THE FIXED POINT INDEX FOR ACCRETIVE MAPPING* WITH K—SET CONTRACTION PERTURBATION IN CONES

YU-QING CHEN

Department of Mathematics Sichuan University 610064 Chengdu P. R. China

(Received July 21, 1993 and in revised form August 15, 1994)

ABSTRACT: Let P be a cone in Banach space E.A, K are two mappings in P.A is accretive, K is k-set contraction, then a fixed point index is defined for mapping -A+K, some fixed point theorems are also deduced.

KEY WORDS AND PHRAESE; accretive mapping, k—set contraction, cone, fixed point index. 1992 AMS SUBJECT CLASSIFICATION CODES; 47H10. 47H05. 54H25

1. INTRODUCTION

The fixed point index is a important tool in solving positive solutions of nonlinear equations in ordered Banach space. So what nonlinear mapping could be defined a index theory becomes a very interesting problem, many authors have studied this problem, see(1).(2).(8).(10).(12).(13). In this paper, E is a Banach space, $P \subseteq E$ is a closed cone, i.e P is closed convex, and

$$\lambda P \subset P, \forall \lambda \geqslant 0, P \cap (-P) = \{0\};$$

 $\Omega \subseteq E$ is a nonempty open bounded subset. Let $A: D(A) \subseteq P \rightarrow 2'$ be a multivalued accretive mapping. i, e

$$||x-y|| \le ||x-y+\lambda(a_1-a_2)||, x, y \in D(A), a_1 \in Ax, a_2 \in Ay;$$

 $K: \overline{\Omega} \cap P \rightarrow P$ is a strict k-set contraction, i.e $0 \le k < 1$; If

$$(I+A)(D(A))=P$$
, and $x \in -Ax+Kx, \forall x \in \Omega \cap D(A)$,

then a fixed point index is defined for -A+K, when K is compact, such type mapping were studied by (4),(5), (14),(15).

2. MAIN RESULTS

Let E be a Banach space, $P \subseteq E$ is a closed cone," \leq " is the order induced by P in E, i.e $x \leq y$ if and only if $y = x \in P$

PROPOSITION 1: A: $D(A) = P \rightarrow P$ is a continuous accretive mapping, for each $x \in P$, there exists $\beta(x) > 0$, such that $Ax \le \beta(x)$. x. then $(\lambda I + A)P = P, \forall \lambda > 0$;

PROOF. : For each $z \in P$, consider the following differential equation

$$\begin{cases} x'(t) = -(\lambda I + A)x(t) + z, \ t \in (0, +\infty) \\ x(0) = u \in P \end{cases}$$
 (2 · 1)

For each $x \in P$, since $Ax \le \beta(x) \cdot x$, so there exists $W(x) \in P$, such that $\beta(x) \cdot x = Ax + W(x)$

So we have $x+\epsilon(-\lambda x-Ax+z)=(1-\epsilon\lambda-\epsilon\beta(x))x+\epsilon W(x)+\epsilon z$

For sufficient small $\epsilon > 0$, such that $1 - \epsilon \lambda - \epsilon \beta(x) > 0$, then $(1 - \epsilon \lambda - \epsilon \beta(x))x + \epsilon W(x) + \epsilon x \in P$ Hence

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} \rho(x + \epsilon(-\lambda x - Ax + z), P) = 0, \forall x \in P;$$

288 Y. Q. CHEN

by (6) we know (E1) has only one solution. Let x(t,u) be the unique solution of (E1) with x(0) = u. Now, define a mapping $B_t: P \to P$ as following

$$B_t u = x(T, u), u \in P, T > 0$$
 is a constant;

For $u, v \in P$. Let $\emptyset(t) = ||x(t,u) - x(t,v)||$, then

$$\emptyset(t)D \ \emptyset(t) \leqslant (x'(t,u)-x'(t,v),x(t,u)-x(t,v))$$
.

where $D \varnothing (t) = \overline{\lim} \frac{\varnothing (t) - \varnothing (t-h)}{h}$; see ((6)P.36)

$$\emptyset(t)D \ \emptyset(t) \leqslant (-\lambda x(t,u) - Ax(t,u) + \lambda x(t,v) + Ax(t,v), \ x(t,u) - x(t,v))$$

A is accertive so

$$(-Ax(t,u) + Ax(t,v), x(t,v) - x(t,v)) = -(Ax(t,u) - Ax(t,v), x(t,u) - x(t,v))_{-} \leq 0$$

Therefore

$$\emptyset(t)D \ \emptyset(t) \leqslant -\lambda \emptyset^{2}(t)$$

 $\emptyset(t) \leqslant e^{-\lambda \eta} \emptyset(0)$

So we have $||B_1u-B_1v|| \leq e^{-xt} ||u-v||$

Hence, B_T has a unique fixed point $u_0 \in P$, t, e $B_T u_0 = u_0$. This implies $x'(t, u_0) = 0, t > 0$,

So
$$0 = -\lambda u_0 - Au_0 + z \cdot z \in (A + \lambda I)(P)$$
.

