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ABSTRACT. An almost cosymplectic manifold M is a (2m + 1)-dimensional oriented Riemannian

manifold endowed with a 2-form f2 of rank 2m, a 1-form r such that f2’" ^ q 0 and a vector field

satisfying if2 0 and q() 1. Particular cases were considered in [3] and [6].
Let (M, g) be an odd dmensional oriented Riemannian manifold carrying a globally defined vector

field T such that the Riemannian connection is parallel with respect to T. It is shown that in this case

M is a hyperbolic space form endowed with an exact locally conformal cosymplectic structure. Moreover
T defines an infinitesimal homothety of the connection forms and a relative infinitesimal conformal

transformation of the curvature forms.

The existence of a structure conformal vector field C on M is proved and their properties are

investigated. In the last section, we study the geometry of the tangent bundle of an exact locally conformal

cosymplectic manifold.
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1. INTRODUCTION

In the last decade a series of papers have been devoted to almost cosymplectic manifolds

M(f2, rl, , g). As is well known, an almost cosymplectic manifoldM is an odd dimensional (say 2m + 1)
oriented manifold, where the triple (ff2,rl,) of tensor fields is

i) a 2-form of rank 2m

ii) a 1-form r such that ^ r 0

iii) a vector field (called the Reeb vector field) such that i.f2 0 and rl() 1.

One has the following more studied cases:

if2 and r are both closed forms. Then M is called a cosymplectic manifold.

2 dr 0, dff2 2r ^ if2. Then M is called a Kenmotsu manifold.

3 dr 09 ^ rl, dff2 209 ^ if2. Then M is called a locally conformal cosymplectic manifold (see
[3],[16]). In this case 09 and its dual vector T b-(co) with respect to g is called the Lee form (or
characteristic form) and Lee vector field respectively.

In the present paper we consider an almost cosymplectic manifold M(,rl, ,g) carrying a globally

defined vector field T whose dual form b(T) is denoted by co.

NextdenotebyO=vect{eA’A=O,X,...,2m}anorthonormalvectorbasisonMandby{OAB]the
associated connection forms. If the connection forms satisfy

(T, ee ^ ea) ^ is the wedge product,
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then one has

VreA 0

Therefore we agree to say that M is structured by, a T-parallel connection. In this condition the

following signtficative fact emerges: the almost cosymplectic structure x Sp(2m, R) of M moves to

an exact locally contormal cosymplectc structure x Sp(2m, R) (abbreviated exact L.C.C.), having T
(resp. to =-df/]’) as Lee vector field (resp. Lee form).

Moreover any such a manifold M is a space form of curvature -2c and f is the energy function

corresponding to a Hamiltonian vector field associated with T (in the sense of [3]). If 0 (resp.

represents the indexless (or generic) connection forms (resp. curvature ffrms) of M, then T defines an

infinitesimal homothety of 0, t.e. LIO 2c0, and a relative infinitesimal T conformal transformation of

(R) and V2, i.e.

d(L.r(R) 2cto ^ (R), d(Lrg2 2cto ^
In Section 3 the existence of a structure conffrmai vector field C on M is proved, i.e.

VzC=XZ +g(Z,T)C-g(Z,C)T. XC(R)M, Z EI-’(TM).

Moreover C s a divergence conformal vector field, i.e. grad (div C) is a concurrent vector field

and t defines an infinitesimal conff)rmal transffrmation of:

) the conformal cosymplectic form Q, i.e. Lc. OQ, p XL;

ii) the dual forms o, i.e. LcoY toa.

iii) the curvature forms , i.e. LcO pOOh"

iv) all the (2q + l)-forms (xq b(C ^ Va ’, i.e. Lca,t + q )pct"

v) all the functions g(C,Z), i.e. Lcg(C,Z) pg(C,Z), Z F(TM).

in the last section, we discuss some properties of the tangent bundle manifold TM having as basis

the exact (L.C.C.)-manifold M. Denote by V,y and v the Liouville vector field ([13]), the Liouville

l-form and the Liouviile function respectively, on TM.
The following properties are proved:

i) the complete lift V2" of is a d-"-exact 2-form (d" is the eohomological operator [11]) and is

homogeneous of class 1, i.e.

