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ABSTRACT : Let P be a cone in Banach space E,A,K are two mappings in P, A s accretive, K 1s k —set contrac-
tion. then a fixed point index 1s defined for mapping —A+K. some fixed point theorems are also deduced.
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1. INTRODUCTION

The fixed point index is a important tool in solving positive solutions of nonlinear equations in ordered Banach
space. So what nonlinear mapping could be defined a index theory becomes a very interesting problem, many au-
thors have studied this problem. see(13.023.08).70101,123.013). In this paper. E 1s a Banach space , PCE isa
closed cone, i.e P is closed convex, and

APCP,Y 2=0, PN(—=P)={0};
{ICE 1s a nonempty open bounded subset. Let A: D(A) CP->2’ be a multivalued accretive mapping. i, e
lz=yll <Nl z2—y+Aa;—a) | s2,yED(A) »a,€ Axy ;€ Ay;
K :QN PP is a strict k—set contraction.i,e 0Ck<<1; If
(I+AX(D(A))=P, and 2& —Az+Kz,Y z€20ND(A),

then a fixed point index is defined for— A+ K,when K is compact, such type mapping were studied by (4 J,(5],
(143,0153.

2. MAIN RESULTS
Let E be a Banach space, PCE is a closed cone,” <" is the order induced by P in E, ise x<\y if and only if y
—x€P.
PROPOSITION 1:A:D(A)=P—P is a continuous accretive mapping,for each £ € P, there exists 8(z)>0,
such that Az<<B(x). z. then(AI+A)P=P,¥ A>0;
PROOF. :For each zEP, consider the following differential equation
2’ ()=—(AT+Azx(t)+=z, t€ (0, +0)
2(0)=u€EP
For each x € P. smnce Ar<{f(z2) * x. so there exists W(x) EP, such that f(z) * x=Ax+W(2)
So we have x+e(—Ar—Ar+2)=1—eA—ef(a))r+eW(x) Fez
For sufficient small €0, such that 1 —eA—ef(2)>0, then (1 —eA—ef(x))x +eW(2)+ezE P

2.1

Hence

tm L p(ate(—e— Az+2),PI=0,Y zEP;
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by(6).we know (E1) has only one solution. Let x(z.u) be the unique solution of (E1) with 2(0)=u.
Now . define a mapping B, : ’>P as followng
Biu=x(Tu) u€ P, T>01s a constant ;
For u. v€P. Let F(t)= || 2(tvu) —2(t.v) || .then
FWD FOKQ@ Uu) — 2" (1 0) ex(to) —2(tov)) .

where D @ (1) = T 22ZLUZ) - (63P.36)

e h
D FOK(—Ar(ta) — Az (o) + Azt v) +Az(tv) s 2(t,u) —2(2,v))
A is accertive.so
(—Az(G )+ Az (tv) vty v) —2(tv)) =— (Ax(teu) — Az (tsv) sx(tou) — 2(t,v)) - <O
Therefore
SID B —-AB (1)
B(I<e " S (0)
So we have || Biu—Bv || <e “ | u—vl|
Hence, By has a unique fixed pont us € P,1,e Byug=uo.. This implies z' (¢ u0)=0,t>0,
So 0= —Aus— Auo+2z.2€ (A+AI) (P).
This complete the proof.
In the following, we assume A:D(A)CP->2"is a multivalued accritive mapping, (A+1I)(D(A))=P,
it’s well known (I+A) 'is nonexpansive(see(4)).
Let Q be a open bounded subset of E,K :83\P—>P is a strict k—set contraction, i, e #€ (0,1);
Suppose D(A)NDB# S ;and & —Az+Kz,¥ 2E€a0ND(A), then
z#U+A) 'Ka,¥ 2€0NP;
(I+A) 'K is also a strict k—set contraction.so the fixed point index i((J+A) 'K, 2N P) is well defined, see
(1),(8). Now. we define
(—A+K, QN DA =i((I+A) 'K, aNP)
THEOREM 1: (a) If 2=B(0,r).Kz=2,€ B(0,r)(\P,¥ £€ B(0,r) P, then
1(—A+K,B(0,r)ND(A))=1
(b) Suppose 0=02,U2;,2,N3, =, then
i(—A+K,QNDAN=i(—A+K .0, NDA))+:(—A+K,0,ND(A))
(c)Let H(¢,2):00,13X (BN P)—P. if H(t,x)is uniformly continuous in x for each t, and for each t€ (0,1). H
(£, * ): BN P—>P is a strict k—set contraction,k doesn’t depend on t. suppose
z& —Ax+H (¢, 2) ¥ 2€30ND(A) € (0.1
then i(— A+ H(¢,2),2D(A)) doesn’t depend on t.
) ¥ i(—A+K,2ND(A))#0, then € —Az+Kxz has a solution in @3N D(A). i,e —A+K has a fixed point.
PROOF : by the definition, (b), (¢), (d) is obvious. (see(1Jor (8))
Now, we prove(a). First, we have
0€ D(A) and 0€ A0 (2.2)
In fact, (A+I)D(A)=P, so there exists 1€ D(A),a€ Ax, such that z+a=0
Since £=>0.a2>0, So we must have z=0,a=0€ A0. Hence
(A+I) '0=0 (2.3
by the definition,we need to prove
i(+A 'K, QNP)=1,09=B(0,r) 2.4
Since (I+A) '‘Kz=U+A) 'z,¥V 2€EBNP,and
I T+ 2= T+ 0 < 2o | <r
So (I+A) 'z, € BNP=B0,r)NP, by (1)(see also(8)).
((I+A) 'K,B(0. YN P)=1
So i=(—A+K,B(0,r)ND(A))=1.
In the following, K,A,{,are same as above.
LEMMA 1:.If KzXz. Y 2€30P;and 0€ Q,then
i(—A+K.OQND(A) =1
PROOF :Let H(¢,z)=tKz,t€(0,1),xEBNP. If € —Azx+tKzx for some € 221 D(A) and t€ (0,1],
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then 170 (otherwise.we get 1 =0€ af2.a contradiction)
X -
So K,1>T>.r. a contradiction to KrXa.

