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ABSTRACT. Associated with a 0-1 measure E I(-.) where is a lattice of subsets of X are outer

measures/’ and ; associated with a o-smooth 0-1 measure # E Io() is an outer measure " or with

Io(.Y’), ’ being the complementary lattice, another outer measure I. These outer measures and

their associated measurable sets are used to establish separation properties on o and regularity and

a-smoothness of . Separation properties between two lattices , and 2, , - 2, are similarly

investigated. Notions of strongly a-smooth and slightly regular measures are also used.
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1. INTRODUCTION.

Let X be a set, a lattice of subsets of X such that and X belong to . and A() denote the

algebra generated by . The set I() consists of all two-valued (zero or one) finitely additive measures

on A(’.); the set IR() is a subset of I() in which a measure # is -regular; the set Io() consists of

those elements in I() which are a-smooth on . Analogous definitions hold for ’, the

complementary lattice to .
Associated with /z G I() and / G Io() are outer measures /’, and /", and with

E Io(’), . These outer measures have been investigated to some extent in [4, 5, 6].

In this paper, we show how these outer measures can be used systematically to establish

separation properties between lattices, and also for establishing regularity of measures or the domination

of a suitable measure on by a regular a-smooth measure. In order to achieve some of these goals,

we must investigate conditions involving the equality of some of these outer measures on various

lattices.

In section 2, we introduce the notations and background material needed for the paper and begin

our consideration of separation properties. Section 3 is concerned mainly with lattice-topological

conditions which will guarantee equality of certain outermeasures and which will yield regularity.

Section 4 extends the work of [4] in considering slightly regular measures on and their properties.

In addition, specific characteristics are given for the various measurable sets associated with the given

outer measures. These, in turn, lead to results on measures in IR() N Io(), as well as to measures

dominated by such regular measures.
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Our notations and terminology are consistent with standard usage (see, for example, [1, 3, 8]).

2. BACKGROUND AND NOTATIONS.

In this section we consider certain lattice properties and definitions, as well as notations. We

summarize the most important ones that will be used throughout the paper for the reader’s convenience.

Related matters can be found in [2, 4, 5, 6, 7].

The set M(5) consists of finite and finitely additive (non-negative) measures on A(); I()

mentioned in section is a subset of M(.g) The set Ma() is a subset of M() where v M()
is said to be regular on , or -regular if and only if v(A) sup{v (L)] L A, L e 8}, for

A A(.)" again, la(.) c_ MR(). We say that / is a measure on instead of on A() by

convention. Also, if . is a lattice, ’ {L’ L } denotes the complementary lattice.

We note that since there exists a one-to-one correspondance between prime .Sf_-filters and

elements of I(), and similarly between -ultrafilters and elements of Ia(), it follows that:

(1) For any/ I(), there exists I() such that/ < on

(2) For any t* I(), there exists E I(’) such that /, _< on ’.

We next associate two finitely subadditive outer measures #’ and with each/, E M(). Let

t* E M(), define for E c_ X

D’(E) inf{D(L’)l E L’, L 6 8}.

Then it is easy to see that #’() 0, #’ is monotone, #’ is finitely subadditive, and _< ’ (), i.e.,
_< ’ on , and ,’ (’.’). Finally, # ’ (’.) if and only if > E MR(). Dually, for

E M(.’.), define for E c_ X

# (E) inf {M (L) E c L, L 6: }.

is also a finitely subadditive outer measure; /, (); # < (’);/ (’) if and only if

# ( MR(’).

In this paper, we will be concerned with the special case of # 6 I() in the above. We list

several important facts; details can be found in [4, 5, 6].

A lattice is normal if for Ll and La in , L f3 L-2 , there exist L3 and L,, in such that

L, c_ ,, La c_ L4’ and L3’ q L4’ . Equivalently, in terms of measures, is normal if and only
if for a E I(), v,, v2 IR(), < v ()and tt < v ()imply that Vl

PROPOSITION 2.1. If is a normal lattice, and if v I() and # E Ia() with , < (.),

then v’ ’ (). Conversely if a lattice has this property, then it is normal.

