

topological property P 1s said to be semi-regular property if whenever a space (X,T)

possesses that property P so does its semi-regularization space (X,TS). A subset A
of X 1s s-closed [8] (resp. S-closed (Noiri [11])) relative to X or simply an s-set
(resp. S-set) if every cover QQ of A by sets of SO(X) admits a finite subfanuly%g’

such that A€ | sclU (resp. ACU) clU). In case A = X and A 1s an s-set (resp. S-
UeU, UeU,
set), then X is called s-closed [8] (resp. S-closed [14]). A subset A is called

Nearly compact (NC-set (Carnahan [2]), for short) 1f every cover 0 of A by means of
n

open sets of X has a finite subfamily U1 P Un (say) such that acl) int:clu;,L .
1=1
Clearly every s-set (resp. compact) set, is an NC-set, but not conversely. A subset

A of a space X is said to be an d-set (Noiri [10}) if AC int(cl(int(A))).
2. s-CLOSED SUBSPACES. At the very outset, an example is given to assert that,
every set, s-closed relative to X, is not necessarily an s-closed subspace of X.
EXAMPLE 1. Every countable set in an uncountable set X with co-countable
topology T 1s s-closed relative to (X,T), but is not even an S-closed subspace.
DEFINITION 1. A subset A of X 1s said to be pre-open (Mashour et al. [9]) 1f
ACintclA. This collection includes all open sets and, even more, all d-open sets.
LEMMA 1. (See Dorsett [4]) Let (X,T) be a topological space and let A be pre-
open set in (X,T), then SR(A,TA)=SR(X,T)n A, where '1'A is the subspace topology on A.
THEOREM 1. A pre-open set A of X is s-closed as a subspace iff it is s-closed
relative to X.
PROOF. Let A be s-closed relative to X and also let {V, : GE,I} be a cover of
A by semi-regular sets of the subspace A. Then by Lemma 1, there exists a semi-

regular set Uy in X, for each dé€ I, such that Va = Uaﬂ A. Therefore, ACU U“. Since
’ deI
A is s-closed relative to X, there exists a finite subset I of I such that
o

acl Uy, which shows that ACU) (U,NA) i.e., AC v V,. Therefore, A 1s s-closed

o€ -] o€
as algub—space. €1, o



LOCALLY s-CLOSED SPACES 69

Conversely, let A be s-closed as a subspace. Let {V, : &€ 1} be a cover of A by

semi-regular sets of X. Then A = U (v.n A). Since A 1s s-closed as a subspace,
ae 1
there exists a finite subset .I.o of I such that A = U (V.N A), which shows that
o€ ]1o

AC UIV" Therefore A is s-closed relative to X.
e“‘1"';11::0111::&1 2. Let B be a pre-open set in (X,T). Then a subset A of B 1s s-closed
relative to the subspace B iff A 1s s-closed relative to X.

PROOF. The proof follows by Lemma 1.

COROLLARY 1. Let A and B be open sets of a space X such that ACB. Then A 1s
an s-closed subspace ot B 1ff A 1s an s-closed subspace of X.

PROOF. Applying Theorem 1 and Theorem 2, we get the result.

DEFINITION 2. Let (X,T) be a topological space, then SR(X,T) torms a sub-base
for a topology called TSR-\:opo.logy on X.

LEMMA 2. A subset A of a space (X,T) is s-closed relative to (X,T) iff A is
compact 1n (X,'I‘SR).

PROOF. Let A be s-closed relative to (X,T). Then every cover of A by sets ot
SR(X,T) has a finite subcover. But SR(X,T) forms a sub-base for (x,TSR). So every
sub-basic open cover of (x,TsR) has a finite subcover. Therefore by Alexander sub-
base theorem A is compact 1in (x,'l‘SR).

Coversely, if A is compact in (x,TSR) then every sub-basic open cover has a finite
subcover. So every cover by sets of SR(X,T) has a finite subcover. Therefore A is s-
closed relative to (X,T).

THEOREM 3. Let B be a ’I‘SR—closed set in X and let A be any subset of X which
1s s-closed relative to (X,T). Then ANB is s-closed relative to (X,T).

PROOF. Let {U, : ®#€I} be a T p-oPen cover of ANB. Then clearly {Uq : GQI}U
(X-B) 1s a T R—open cover of A, By Lemma 2, A 1s compact relative to (X,TSR); and

S|
so, there exists a finite subset Io of 1 such that ACid't)IOUG}U (X-B), which

implies that ANBC U Ugq .. Therefore ANB 1s compact 1n (x,TSR). Then by Lemma 2,
K€L
o
ANB 1s s-closed relative to (X,T).