Lv
ii) "1’ satisfies d-"y p and "q., is a Finslerian form, i.e.

Lvlp lp i,,lp 0

(i,, denotes the vertical differentiation operator [11]);

iii) the vertical lift T" of T defines an infinitesimal automorphism of ap, i.e. LT" 0;

iv) the function r fv and the 2-form fW define a regular mechanical system 9,/" ([ 13]) having r as

kinetic energy and fxp as canonical symplectic (exact) form.

1. PRELIMINARIES

Let (M,g) be a Riemannian C(R)-manifold and let V be the covariant differential operator with

respect to the metric tensor g. Assutne that M is oriented and V is a Levi-Civita connection. Let
F(TM)--x(M) and b" TM T’M be the set of sections of the tangent bundle TM and the musical

isomorphism ([ 18]) defined by g, respectively. Following [18] we set

A’(M, TM) F Hom(AqTM, TM)
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and notice that elements ofA q(M, TM) are vector valued q-forms (q dimM).

Denote by dr: A"(M, TM) A I(M, TM) the exterior covariant derivative operator with respect

to V. It should be noticed that generally dV’= dVo dV, 0 unlike d:’= d d--0. Ifp M, then the

vector valued 1-torm dp A (M, TM) is the canonical vector valued 1-form of M ([5]) and since V is

symmetric one has dV(dp) O. The operator

d’=d + e(co) (1.1)

acting on AM, where e(co) means the exterior product by the closed 1-form co, is called the cohomological

operator ([11 ]). One has

dod’ O. (1.2)

Any form u E AM such that d"’u 0 is said to be d"-closed and if co is an exact form, then u is

sad to be a d’"-exact form. Any vector field Z F(TM) such that

dv(Vz) VeZ zt ^ dp CA 2(M, TM) (1.3)

for some 1-form zt, is said to be an exterior concurrent vector field ([ 17]). The form n which is called

the concurrence form is given by

rt ),.b(Z) ),. C(R)M. (1.4)

A non flat manifold of dimension m > 2 is an elliptic or hyperbolic space-form if and only if every

vector field on M is an exterior concurrent one ([ 17]). On the tangent bundle manifold TM, d, and/,,
define the vertical differentiation and the vertical derivation operators respectively ([7]). d,, is an anti-

derivation of degree on A(TM) and i,, is a derivation of degree 0 on V(TM).
In an n-dimensional Riemannian manifold M, denote by

0 vect {eA’,A 1,..., n

a local field of orthonormal frames and let

O* covect COA ;A n

be its associated coframe.

The soldering tbrm dp is expressed by

dp coa (R) eA (1.5)

and E. Cartan’s structure equations written indexless manner are

Ve 0 (R) e (1.6)

do.) =-0 ^ co (1.7)

dO -0 ^ 0 + 0 (1.8)
Any vector field T such that

VT s dp + u (R) T u AtM (1.9)

is called a torse forming (K. Yano t20]). If du 0, then T is a closed torse forming, which implies that

T is an exterior concurrent vector field, and if u 0, then T is a concurrent vector field ([22]).
Let now Wbe any conformal vector field on M (i.e. the conformal version of Killing’s equations).

As is well known, W satisfies

Lwg pg or g(VzW,Z’) +g(Vz,W,Z) 9g(Z,Z’) (1.10)

where the conformal scalar 9 is defined by

2
9 --(divW). (1.11)

n

We recall some basic formulas which we shall use in the following sections.
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L,, t,(Z) pt,(z) + t,[w,z] (Orsted lemma) (1.12)

LwK (n )Ap Kp (1.13)

2L S(Z,Z’) (A)pg(Z,Z’)-(n 2) (HessVP)(Z,Z’). (1.14)

In the above equations L, K, A and S denote the Lte derivative with respect to W, the scalar

curvature of M, the placian and the Ricci tensor field of V, respectively. One has

(Hessvp)(Z,Z’) g(Z,HpZ’), HpZ’--- Vz.(grad p)

(see also 21).