For lattices and of subsets of X, , _
, semi-separates if for L E .,

L., =, L (’1 L-z , there exists LoE t such that I-,-z _c Loand L q Lo . The

following fact is less well-known; we give a slightly different proof.

PROPOSITION 2.2. Let _c g= be lattices of subsets of X, then , semi-separates if and

only if for any I(), t*’ (=).
PROOF. a. For any L E ., with l-a c_ L’, there exists f’. , such that L

_
f’. c_ L’,

/(f’l) < #(L,’), so (La) --< #’(I-.2). For any 1 with l-a _c f,1 6 , c_ 2,, we have

/,’(I_..2) _< p.’(f’.) (f’.l); so M’(L.2) _< (La).
b. Suppose not: there exist L-2 6 2 and L (E ,, such that L, ( L-2 , and for any

f"l - Lawhere f’.l 6 , f_, L # . The setS {f, D L,: f,
_

L-z} consisting of non-



P. S. HSU 255

empty sets is non-empty: X
_
Land X N L, , soX N L E S. We see thatShas finite

intersection property, i.e., every finite intersection of sets in S is non-empty: Suppose E L, and f’..
are in S, (F. L,) (f’. CL) (E cf_,l) (3 L E since f’. c f’.

_
L. There exists

/, E IR() such that/,(F. c L1) for all f"l n L in S. Since both f’.l and L contain f’. L,

#(F.) /,(L) for all f’..
_

L2, the outer measure

/.t’(L) inf{(A1) L c A1, A 6 } by assumption. But c_ Lt’ and /,(Lt’)= 0,

implying that t*’() 0, a contradiction.

Again, let , c_ .2. We recall that every/, IR(,) can be extended to a ,, IR(). Also

if,o IR() and if , semi-separates , then la I,,1 @ la(,).
PROPOSITION 2.3. Suppose c_ 2 and/, E I() is extended to , ( I(). Then , is

,-regular on (i.e., for any L2’ in , if ,,(l-a’) 1, there exists f’. c_ L’ with ,,(f’.) 1) if and

only if , ’ ().
PROOF. a. For any ( , ,(L) ,’() < /,’() since c_ and , /, (). If

u’(L) 0 for some L 2, then ,,() 0 by regularity. With ,(’) 1, there is an

L c_ I-a’and u(L,) /,(L). NowLa c_ L’, so/’(L) 0.

b. Assume that ’ ( .2 and ,,(I-a’) 1. Then ,() 0 tz’(L). There is L, ( ,
l-a c L’ and/,(L’) 0, so L c_ L’ and ,(L) 1.

That , /,’ () is equivalent to a separation property. When , c_ 2, we say that

separates if for B and in , B tq B , there exist A and A: in such that B c_ A,

B c_ A and A tq A . If , c_ , , separates implies that semi-separates .
PROPOSITION 2.4. The condition that separates is equivalent to: For every/, IR()

and every extension , IR(), we have (i) ,, #’ () and (ii) /,’ ().
PROOF. a. We will show that separates implies that ,, is ,-regular on " Suppose that

,(l-a’) 1, L , then there exists f"2 ( such that f.. c_ L’ and u(f..) since ,, IR(2).
There is then L l such that L c_ L, . c_ 1 and L, tq f.z by the separation property.
Now f’., c_ L’ c_ L’; f’.. c_ f’., and ,(f’..) 1, therefore ,() 1, the measure being defined on,. By proposition 2.3, , /,’ (2). Since separates , part (ii) follows from proposition 2.2.

b. The proof that . separates is analogous to that of part b of proposition 2.2. If ., does

not separate , then a set with finite intersection property can be constructed to lead to a contradiction.

An immediate application of some of the previous material can be given (see [5, 6] for further

applications).