COROLLARY 2. 1f B is regular open or reqgular closed and A 1is any subset of X
which 1s s-closed relative to X, then Al B 1s s-closed relative to X.

PROOF . Since every regular closed or regular open set is semi-regular, the
corollary follows from Theorem 2.

COROLLARY 3. If X is an s-closed space and A is a regular open set of X, then
A is an s-closed subspace of X.

PROOF. The proof follows from Theorem 1 and Theorem 3.

COROLLARY 4. If A is s-closed open subspace of X and B is a regular open set
of X, then ANB is an s-closed subspace of X and (hence of A and B).

PROOF. The proof follows from Corollary 2 and Theorem 1 and second part
follows from Corollary 1.

gHEOREM 4. If Ai , 1 =1,2,...,n are s-sets i.e., s-closed relative to X.

then ) Ai is s-closed relative to X.

i=1

PROOF. Straightforward.

THEOREM 5. Let X be an s-closed space and let A be a closed set of X and let
frontier of A, denoted by Fr(A), be s-closed relative to X. Then A is s-closed

relative to X.
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PROOF. Since X 1s s-closed, by Corollary 3 and Theorem 1, intA is s-closed
relative to X whenever A 1s a closed set. Since A=intAUFr(A), by Theorem 4, A 1s s-
closed relative to X.

3. LOCALLY s-CLOSED SPACES
DEFINITION 3. A space X 1s said to be locally s-closed 1ff each point belongs
to a regular open neighbourhood (nbd. for short) which is an s-closed subspace of X.
REMARK 1. Clearly every s-closed space is a locally s-closed space. However,
the converse is not true, ingeneral, because any uncountable set with discrete
topology is locally s-closed but not s-closed.
THEOREM 6. A topological space (S,T) is locally s-closed iff for each point
x € X, there exists a regular open set U containing x such that U is locally s-closed.
PROOF. Sufficiency : At first we prove that if A is a regular-open set in (X,T)
then every regular-open set in the subspace (A,TA) is also regular-open in (X,T).
Let VCA be regular-open in the subspace (A,TA). Then V = 1ntAclAV = intA(Af\cle) =
intx(Ancle) = intxAI'\ intxclxv = Anintxclxv = intcl v (as VCA implies
mtxclxvcintxclx}\ = A). Therefore V is regular open 1in (X,T). Now let x be any
point of X. Then, by hypothesis, there exists a regular-open set U of (X,T)
containing x such that U 1is locally s-closed. Then there exists a regular open set V
in U such that x€V and V is an s-closed subspace of U. Therefore V 1s a regular-
open set in (X,T) and by Corollary 1, V is s-closed subspace of X. Therefore (X,T)
1s locally s-closed.
Necessity : The proof is straightforward.
THEOREM 7. Let (X,T) be a topological space. The following are equivalent :
(1) X is locally s-closed;
(ii) ievery point has a regular-open set which is s-closed relative to X;
(iii) every point x of X has an open nbd U such that intxclxu is s-closed
relative to X;

(iv) every point x of X has an open nbd U such that sclU is s-closed
relative to X;

(v) for every point x of X, there exists an d-open set V containing x such
that sclV is s-closed relative to X;

(vi) for every point x of X, there exists an od-open set V containing x such
that intxclxv is s-closed relative to X;

(vii) for each x € X, there exists a pre-open set V containing x such that
sclV is s-closed relative to X;

(viii) for every x of X, there exists a pre-open set V containing x such that
intxclxv is s-closed relative to X;

(ix) for every x €X, there exists a pre-open set V containing x such that
intxclxv is an s-closed subspace of X.

PROOF. (i) —» (ii) : Follows from Theorem 1 and from the fact that every
regular-open set is pre-open set. (ii) — (iii) is obvious.

(iii) —> (iv) : Follows from the fact that for an open set U, sclU = intclU
(Maio and Noiri [8])). (iv) — (v) is evident, since every open set is @ -open.