This complete the proof.

In the following, we assume $A:D(A) \subset P \to 2^P$ is a multivalued accritive mapping, (A+I)(D(A)) = P, it's well known $(I+A)^{-1}$ is nonexpansive (see(4)).

Let Ω be a open bounded subset of $E, K: \overline{\Omega} \cap P \rightarrow P$ is a strict k—set contraction, i, $e \notin (0,1)$;

Suppose $D(A) \cap \overline{\Omega} \neq \emptyset$, and $x \in -Ax + Kx, \forall x \in \partial \Omega \cap D(A)$, then

$$x\neq (I+A)^{-1}Kx, \forall x\in \mathfrak{D}\cap P;$$

 $(I+A)^{-1}K$ is also a strict k-set contraction so the fixed point index $i((I+A)^{-1}K, \Omega \cap P)$ is well defined, see (1),(8). Now, we define

$$\iota(-A+K,\Omega\cap D(A))=\iota((I+A)^{-1}K,\Omega\cap P)$$

THEOREM 1: (a) If $\Omega = B(0,r)$, $Kx = x_0 \in B(0,r) \cap P$, $\forall x \in B(0,r) \cap P$, then

$$\iota(-A+K,B(0,r)\cap D(A))=1$$

(b) Suppose $\Omega = \Omega_1 \cup \Omega_2, \Omega_1 \cap \Omega_2 = \emptyset$, then

$$i(-A+K,\Omega\cap D(A))=i(-A+K,\Omega_1\cap D(A))+\iota(-A+K,\Omega_2\cap D(A))$$

(c) Let H(t,x); $[0,1] \times (\overline{\Omega} \cap P) \to P$. if H(t,x) is uniformly continuous in x for each t, and for each $t \in (0,1)$. H(t,x); $\overline{\Omega} \cap P \to P$ is a strict k—set contraction, k doesn't depend on t, suppose

$$x \in -Ax + H(t,x), \forall x \in \mathfrak{AO} \cap D(A), t \in (0,1);$$

then $i(-A+H(t,x),\Omega \cap D(A))$ doesn't depend on t.

(d) If $i(-A+K,\Omega\cap D(A))\neq 0$, then $x\in -Ax+Kx$ has a solution in $\Omega\cap D(A)$. i,e-A+K has a fixed point. **PROOF**: by the definition, (b), (c), (d) is obvious. (see(1)or (8))

Now, we prove(a). First, we have

$$0 \in D(A)$$
, and $0 \in A0$ (2.2)

In fact, (A+I)D(A)=P, so there exists $x \in D(A)$, $a \in Ax$, such that x+a=0.

Since $x \ge 0$, $a \ge 0$, So we must have x = 0, $a = 0 \in A0$. Hence

$$(A+I)^{-1}0=0 (2.3)$$

by the definition, we need to prove

$$i((I+A)^{-1}K,\Omega\cap P)=1,\Omega=B(0,r)$$
(2.4)

Since $(I+A)^{-1}Kx = (I+A)^{-1}x_0, \forall x \in \overline{\Omega} \cap P$, and

$$\| (I+A)^{-1}x_0 - (I+A)^{-1}0 \| \leq \| x_0 \| < r$$

So (I+A) ${}^{1}x_{0} \in \Omega \cap P = B(0,r) \cap P$, by (1)(see also(8)).

$$\iota((I+A)^{-1}K,B(0,r)\cap P)=1$$

So $i = (-A + K, B(0,r) \cap D(A)) = 1$.

In the following, K, A, Ω , are same as above.

LEMMA 1: If $Kx \ge x$. $\forall x \in \alpha \cap P$; and $0 \in \Omega$, then

$$i(-A+K\cdot\Omega\cap D(A))=1$$

PROOF: Let H(t,x) = tKx, $t \in [0,1]$, $x \in \overline{\Omega} \cap P$. If $x \in -Ax + tKx$ for some $x \in \alpha \cap D(A)$ and $t \in [0,1]$,

then $t \neq 0$ (otherwise, we get $t = 0 \in a\Omega$, a contradiction)

So $Kx \geqslant \frac{x}{t} \geqslant x$, a contradiction to $Kx \ngeq x$.