PROPOSITION 2.5. If I() IR(), then semi-separates A(), which is equivalent to

PROOF. If I() IR(), one can show that IR(-) IR(’). Then for/, IR(’), A A(),

#(A) inf{it(L) k L, L e f} (A) and # /,’ on A(’) A(). Therefore,

Iz’(A) (A); by proposition 2.2, semi-separates A().
We will show that in that case c_ ., (therefore ’ c_C_ " ): Let L, ( , then

L L ( A()andL tq L’ . There existsLo ( such that L, c_ LoandL
We have Ll tq L,’ _c L N L0 , hence L’ L0 .
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We now consider the case where/, E I(.Y) has additional smoothness properties. A measure

/z is a-smooth on (f (or E lo((.k’.)) if and only if for a sequence {A. E .Y}, A, implies that

limla(An) 0. Define forz E I,,(Y),E _c X,

b" (E) inf {E t (L’) E UL’, L 6 }

It follows immediately that #" is an outermeasure (countably subadditive). In addition:

(1) # _< #"
(2) /z" _</’.

(3) #" < # (.’).

(4) If/, is 5-regular and a-smooth on (denoted by/z E -r (if)), then , " #’ () and,, ’ (.’).

Dually, using a covering from ., instead of from ’, we define for/, 6 Io(’), E _c X,
(E) inf{ E M(L) Z c 0 Li, L 6 [3

Then we have:

(1) _< #

(2) If E Io(’), then _< I (’).
3. SOME TOPOLOGICAL-TYPE CONDITIONS ON FOR ;.t’ /.t" ON

We will first see that when is complement generated, the a-smoothness on ’ of a measure

/z will yield -regularity. Then we will introduce a stronger version of a-smoothness so that we may

obtain -regularity from the strong a-smoothness on and some topological conditions on . This

strong a-smoothness will also yield the equality of the two outer measures ’ and " on ’.
A lattice is complement generated if for any L G , there exists a sequence {L, E } such

that L f] Ln’. A lattice is countably paracompact if for any sequence {A. }, A, ) , there
n=l

exists {L } such that A. _c L.’ and L.’ . If is complement generated, it is countably

paracompact.

NOTE. If is countably paracompact, then Io(’)
_

Io().

It is our aim throughout the paper to give consistently applications of the outermeasures that we

have introduced. The following is well-known (see [4, 5, 6]), but we give an alternate proof using

outermeasures.

PROPOSITION 3.1. If is complement generated and E Io(’), then 6 (if).

PROOF. is countably paracompact and therefore # I,,() by the above note. We have

I* < /, < /.t < /.t (). Suppose that for some L , I (L) 0 and

where L. E for all n. Then/,(L.’) for all n, otherwise (I_’) 0 for some N would imply

that/,’(L) < t.t’(l_) 0. Now L’ U Ln and/,(L.) 0 for all n means that (L’) 0. Then

.l(X) 0, contradicting that/ 6 Io(Y ). Therefore, I /’ (Y) and

We consider two more notions of a-smoothness, digress to examine their properties and make

some comparisons. A measure/z 6 I(Y) is strongly a-smooth on or # 6 if (if) if and only if for

any sequence {L. 6 }, L. i, if f]L E then/,t(f]Ln) infl.t (Ln) lira I.t (Ln) A measure

/, EE I() is a-smooth on A() or ,u I() if and only if for any sequence {A. E A()}, if A.
then lira (A) 0.
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Notes on a-smoothness:

(1) # (E I"() if and only if # is countably additive on A(.<.).

(2) I()
_
i() c_ I,,(T.).

(3) If # (E T (g), i.e., # is T-regular and a-smooth on 5A, then # I"(7’), i.e., it is a-smth on

A().

(4) a. If I(Sf) is counmbly subadditive on -’ i.e., for all sequences {’ 5’},
#(U L’) (Ln’))d U L’ ’,thenp (g).

b. If (g), then # is counmbly subadditive on ’
Hence, counmbly subadditivity on ’ is equivalent to strongly o-smoothness on ..
PROOF. a. Suppose L, L L and #() I. By assumption,

p(U L’) (L’) 0; so#(L’) 0. Therefore, >(L) and#( L) inf(L).
b. Supse that for {L,’ Z’}, (U L’) 1, then >(L) 0. We may assume that ,

then m(L) =0since (g). As a result, >(L,’) from someNon so the inuity
holds.