2. EXACT LOCALLY CONFORMAL COSYMPLECTIC MANIFOLDS

Let (M,g) be a (2m + l)-dimensional oriented Riemannian C(R)-manifold and let T- Y taea and
A-0

oa b(T) be a globally defined vector field on M and its dual form respectively.

Denote by O vect {ea A 0, 2m (resp. ) a local field of orthonormal frames onM (resp.

the associated connection forms). Recall that the vectorial wedge product ^ is defined by

(X ^ Y)Z--g(Y,Z)X-g(X,Z)Y; Z r’(TM)

i.e. X ^ Y-b(Y)(R)X-b(X)(R)Y.

Assume now that all the connection forms 0 satisfy- <T, en ^ ea>. (2.1)

Then by the structure equations (1.6), it follows at once

t3 -tncoa -t%Jn (2.2)

It should be noticed that if 0 satisfy (2.2) one has 0(T) 0 and the above equation shows that all

the connection forms 0 are relations of integral invariance for the vector field T (in the sense of A.
Liehnerowicz 14]).

Next by the structure equations (1.6) and by (2.2) one obtains

VeA tAdp -Oa
a (R) T (2.3)

and the above equation implies

Vrea -0. (2.4)

From (2.4) the following significative fact emerges: all the vectors of the O-basis are T-parallel.

Therefore we agree to say that the Riemannian manifold under consideration is structured by a T-parallel

connection (abr. T.P.).
Further again by (2.2) one derives by the structure equations (1.7)

dcoa to ^ to
a o b r taroa (2.5)

which by a simple argument implies that the dual form to of T is closed, i.e.

dw-0. (2.6)

Thus in terms of d’-cohomology, (2.5) may be written as

d-’%oa 0 (2.7)

and O* {toa is defined as a d-’-closed covector basis.

Now for reasons which will soon appear, we set

co-n, eo- (2.8)
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and consider on M the globally defined 2-torm of rank 2m given by

=Y-m"^o0"" a m" a*=a+m (2.9)

Then since Q’" ^ 1 0, iQ (), one may say that the triple (Q,q,) defines an almost cosymplectic

structure xSp(2m,R)having as Reeb’s vector leld.

Next taktng the exterior dfferental of if2 a short calculation gives with the help of (2.5)

rig2 2o0 ^ ff2 ca, d-"’"f2 0 (2.10)

and by (2.5) we may write

dq o0 ^ q =, d-+’q 0. (2.11)

We conclude that any odd dimensional Riemannien manifold M structured by a T-parallel con-

nection is endowed with a locally conformal cosymplectic structure x CSp(2n,R) (abr. L.C.C.). We

notice that the vector field T (resp. the l-form m b(T)) is the Lee vector field (resp. the Lee form) of

this structure.

Moreover since o0 ,"c@, then by a simple argument it follows on behalf of (2.5) that one may set

dtA f(.OA" f CM (2.12)

which by exterior differentiation gives instantly

o0 -af/f (2.13)

Therefore since o is an exact tbrm, it follows on behalf of a known terminology, that the manifold

M under consideration is an exact (L.C.C.)-manifold. We agree to call f the distinguished scalar field

associated with the exact (L.C.C.)-structure.
Now taking the covariant differential of T one finds by (2.3) and (2.12)

VT (f + 2l)dp -o0(R) r (2.14)

where we have set

g(T,T)=21. (2.15)

Using (2.12) and (2.15), we have

d fo0 + f c const 0 (2.16)

and (2.14) becomes

VT=(I +c)dp-m(R)T. (2.17)

Hence, by (1.9) and (2.6) T is a closed torse forming and consequently an exterior concurrent (abr.
E.C.)-vector field.