(v) — (vi), (vi) —>» (vii), (vii) — (viii) and (viii) — (ix) are straight-
forwétd because of the facts that every d -open set is pre-open and a set V is pre-

open iff sclV = intclV (Dorsett [4]). (ix) —> (i) follows from Theorem 1.
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THEOREM 8. A topological space (X,T) 1s locally s-closed iff, 1ts sema-
reqularization space (x,Ts) 1s locally s-closed.

PROOF. Let (X,T) be locally s-clused. Dorsett [4] proved that SR(X,T)=SR(X,TS)
and hence a subset A of X 1s s-closed relative to (X,T) iff A 1s s-closed relative
to (X,TS). We know that 1f U 1s an open and V a closed subset of (X,T), then clTU =
cJ.T‘U and 1ntTV = 1ntT‘v. Using these results we can easily prove thac for a
reglbllar—open set U of (x,bT), LntTclTU = intTScl sU. Therefore every regular-open set
in (X,T) is regular open in (x,TS) and vice-versa. So (X,T) and (x,TS) have the same
collection of regular-open sets. Therefore, by definition, (X,T) 1s locally s-closed
1f £ (x,Ts) is locally s-closed.

REMARK 2. Local s-closedness is a semi-regular property.

DEFINITION 4. A function f : X — Y 1s said to be s-0-closed if 1mage of each
s-8-closed set 1n X is closed 1in Y.

THEOREM 9. A function £ : X — Y is s-6-closed 1iff cl(f(A))Cf([A]s-e) for any
subset A of X.

PROOF. Let f be s-8-closed and A be any subset of X. Then f(lA]S_e) is closed
in Y (since [A]s_9 is s-8-closed set). Clearly £f(A)C f(lA]S_o) and hence
.cl(f(A))Cf(lA]s_e).

Conversely, let A be an arbitrary s-6-closed set in X. By hypothesis f(A)Ccl(f(A))C
f([A]S_e) = f(A). Therefore f(A) = cl(f(A)) and hence f(A) 1s closed 1n‘§.

THEOREM 10. A surjective function £ : X — Y is s-68-closed 1ff for each subset
A in Y and each s-8-open set U in X containing f-l(A), there exists an open set V 1n
Y containing A such that f-l(V)CU.

PROOF. Sufficiency : Suppose that the given hypothesis holds. Let A be any s-
0-closed set 1n X. Let y be an arbitrary point in Y-f(A); then X-A 1s an s-8-open
set containing f—l(y); by hypothesis, there exists an open set vy containing y such
that f'l(vy)c X-A. This shows that yeV CY-f(A). Therefore Y-f(A) = v {vy :
y€Y-£(A) } . Hence Y{(A) 1s an open set 1.e., f£(A) is closed 1n Y.

Necessity : Let v = Y — f(X-U). Since f_l(A)CU, 1t shows that ACV. As f is
s-8-closed, £(X-U) 1s closed and hence v 1s open in Y. Therefore,
e vex-texn 1Ic u.

LEMMA 3. A subset A of a space X is an s-set 1ff every cover of A by s-8-open
sets has a finite subfamily which covers A.

PROOF. Sufficiency part 1s straightforward.

Necessity : Let A be an s-set. Let U = { U, : deI } be an s-8-open cover of
A and also let xeA. Then there exists Uq €U such that ercl . But Ua being an s-
6-open set, there exists a semi-open set:xvx such that xevxcxsclvxc. U: . Therefore
the family {Vx : x€A } is a cover of A by semi-open sets of X. Hence™there exist

reeedX such that AC ) sclvx . Hence AC UUa . Therefore Q has a
i=1 1 i=1 %

points say xl

finite subfamily which covers A.

THEOREM 11. Let £ : X —> Y be an s-6-closed surjection with s-set point
inverses; if A 1s any compact set in Y then f_l(A) is an s-set 1in X.

PROOF. Let U = {Ua : 4€I} be any cover of et by s-8-open sets of X.

For each point ye€A, £ '(y)C U U, . By hypothesis £ '(y) 1s an s-set, by Lemma 3,
€T
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. . -1
there exists a finite subfamily Io of 1 such that £ (y)cu{ Ua : a€ 10} . Since we
know that Union of any collection s-8-open sets is s-8-open and since f 1s an s-6-
closed function, by Theorem 10, there exists an open set V of Y containing y such

that f'l(v )y U Uy - { vy : yeA } 1s a cover of a compact set A and hence there
Y

xel n -
exist points Yl""?yn of A such that A C uv which shows that £ l(A) 1s covered

i=1 "1
by a finite number of s-6-open sets from QAR and hence f-l(A) 1s an s-set.
COROLLARY 5. Let £ : X - Y be an s-8-closed surjection with s-set poaint
inverses; 1f X is ’1‘2 and Y 1s compact then f 1s continuous.
PROOF. Let A be a closed set i1n Y. Therefore A 1s also compact; by Theorem 11,

f-l(A) is an s-set 1n X. Since every s-set is an NC-set and X is T by Theorem 2.1

27
. -1 . .
of T. Noiri [12]), £ “(A) 1s closed and hence f is continuous.