Hence, H(t,x) satisfy all the conditions of (c) in theorem 1.

Sa

$$\iota(-A+K.\Omega\cap D(A))=\iota(-A+0.\Omega\cap D(A))$$

by (2.3). we have $(I+A)^{-1}0=0\in\Omega\cap P$

So $\iota(I+A)^{-1}0.\Omega\cap P)=1$, and we get

$$\iota(-A+0,\Omega\cap D(A))=1 \tag{2.5}$$

Hence

$$\iota(-A+K.\Omega\cap D(A))=1$$

COROLLARY 1: If $0 \in \Omega$, and $Kx < x \cdot \forall x \in \partial \Omega \cap P$, then -A+K has a fixed point in $\Omega \cap D(A)$

PROOF: It's obvious $Kx \ge x \cdot \forall x \in \alpha \cap P$. By lemma 1.

$$\iota(-A+K\cdot\Omega\cap D(A))=1$$

Theorem 1.(d) implies -A+K has a fixed point in $\Omega \cap D(A)$.

LEMMA 2: Let $\mathbf{u}_0 \neq 0$, $\mathbf{u}_0 \in \mathbf{P}$, suppose $x = tu_0 \notin -A(x = tu_0) + Kx$, if $x \in \mathfrak{A} \cap \mathbf{P}$, and $x = tu_0 \in D(\mathbf{A})$, for $t \geqslant 0$; Then

$$\iota(-A+K,\Omega\cap D(A))=0$$

PROOF: Suppose $\iota(I+A)^{-1}K \cdot \Omega \cap D(A) \neq 0$

For each $\tau > 0$. Let $H(t,x) = (I+A)^{-1}K + t\tau u_0$, $\forall x \in \Omega \cap P$, $t \in (0,1)$;

It's obvious H(t,x) is uniformly continuous in x for each t, and $H(t,\cdot)$ is strict k—set contraction for each t. By(1). (see also (8)). We get

$$\iota((I+A)^{-1}K+\tau u_0,\Omega\cap P)=\iota(I+A)^{-1}K,\Omega\cap P)\neq 0$$

So there exists $x_r \in \Omega \cap P$, such that

$$x_{r} - (I+A)^{-1}Kx_{r} = \tau u_{0}$$
 (2 • 6)

Letting $\tau \rightarrow \infty$, the left side of (2.6) is bounded, but the right side of (2.6) is unbounded, a contradiction.

We must have $\iota(-A+K.\Omega \cap D(A))=0$

THEOREM 2: If $A: D(A) \subset P \rightarrow 2'$ is an accretive mapping, $(I+A)D(A) = P, \Omega_1, \Omega_2$ are two open bounded subsets of E. $0 \in \Omega_1 \subset \Omega_2, K: \overline{\Omega} \cap P \rightarrow$ is a strict k—set contraction mapping, $0 \neq u_0 \in P$

(i) For each $x \in \mathfrak{a}\Omega_2$, $x \not\equiv Kx$; for each

$$x \in \mathfrak{D}_1 \cap P, x - tu_0 \in D(A), t \geqslant 0, x - tu_0 \in -A(x - tu_0) + Kx;$$

(ii) For each $x \in \mathfrak{D}_1$; $x \not\equiv Kx$, for each

$$x \in \mathfrak{D}_2 \cap P, x-tu_0 \in D(A), t \geqslant 0, x-tu_0 \notin -A(x-tu_0)+Kx;$$

Suppose either (i)or (ii)is satisfied, then -A+K has a fixed point in $(\Omega_2-\overline{\Omega}_1)\cap D(A)$

PROOF: Suppose condition (i) is satisfied by, Lemma 1, we have

$$i(-A+K,\Omega_2\cap D(A))=1 \tag{2.7}$$

by Lemma 2, we have

$$i(-A+K,\Omega_1\cap D(A))=1 \tag{2.8}$$

by (b) of Theorem 1, and (6), (7). We get

$$i(-A+K,(\Omega_2-\overline{\Omega}_1)\cap D(A))=1$$

by (d) of Theorem 1, we know -A+K has a fixed point in $(\Omega_2-\overline{\Omega}_1)\cap D(A)$.

If (ii) is satisfied, the proof is similar. We complete the proof.