Operating now on V ea and VT by the exterior covariant derivative operator dv, one gets by (2.12)

and (2.16)

dv(V ca)= V2ea 2Cma ^ dp (2.18)

dv(V T)= V2T 2cm ^ dp (2.19)

From the above equations it is seen that any vector field Z on M is E.C. with constant conformal

scalar 2c. Therefore on behalf of the general properties of E.C.-vector fields ([17]), we may state the

following striking property: the exact L.C.C.-manifold M(,q,) under discussion is a space-form of

curvature -2c.

As a consequence, it follows that the curvature forms (R) are expressed by

EPn =-2cmA ^ o0n (2.20)

Next taking the exterior differential of the forms (R), one quickly finds by

dEr 2o0 ^ ,, d-"’ 0 (2.21)
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which shows that all the curvature forms 0 are

On the other hand taking the Le derivatives of the covectors of O* one derives by (2.12) and

(2.16)

L * (1 + c)co* t"*. (2.22)

Therefore since L sat,sfies Leibniz rule one deduces by (2.20)

L rO;’ 2(/+ c )O;] + 2c Oj’, a (2.23)

Similarly, we oblain

d 2]tA +A (2.24)

Clearly by (2.12) one has Lr =fr and wih he help of (2.22) we deduce

L 2c’. (2.25)

Accordingly by the above equations we may say hat the Lie vector field T defines on infinitesimal

homothety of all the connection forms 0.

Taking now the exterior differential of the equations (2.23), a standard calculation gives

d(Lr 8 (2.26)

which proves thnl T defines a relative infinitesimal conformal transformation ([19]) of the cuature

forms.

let " TM T’M, p(Z) iz be the bundle isomorphism defined by and set (T), i.e.

ir (t==" t=’o=) (2.2?)

for the dual Ibrm of T with respect to . By (2.5) and (2.12) an easy calculation gives

d 2f + (2.28)

and by (2.10) and (2.13) one gets

and consequently by (2.28) it tbllows

Lrff2 2(1 + c)O + to ^ co (2.29)

d(Lrf2 2cco ^ if2. (2.30)

Hence as for the curvature forms O, T defines a relative conformal transformation of the structure

2-form .
Consider now the vector valued 1-form

F =co" (R)e,,.-co"’(R)eo CA I(M, TM). (2.31)

If Z is any vector field, a simple calculation gives

(F,Z) Z"e,,. Z"’e,, 2 (2.32)

which implies

g(Z,Z’) + g(Z,Z’)-- O, Z,Z’ F(TM)

and (F, dp 2.

On the other hand since co(T) 0 one gets by (2.27)

Lr-- 2cw

that is T defines an infinitesimal homothety of co (la b)T.

Next by (2.12) and (2.13) one easily gets

(2.33)

(2.34)
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Therefore by reference to 3 one may call T the c()symplectic Hamiltonian vector field of M and

the dstnguished scalar ftuns out to be the energy function corresponding to T.
Moreover by (2.35) one derives

L i(T)I A (o d(LQ) 0 (2.36)

which shows that T dehnes a relative nflntesmal autonorphsm (R. Abraham ]) of .
Summing up, we state the following

THEOREM. Let M be a (2m + l)-dimensional Riemannian manifold and let T be a globally

defined vector field on M. If M is structured by a T-parallel connection, then M is endowed with an

exact locally conformal cosymplectic structure x CSp(2m, R), having T (resp. w b(T)) ase vector

(resp. Lee form) and any such an M is a space-form of cuature -2c.

Moreover one has the tbllowing properties:

i) T defines an infinitesimal homothety of the connection forms 0 and of the 1-form a(T), i.e.