(5) a. If# I,,()and#" #’(’),then (g).

b. If (g), then" ’(.’).
PROOF. S [4].

Dully, we have:

(6) a. If > Io(’) and (.), then (if’).

b. f (ff’),then =(Y).
AgMn, the following prosition is own, but we give alternate prf using outermsures.

PROPOSITION 3.2. If is complement generat d normal, (if) then G I() d
therefore I (if).

PROOF. Wehave " ’()d ’(’)ingenerM. Since (ff),byNote

(5), " ’ (’). Supse that for some L , (L) 0d ’(L) 1; let L L’ where

L, . By normity, there exist A, d B, in Y such that L G A.’ G B, G L,’ for M1 n, so

L A’ B L’. Since’(L) 1,(’) lforMln;so(AO =0d(B.’) =0for

’ "(L’) "Mln. ButL’ UB so =0. Also,(L’) ld (’)impliesthat"(L’)

a contradiction.

To summze, we have uMity of the two outer msures " d ’ on ’ d if a. is

complement generate, G Io(’) oA b. is complement genemt d normM, G (if).

Next, we show

PROPOSITION 3.3. If is normal, Io(), IR() d (), then v G I(’).
PROOF. Supse that there is a suence {L. }, L, d v(L,’) for M1 n. Since

G I(), there exists such that G L,’ d v() for M1 n. Using normMity d

gument ogous to the oneu in the prf of prosition 3.2, we ve at a contradiction that

Io(Y).
It is sy to s that if is a &lattice (i.e., clos under coumble interstions), d if

(ff),then"(E) =’(E) forM1E X.

If we only assume that I(), then we must imse tologicM ty conditions to insure

that " ’ (). We have
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PROPOSITION 3.4. Let E I,,(5), then " ’ (Y)

(a) if 5f. is normal and a &lattice; or

(b) if <f. is normal and countably paracompact; or

(c) if Y is countably compact (i.e., every countable covering of X by elements from .Y.’ has a finite

subcovering).

PROOF. a. Suppose #"(H) 0 and #’(H) for some H E <. There exists {L, G },
H c_ U Ln’, L,’’, #(L,’) 0 for all n. Since is a &lattice, U Ln’ L’ where L f] L .
Using normality analogous to the proof of proposition 3.2, we arrive at a contradiction that t is o-

smooth on .
b. As a measure, # is dominated by some v IR(..), < v() orv < (’). Sinceis

normal, by proposition 3.3, v Io(’); therefore, u E Io() because is countably paracompact.

With u E xx (if) v (.). We also have u" < (). Combining the above, we have

p. < u v’ u" __< #" < #’ (). Since. is normal, v G Ir() with p. < u (), we have

u’ ,u’ (.). Therefore, v’ #" #’ ().
c.. is countably compact if and only if I() I,,(). If for some H E , "(H) 0, then

usin a finite cover for X yields a cover for H in ’ with measure zero, so tz’(H) 0.

Finally, we introduce the following topological-like concept relating two lattices.

DEFINITION 3.1. The lattice is a sublattice of 2, .Y2 is said to be countably compact if

whenever 5, L
_

U A,’ where {A. E }, we have l-a - U An’.
fin

NOTE. If is , countably compact, then , is countably compact because X 6 .
PROPOSITION 3.5. (a) If p. E Io(), is countably compact (so I(t) I,(..t)), then

’ " (2).

(b) If : is countably compact, is complement generated and normal (so

Ia() -r. (ff)), and ,u G Ia(), then p.’ , (:) and t semi-separates .
PROOF. a. For # E lo(), p."(E) < #’(E) for all E

_
X. Equality follows because there is

a finite cover for any covering in the definition of "(E).

b. In the proof of proposition 2.2a, we see that t’() < (l-a) for any I-a .. because

# #’ () when # G Ia(t). Now if ’(E) 0 for some E 2, then E

_
A’ for some A

and .(A’) 0. Since A iq L,’
_

L,,’ t’, we may use normality to arrive at (E) 0.