THEOREM 3: For each $x \in \mathfrak{D} \cap D(A)$, $||Kx|| \leq ||x||$, and $0 \in \Omega$, then -A+K has a fixed point in $\overline{\Omega} \cap D$

PROOF; we may suppose

$$x \in -Ax + Kx \cdot y \qquad \mathcal{Q} \in D(A) \tag{2.9}$$

Let $H(t,x) = tKx, \forall x \in \partial \Omega \cap P, t \in \{0,1\};$

It's obvious H(t,x) is uniformly continuous in x, and $H(t, \cdot)$ is strict k-set contraction for each t.

We show that

$$x \in -Ax + H(t,x), \forall x \in \partial \Omega \cap D(A), t \in (0,1)$$
 (2.10)

If $x \in -Ax + H(t,x)$ for some $x \in \Omega \cap D(A)$, $t \in (0,1)$, then $x = (I+A)^{-1}H(t,x)$

290 Y. Q. CHEN

Since $(I+A)^{-1}$ is nonexpansive and $(I+A)^{-1}0=0$. So

$$||x|| \leq ||H(t \cdot x)|| = ||tKx|| \leq t ||x||$$

Therefore t=1, contradict to (8), by (c) of Theorem1.

$$\iota(-A+K,\Omega\cap D(A))=\iota(-A+0,\Omega\cap D(A))$$

and (2.5) implies $\iota(-A+K,\Omega\cap D(A))=1$.

by (d) of Theorem 1, -A+K has a fixed point in $\Omega \cap D(A)$.

THEOREM 4:If $0 \in \Omega$, $||Kx|| \le ||x+a||$, $\forall x \in \partial \Omega \cap D(A)$, $a \in Ax$; then -A+K has a fixed point in $\overline{\Omega} \cap D(A)$.

PROOF: We may assume $x \in Ax + Kx$, $\forall x \in \Omega \cap D(A)$;

Let $H(t,x)=tKx, t\in (0,1), x\in \overline{\Omega}\cap P$;

If $x \in -Ax + tKx$ for some $t \in (0, 1), x \in \mathfrak{A} \cap D(A)$, then $tKx \in x + Ax$

So there exists $a \in Ax$, such that tKx = x + a. We have $||Kx|| \le t ||Kx||$

By the assumption (2.11), $t \neq 1$, we must have Kx=0, x+a=0

By (2.3), $x = 0 \in \partial \Omega$, a contradiction to $0 \in \Omega$.

So we have $x \in -Ax + H(t,x), \forall x \in \mathfrak{a}\Omega \cap D(A), t \in (0,1)$.

The following proof is similar to that of Theorem 3. This end the proof.

REFERENCES

- 1. H. AMMAN. On the number of solutions of nonlinear equations in ordered Banach spaces. J. Funct. Anal. 11 (172). 346-384
- 2: H. AMMAN, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM, Rev. 18 (1976) 620-709
- 3. F.E. BROWEDR, Nonlinear mappings of nonexpansive and accretive type in Banach spaces. <u>Bull. Amer. Math.</u> Soc. 73(1967)875-882
- 4. F.E. BROWDER. Nonlinear operators and nonlinear equations of evolution in Banach spaces. Proc. Symp. Pure. Math. V18.part2. AMS 1976
- Y.Z. CHEN. The generalized degree for compact perturbations of m-accretive operators and applications. Non. Anal. 13(1989)393-403
- 6. K. DEIMLING. Ordinary differential equations in Banach spaces. Lect. Notes. Math. 596. 1977
- 7. M. A. KRASNOSELSKII. Positive solutions of operator equations. Noordhoff. 1964
- G. Z. LI. The fixed point index and the fixed point theorems of 1-set-contraction mappings. <u>Proc. Amer. Math. Soc</u> 104(1988). 393-1170
- 9. T. C. LIN. Approximation theorems and fixed point theorems in cones. Proc. Amer. Math. Soc. 102 (1988). 502 506
- P. M. FITZPATRICK, W. V. PETRYSHYN. Fixed Point theorems and the fixed point index for multivalued mappings in cones. J. L. Math. Soc. 12(1975)75-85
- 11. I. MASSABO, C, A. STUART. Positive eigenvectors of k-set contractions. Non. Anal. 3(179). 35-44
- R. D. NAUSSBAUM. The fixed point index and asymptotic fixed point theorems for k-set contractions. <u>Bull.</u> Amer. Math. Soc. 75(1969). 490-495.
- 13. R. D. NAUSSBAUM. The fixed point index for local condensing maps. Ann. Mat. Pura. Appl. 89(1992). 1-9
- 14. C. MORALES, on the range of sums of accretive and continuors operatous in Banach spaces. Non. Anal. 19 (1992). 1-9
- 15. A. G. KARTSATOS, Mapping theorems involving ranges of sums on nonlinear operators. Non. Anal. 6(1982). 271-278