LrO 2c0, Lr(T 2c(T)

ii) T defines a relative infinitesimal contbrmal transformation of the cuature forms O and of the

structure 2-form , i.e.

d(LrO)=8cO, d(L)=2c

iii) the vector field T (b - ) T (resp. is the cosymplectic Hamiltonian associated with the

Ix CSp(2m,R)-structure of M (resp. its corresponding energy function) and T defines a relative

infinitesimal automorphism of .
Let now "M be a conformal diffeomorphism (abr. C.D.) that is

"geg=g" oCM.

One also say that g and g are conformally equivalent metrics and setting e v, we agree to call

the function v the argument of the C.D.

As is shown one has for Z, Z’ F(TM)

Z VZ + b(grad o)@Z b(Z) @ grad o + g(Z,grad oMp (2.37)

or equivalently

z,Z VzZ +Z’(o +Z(o’ g(Z,Z’)grado (2.38)

and if K and denote the scalar cuature ofM and respectively then one has ([8])

e-{K + 2(n 1)(n z)ll grad oll } (2.39)

(n -dimM).

IfM is an exact .C.C.)--manifold, its Ricci tensor field S satisfies

S(Z,Z’) -4mc g(Z,Z’) Z,Z’ F(TM) (2.40)

and the scalar cuature K is given by

K =-4m(2m + 1)c. (2.41)

Perfo now a conformal transformation ofM having as argument e the energy function It is

obvious that

(2.42 o df/f. (2.42)

Then we have grad o =-T, which implies
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Ao div T (2m + l)c + (2m I)/. (2.43)
|fence by (2.41) and (2.43) we derive at once from (2.39),/ 0, that is ’/is a flat manifold. We

notice that this fact s n accordance wth the known

PROPOSITION. A Remannan manfl)id of constant curvature is conformaily fiat, provided
I >3.

Umng (2.37) one may prove that all vectors 6a are parallel (the connection forms ( vanish, i.e. ’s a fiat connection). Thus we have

PROPOSITION. II M s an exact (L.C.C.)-manifold wth metric tensor g and energy function f,
then the metric f2g s fiat.

3. STRUCTURE CONFORMAL VECTOR FIELDS ON AN EXACT (L.C.C.)-MANIFOLD
In consequence ofsome conformal properties induced by the T-parallel connection which structures

M(Q,q,_,g) we are naturally led to see if the manifold M under consideration carries a structure con-
formal vector field C in the sense of I6], 15]. Therefore the covariant differential of C is expressed by

VC=kdp +C ^ T=.dp +oo(DC-c(R)T. .C(R)M, ct-b(C). (3.1)
Put

C Caea :=:, b(C) a cAoja (3.2)

and s g(C, T). Then by (2.3) and (3.1) one quickly gets

dCa (.- s)toa + Caco (3.3)

da 2o0 ^ a = d-2"ct 0. (3.4)
Next since ds (VC, T) + (VT, C),a short calculation gives

ds Z.co- (/- c)et (3.5)

ds d. (3.6)
By (3.4), (3.5) and (3.6) it is seen that the existence ofC is assured by an exterior differential system

Y whose characteristic numbers are

r--3, s0=2, Sl =1.

Then g is in involution in the sense of E. Cartan (i.e. r s, + s). Accordingly one may say that

the existence of C depends on 2 arbitrary functions of one argument (E. Cartan’s test). The eonformal
scalar p associated with C(Lcg 9g) is given by

O 2k. (3.7)
By a short calculation one has

[C, T]-- -%.T- (l c)C" ]: Lie bracket (3.8)
and from (3.5) it follows

Lcco=ds ),.co- (l c)ct. (3.9)

This equation matches by Orsted’s lemma (1.12)the expression of [C,T].
On the other hand since C is necessarily an E. C. vector field (M is a space-form), then operating

(3.1) by dv and taking account of (3.4) and.(3.5), one derives

dV(vc)- V:C 2cc ^dp. (3.10)
The above equation is coherent with the properties obtained in Section 2.