Hence. H(s.2) satisfy all the conditions of (¢) in theorem 1.
So
1C-A+=K.QNDA) =1(—A+0.2ND(A))
by (2.3). we have (I+1) '0=0€ QNP
So(I+A) '0.2NP)=1. and we get
= A+0.2ND(A)) =1 (2.5)
Hence
(—=A+K.QND(A)) =1
COROLLARY 1: If 0€,and Kx<<2.Y 2€20N 1. then —A+K has a fixed point in 2N D(A)
PROOF: It’s obvious KaZXz.¥Y 2 €20 P. By lemma 1.
(—A+K.QND(A)) =1
Theorem 1.(d) imphes — A+ K has a fixed point in 2\ D(A).
LEMMA 2: Let u,#0.u, € P.supposec o—tu, & — Ax—tu,) +Karaf € NP, and x—tu, € D(A),for t=>
0; Then
(—A+K,0ND(A4))=0
PROOF ; Suppose :(I+4) 'K.QND(A)F0
For each t>0.Let H(¢t.2)=U+A) 'K+tru,.¥ 2z€QNP.t€(0,1);
' It’s obvious H(t.x) is uniformly continuous in x for each t,and H(t, * Jis strict k—set contraction for each t.
By(1J. (see also (8]). We get
1(U+A) 'K+tu, QNP)Y=1(TJ+A) 'K.QNP)#0
So there exists 2. € () P,such that
2— I+ A) 'Kae=ru, (2+6)
Letting t—o0,the left side of (2. 6) is bounded, but the right side of (2,6) is unbounded,a contradiction.
We must have 1(—A+K.NND(A))=0
THEOREM 2:1f A: D(A)C P2’ is an accretive mapping, (I +A)D(A)=P,£,,(, are two open bounded
subsets of E. 0€ ,C80,,K ;2\ P— is a strict k—set contraction mapping, 07 u, € P
(i)For each x€ a0, ,r£Kx;for each
2€MN NP2~ tuy € D(A) 1120 2 —tue & — Az —tu,) +Kax;
(i) For each x€ 202, ; 2Kz, for each
2€ML NPz~ tuy€ D(A) 1t =202 —tue & — A(x—tue) +Ka;
Suppose either (i)or (ii)is satisfied,then —A+K has a fixed point in(§2,—,) N D(A)
PROOF ;: Suppose condition (i) is satisfied by, Lemma 1, we have
(—A+K,02,ND(A)=1 2.7
by Lemma 2,we have
(—A+K,0,NDA))=1 2.8
by (b) of Theorem 1,and (6),(7). We get
(—A+K,(2,—0)NDA) =1
by (d) of Theorem 1, we know —A+K has a fixed point in ({2,—3,) N D(A).
If (1) is satisfied, the proof is similar. We complete the proof.
THEOREM 3: For each z €a2ND(A), | Kz || < |l z || yand 0E 2,then —A+K has a fixed point in 3D
(A)
PROOF ;: we may suppose
z& —Az+Ka.y T IE€D(A) 2.9
Let H(t.x)=tKx,¥ x€20NP,t € (0.1];
It’s obvious H(t,x) is uniformly continuous in x ,and H(t. * )is strict k —set contraction for each t.
We show that
z& —Az+H(t,z),Y €20 D(A),t€ (0,1) (2.10)
If € —Az+H(t,x) for some x€ 202N D(A) ,t€ (0,1),then 2=(I+A4) 'H(¢t,x)
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Since (I+A) 'is nonexpansive and (J+A) '0=0.So
Tl <THG2) = 1Kol el 2l
Therefore t=1. contradict to (8).by (c) of Theoreml.
1(—A+K.QNDA)=1(—A+0,0ND(A))
and (2.5) imphles :(—A+K.QND(A))=1.
by (d) of Theorem 1, —A+K has a fixed point in QN D(A).
THEOREM 4:1f 0€ Q. | K2 | <l z+al ,V 2€20ND(A),a€ Az; then —A+K has a fixed pomnt in 03
DCA).
PROOF : We may assume z& - Az+Kz,¥V 2€E2QND(A);
Let H(t.2)=tKx,t€ (0,1).2€ QN D;
If 2& —Ax+tKzx for some 1€ (0. 1).2€ 22N D(A) .then tKx € 2+ Az
So there exists a€ Az, such that tKxr=x-+a. We have || Kz || <t | Kz ||
By the assumption (2.11),r5%1.we must have Kzr=0, z+a=0
By (2. 3),2=0€ a{2,a contradiction to 0E€ 2.
So we have 2 & —Ax+H(t,2),¥ x€32ND(A),t€ (0,1).
The following proof is similar to that of Theorem 3. This end the proof.
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