Therefore, ,u’ (z) and by proposition 2.2, t semi-separates .
4. SLIGHTLY REGULAR MEASURES AND OUTER MEASURABLE SETS.

To continue investigating the relationship between the two outer measures, /’ and ", we

consider first the notion of a slightly regular measure introduced in [4]. We review some of its

properties and extend the work done in [4, 5, 6, 7].

DEFINITION 4.1: A a-smooth measure tz E Io() is said to be slightly regular on , I,(),

if #(L’) for some L implies that there exists a sequence {L, E ._Y} such that L’
_

rl L, and

I(L,) for all n.

Properties of E L_():

(1) # E I,(f) if and only if # =/z" ().

PROOF. a. Suppose/, I,(). In general, > <_ " (). Now if there exists L E with
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.(L) 0, then >(L’) and there is a sequence {L, E } such that L’
_

IqL and (L,) for

all n. Then #"(L) O.

b. Suppose> =>"()and>(A’) for someA E T. Then>"(A) =#(A) O and from the

definition of .", we arrive at E It(T).

For > E I(5), ." on the intersection of a sequence of sets in , each with measure 1, is 1.

The converse is true if . E I(5)"

(2) If E Is(.) and ."(flLn) with I E for all n, then #(LO for all n.

PROOF. If "(["]Ln) 1, then #"(L0 for all n. So #(L) #"(L,0 for all n.

(3) If> zR(5), then# @ I,().

(4) If (E Is(), then# E (g).

PROOF. Suppose there exists a sequence {Ln E }, L, f’IL L E , #(L,0 for all n

but >(L) 0. Since (L’) 1, there exists {A (E } such that L c_ U A,’ and ,u(A,,’) 0 for all

n; >"(L) 0. Also, L’ U Ln’ and #(I’) 0 for all n; ,u"(L’) 0. Hence " 0, contradicting

that @ Io().

(5) If semi-separates i(), where i() is the lattice of all countable intersections of sets from ,
and if/ I(),then/ E ().

To see the relationship between strongly a-smoothness and slightly regularity, recall that in the

classical case, for an outer measure #’, a set E
_
X is said to be tz’-measurable if for any A

_
X,

tz’(A) ’(A tq E) +/z’(A & E’) (E splits all sets additively with respect to/z’). Here we will call

the sets of all #’-measurable and/x"-measurable sets S,,, and S,,. respectively. As in the classical case,

S,,. is closed under complement and countable union, while S,,, is an algebra; any set with outer

measurable zero is measurable. The restriction of #’ on S,,, is finitely additive and the restriction of/,"

on S,,. is countably additive. Recall also that an outer measure #" is said to be regular if for all A c_ X,

there is a/z’-measurable set E

_
A such that #’(E) ’(A); E is called a measurable cover for A.

There is a duality between statements on/z’, " and those on # and I.
Remarks:

(1) For/, I(), S,,, {E c_ X there exists L such that E
_

L with #(L) or such that

E’
_

L with /,(L) 1} and Sit {E c_ X there exists L such that E_ L’ with

/z(L’) or such that E’_ L’ with/,(L’) 1}.

PROOF. a. Suppose E S,,,. If/z’(E) 0, we have L @ such that E c_ L’ and/,(L’) 0,

or L c_ E’ and/,(L) 1. If #’(E) 1, since ’(X) #’(E) + #’(E’), we have/,’(E’) 0. Again,

there exists L such that E’ c_ L’ and #(L’) 0, or L c_ E and/z(L) 1.

b. Let E be in the fight-hand side set. IfE

_
L with /,(L) 1, then t._" c_ L’ and

/,(L’) 0. So’(E’) 0andE’ S,,,; thereforeE S,,,. IfE’

_
L E with#(l_) 1, then

/.t’(E) 0 and E S,,.
The second part of the statement follows by replacing Z by Z’.