Setting now

= tcq2 Y(C%o""- C"’eo") (3.11)
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one get,,, by (3.4)and (2.5)
d(z 2(.- s) + 200 ^ ( (3.12)

and one follows

L f2 O. (3.13)

Hence (3.13) reveals that C defines an infinitesimal conformal transformation (abr. I.C.T.)of the

cont{rmal cosymplectic form .
By similar methods, one gets by (2.5), (2.24), (2.20) and (2.21)

P’ Lc =p (3.14)Lc LcO 2 B

Therefore one may say that C defines an I.C.T. of the exact (L.C.C.)-structure of M.
Moreover let L be the operator of type (I.I) on forms defined by S. Goldberg ([8]), that is

L u u A ;u AtM, and consider on M the ( + l)-fos

Lqa=q = A Qq (3.15)

Snce by Orsted’s lemma one has

Lca=pa (3.16)

then by (3.13) and a standard calculation one derives

Lca =(q + 1)p%. (3.17)

Hence C defines an (I.C.T.) of all the ( + 1)-forms aq.
Next since C is a conformal vector field, then as is own (see (1.11)) one has

dry C (p/2)(2m + 1) (3.18)

and since p 2k it follows by (3.5) and (3.6) that

grad p pT + 2(c I)C. (3.19)

Further by (2.16) and taking account of (2.14) and (3.1) it is easily deduced

V grad p 2cpdp. (3.20)

Thus one may state the following relevant property: the gradient of the associated scalar p of C is

a concurrent vector field . Yano and B. Y. Chen [22]). We agree to call a conformal vector field such

that the gradient of its conformal scalar p is a concurrent vector field, a divergence conformal vector

field. Such a situation occurs also when studying conformal vector fields on rentzian P.S. manifolds

(see I. Mihai and R. Rosca [15]).
On the other hand from (2.14) one derives

div T (2m 1)l + (2m + )c (3.21)

and since div C (2m + 1)K one gets on behalf of (3.20)

Ap -div(grad p) -2(2m + 1)cp (3.22)

which shows that p is an eigenfunction of A.

C being an E.C. vector field satisfying (3.10), one has ([ 17])
S(C,Z) -4mc g(C,Z), Z F(TM) (3.23)

where S denotes the Ricci tensor field of V.

Now making use of (1.14) and caring out the calculations, one finds by (3.19) and (3.22)
Lcg(C,Z) pg(C,Z). (3.24)

Hence the vector field C defines an I.C.T. of all the functions g(C,Z), where Z C F(TM).

Concuding, we have proved the following

THEOREM. LetMbe the exact (L.C.C.) manifold defined in Section 2 and C a structure conformal

vector field on M (which existence is proved), i.e.
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VC=dp+CAT" Lcg=pg

Then C is a divergence contormal vector teld (i.e. grad(div C) is a concurrent vector field) and it

defines the tbllowng infinitesimal contbrmal transformations

p L ’ m LcO;=vO);Lc z

L, @ =p@, Lc(t, =(1 +q)p(t,,, Lcg(C,Z)=pg(C,Z)(Z F(TM)

where , cd, ft), Er and (,, b(C) ^ q are the conformal symplectic 2-form, the dual forms, the

connection forms, the curvature forms and the (2q + 1)-torms defined by the (1,1)-operator L, respec-

tively on M.

4. GEOMETRY’ OF THE TANGENT BUNDLE OF AN EXACT (L.C.C.)-MANIFOLD
Let now TM be the tangent bundle manifold having the exact (L.C.C.)-manifold M discussed in

Section 2 as a basis.

Denote by V(va)(A =0, 2m) the Liouville vector field (or the canonical vector field [7]).

Accordingly we may consider the setB {toA,dva as an adapted cobasis in TM. Following Godbillon

([ 7]) we denote by d,, and 4 the vertical differentiation and the vertical derivative operators with respect

to B*, respectively (d,, s an antiderivation of degree on A(TM) and 4 is a derivation of degree 0 on

A(TM)). Let TM be the set of all tensor fields of type (r,s) on M.