DEFINITION 5. A function f : X — Y 1s said to be completely continuous (Arya

and Gupta [1]) 1f i1nverse i1mage of each open set in Y is regular-open in X.
THEOREM 12. Let f : X — Y be a completely-continuous s-8-closed surjection

with s-set point inverses. If Y 1s locally compact T_, X is locally s-closed.

2

PROOF. Since Y 1s locally compact T for each point xe&X, there exists a

e
closed compact nbd. U of f(x). Since ¢ iszcompleCely continuous, f-l(int U) is a
regular open set containing x. But it 1s easy to see that every regular-open set 1s
semi-regular and hence an s-@-closed set (see Maio and Noiri [8]). Since U is
compact and f 1s an s-0-closed function, by Theorem 11, f_l(U) 1s an s-set in X and
xef-l(lnt u)C f_l(U). Hence, by Corollary 2, f-l(int U) is an s-set in X. Therefore
X is locally s-closed.

DEFINITION 6. A function f : X — Y is said to be <% -continuous (Ganguly and
Basu [5])) if for each x€ X and each W€ SO(f(x)), there is an open set V containing x
such that f£(V)C sclW. Equivalently f is % -continuous iff the inverse image of each
semi-reqular set is clopen.

LEMMA 4. If f : X — Y is 9 -continuous and KCX is compact; then f(K) is an
s-set in Y.

PROOF. Let {U“ :aél} be a cover of f(K) by semi-regular sets of Y. Then
{ f—l(U“ ) dél} is a cover of K by open sets of X. Since K is compact, there
exists a finite subset I of I such that KC f-l(uu ) ie., f(KIC U v, -
So £(K) is an s-set in Y. HET, ael,

LEMMA 5. (See [12]) Let X be a Tz-space. Then for any disjoint NC-sets A and
B, there exist disjoint regular open sets U and V such that ACU and BCV.

THEOREM 13. If £ : X — Y is an s-8-closed, % -continuous surjection with s-
set point inverses and if X is locally compact '1‘2, then Y is locally s-closed.

PROOF. We shall first prove that Y is Tz. Let Y, and Y, be two distinct points
of Y. Then f~1(yl) and f-l(yz) are disjoint s-sets and hence disjoint NC-sets. By
Lemma 5, there exist disjoint regular-open sets lJl and 02 such that f-l(yl)C Ul and
f-l(yz)CUZ. But every regular-open set is an s-6-open set and so, by Theorem 10,
there exist open sets Vj' j = 1,2 containing yj in Y such that a‘.-l(v.)lCU:i where
2" Let X be locally compact T2 ; for each point x of £ “(y), there
exists a compact closed nbd. Ux of x in X. Since interior of a closed nbd. is a

j=1,2. Thus Y is T

regular-open set, it is semi-regular as well. Therefore the family {intUx :

X € f_l(y)} is a cover of an s-set f-l(y) by semi-regular sets. By Proposition 4.1
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-1
of Maio and Noiri [8], there ex1ist points Xy aeeen X 1n t “(y) such that
. n n -1 n
f (y)ycy 1ntUx . Let U = U Ux . Then t (y)C U Ln':Ux C 1intU. Since intU 1s
i=1 1 1=1 "1 1=1 1

clearly an s-6-open set containing t_l(y) and since, t 1S an s-6-closed tunction by
Theorem 10, there exists an open set V containing y such that f—l(v )C 1ntU 1.e.,
eryC t(intU)C£f(U). But f being ‘j—coﬁtlnuous, t(U) 1s an s-set by iemma 4. Since
Y 1s T2 B f(U) 1s closed by Theorem 2.1 of Noira [12]. Therefore
ye,vyc:lntclvy(:f(u). Clearly 1ntc1vy is a regular-open set and hence by Corollary

2, 1ntclV  1s an s-set. Hence Y 1s locally s-closed.
y
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