(2) For t Io(Z), S,,. {E c_ X there exists {I_., } such that E
_

flr_ with #(LO for

all n or such that E’
_

flL. with /,(L0 for "all n} and S {E c_ X there exists

{L, @ } such that E
_

f’lL’ with >(’) for all n or such that E’
_

IqL,’ with

(L,,’) for all n}.
PROOF. Omitted.
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(3) If/ E I(5) [I,,(5)], then/’ [#"] is a regular outer measure.

In our case of 0-1 measures, to see whether a set is measurable, it suffices to check the equation

on the set X"

(4) For/ E I(.) and E c_ X, if/’(X) /’(E) + ’(E’), then E G S,,,. The statement is true for

/ 10(.) and ’ is replaced by #", S,,, by S,,,,.
(5) If # I,(5), then # I.t"l,ll and # I().

PROOF. For any L E ., we have (X) (L) + (L’). Since EE I,(), " ();

" _</ (.’). The above equation gives "(X) _> /"(L) + /"(L’). So L S,,.; or _c S,,. which

is an algebra and therefore contains A(). The restriction of #" is a measure on S,,. and therefore on

A(.). Since/ " (-), i.t"ll The latter is countably additive, so/ l"().

A series of statements using measurable sets lead to an alternate proof of proposition 3.2"

PROPOSITION 4.1. (a) Suppose/ Io() where is normal. If A E and A

where B. , then A S

(b) Suppose iti () where . is normal and countably paracompact. If A and A =fl

where B. E , then A S,.

(c) If E ili" (f) where is normal and complement generated, then/ I$ (). [proposition

3.2.1
PROOF. a. Since A c_ B.’ and is normal, there exists C. and D. in such that

A c_ C.’
_

D. c_ B.’ for all n. So we have A fl Or. fl Dr, f’l Br, Sets of "-measure zero

are in S,,.. If #"(A) 1, then/z"(C,,’) 1; Since " < /z (’), (C.’) and therefore t(D.)

for all n. Now A D and #(D) for all n, so A S,..
b. By normality and countably paracompactness, #’ /" (). If/z’(A) 1, then/z"(A) and

A E S,,. by part a. In this case S,. t3 S,,, N , so A S,,,.
c. We have therefore is countably paracompact and normal and c_ S,,,. Since

S,,, t3 {L t’(L) t(L)}, so ’(L)=#(L) for all L , or /z =/z’ (.), or

Using the regularity of the outer measures, we give

ALTERNATE PROOF FOR PROPOSITION 3.2. If is normal, /z Io(), , E IR(*) and

< v (), then v I,,(’).

PROOF. We have _< v v’ _< ’ (N) and ’ v’ (Se) by normality. Therefore,

U _< " _< ’ v’ v (). Suppose that for {L. }, L,’ . Then L. X or X U L, and

"(X) l:i.m I" (r.) by the regularity of ". So there exists N such that "(L) and

therefore u(L0 for n _> N,’or ,(L,’) 0 for n _> N. Hence v Io(’).

PROPOSITION 4.2. If is normal and a 5-1attice, I(), v E Ia() and t <_ , (N), then

, [ (’).

PROOF. By proposition 3.4a and normality, we have _< " ’ v’ v (). Suppose that

for {L, E N} L.’ L’ E N’. Then L,’ L and "(L0 "(L), or v(L,) ’ v(L), v(L.’) ,(L’). So

v (’).

PROPOSITION 4.3. If # E ili" () and

_
S,,., then/ " () and therefore/z E I,(.).

PROOF. In general, < " (). Suppose that for some L , #(L) 0 and "(L) 1.
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Since 63 /1/ (?), "(L’) #’(L’) /z(L’) 1. But L’ is "-measurable, so #"(L) 0,

contradiction. Therefore, " () or 63 I,(.).

It follows immediately that

COROLLARY. If g 63 () and 5
_
S, then 63 I(.).