In general as is known ([23 ]) the vertical and complete lifts are linear mappings of TfM into Tf(TM)

and one has

(Tl (R) T:,)" T(R)T + T (R)T. (4.1)

In the case under discussion we may define the complete lift ff2" of the structure 2-form ofM by

the 2-form of rank 4m on TM

ffa"=Y(dv"^to"’+to"^dv"’), a=l m; a*=a+m. (4.2)
On the other hand since the Liouville vector field V is expressed by

V E v ’t---0 (4.3)
Ova

then as is known the basic 1-form

y E vatoa (4.4)
is called the Liouville form (see also [13]).

Taking now the exterior differential of f" one finds by (2.5)

dg2" =to ^ Q" :, d-’ =0 (4.5)

which shows that " is similarly as ff2 a d-exact form. We recall that in general conformal properties

are not preserved by complete lifts ([23]).
One has

ivf2 Y(v"m"’- v"’to") (4.6)

which implies re(V) 0 and so by (4.5) and (4.6) one gets

Lvfg ff. (4.7)

Accordingly on behalf of a known definition ([ 13]), the above equation shows that is of class

1, a homogeneous form on TM. Taking now the exterior differential of the Liouville form y defined by
(4.4), one gets at once by (2.5)

dy to ^ y + ’:=:’ d-’y (4.8)
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where we have set

q dv"’ A toa
From (4.8) and (1.2) one obtains nstantly

d"tp 0 dtp= .
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(4.9)

Since clearly the 2-form q is of maximal rank, we agree to call tp the canonical conformal symplectic

form of M. Noticing that one has

,,q y, to(V) 0 (4.11)

which implies

Lvq p. (4.12)

Hence p is as f2’ a homogeneous of class 1, 2-form.

Next making use of the vertical operator i,. defined by i k 0, i,, dva coa, i,, oJ 0(L C(R)M) one

quickly finds by (4.9)

i,3p =0 (4.13)

and the above equation together with (4.12) proves that is a Finslerian form ([7]).

We recall that the vertical lift Z" ([23]) of a vector field Z F(TM) with components Za in M, has

as components Z"(0 __Za O

Za OvA

Hence in the case under consideration one has

T Z A 0

--" A =0,1 2m

and by (4.9) one gets

Therefore by (4.10) one derives

(4.14)

Lr,ap 0 (4.16)

and one may say that T" defines an infinitesimal automorphism of ap.

Finally we set

where

denotes the Liouville function on M ([9]).

r :fv (4.17)

)2v Z(vA (4.18)

Operating on r by the vertical differentiation operator d,, ([7]) one gets

dvr f Y vto ft (4.19)
A

and taking the exterior differential of (4.19) we obtain by (2.13) and (4.9)

d(dr) f Z dvA ^ toA ----lap. (4.20)

Next putting H --fap it follows by (2.13)

dH =0. (2.21)

Therefore the exact symplectic form//can be viewed as the canonical symplectic form of the

(4m + 2)-dimensional manifold TM ([ 13]).
Finally by reference to [13] one may consider that the pair (r,ll) defines a regular mechanical

system 9’d (in the sense of Klein [13]) having the scalar r as kinetic energy.

irap =to. (4.15)
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THEOREM. Let TM be tile tangent bundle manifold having as basis the exact (L.C.C.)-manifold
M(O, T, co) discussed in Section 2. Let V, y and v be tile Louville vector field, the Liouville form and
the Liouviile function of TM, respectively. One has the following properties:

i) the complete lft if2’ on TM ot the contormal cosymplectic form of M is a homogeneous of
class 1, 2-form, .e. LvO’ ’, and it s d-"-exact, .e. d--’" 0;

ii) satisfies d-"7 tp d’ () and p , the canonical conformal symplectic form of TM and

enJoys also the property to be a Fnslerlan form;

ii) the vertical lift T of T defines an infinitesimal automorphism of , i.e. Lrp O;

v) r fv andf define a regular mechanical system on TM having r as kinetic energy and f’ as
canonical symplectic form (where f is the energy function of M).
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