PROPOSITION 4.4. If 63 I(), v 63 Io()and # _< v (), then v 63 I,().

PROOF. In general, v _< v" (). By the definition of the outer measures, _< v () implies that

v" _< " (.). Combining, we have _< v _< v" _< " (). Since # 63 I(), " (); therefore

v v" ()or v 63 Is(Y).

Notes on sets in Y which are measurable:

(1) If/x 63 I(.), then S,, n {L 63 " (L)= t’(L)}.

(2) For 63 Io(), 63 il/ (if) if and only if S,,. N {L 63 " (L)= "(L)}.

PROOF. a. Suppose g 63 ilr (if) and L G S,,. O . Using Note 5b on a-smoothness, we get

g"(X) "(L) + "(L’) g"(L)+ (L’); while "(X) (X) (L) + (L’). Therefore

tt"(L) g(L).

b. Suppose g 63 I () and L 63 , /x"(L) t(L). Then tt"(X) #(X) g(L) + g(L’)

g"(L) + g"(L’), hence L 63

c. Assume that a set in is g"-measurable if and only if g" and g have the same value on it. We

will show that g" g’ (). In general, g"

g"(L’) 0 and g(L’) 1, then g"(L) and/.t(L) 0. We have tt "(X) tt"(L’) + tt"(L);

so L $,.. We have g(L) 0 and/"(L) 1, a contradiction.

Recall that g 63 I() if and only if for any L 63 , g(L’) implies that there is a sequence

{L E 3} such that L’
_

flL and/x(l_0 for all n. By contrast, such a condition for/"(L’)

is equivalent to

_
S,."

(3) For tt E Io(),
_

S,. if and only if #"(L’) for any L 63 implies that there is a sequence

{L= E } such that L’
_

flL= and tt(LD for all n.

PROOF. a. Suppose g"(L’) for some L 63

_
$,,.. Then g"(L) 0 and we obtain a

sequence {L= } such that L’

_
flL, and #(LD for all n.

b. Let L . If/.t"(L’) 0, then L’ 63 $. and therefore L 63 $,,.. If "(L’) 1, then

L’
_

flL= for some {L= 63 } and tt(LD for all n. Hence L 63 8,,. by Note (2).
A dual statement for follows immediately if we replace by ’.

(3’) For tt 63 Io(’),
_

$1 if and only if (L) for any L 63 implies that there isa

sequence { 63 } such that L

_
flLn’ and #(’) for all n.

A slightly stronger condition implies that

(4) For # 63 Io(), the condition that if #"(L’) for some L 63 then there exists L EE such

that L’
_

L and I (L) implies that

_
$,,.. Furthermore, g _< I.t"lt{t) () and

I"lt E T. ().
PROOF. a. If g"(L’) 0 for some L 63 , then L’ and therefore L is g"-measurable. If

g"(L’) 1, then there exists L 63 such that L’
_

L and I (L) 1. Take L,, E for all n, then

by Note (3) above, L E
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b. In general, we have p. _< p." (7’). We know that la"l( is a measure on A(.) because. c S,,,, mplies that A(T) c S,,, and " is a msure on S,,,. In this case I) G (if)" if

>"(L’) for some L’ T’, then there exists L g L’ and #"() #(L) 1.

(5) If s complement generated, then 7’ g S .
PROOF. ForL L,’, f(L) ( L,’) 1, then (L,’) for all n; soL S.

When mmi-ptes 6()d 5f c S,,. we will get -regulty for a. # () or b. "associated with Io().

PROPOSITION 4.5. If # (g), . semi-separates 5(3) d g S., then (g).

PROOF. Suppose A . and #(A’) 1. Sinceo (g) and g S,,,, # I() by

proposition 4.3. So there exists {L. .} such that A’ L and #(LO for all n. We have

D L ()andD g A" there exists .suchthatD g g A’bysemi-septeness.

It follows from the definition of >" that "(D) 1; therefore "() () since S. So

IR(-).

A dual stement for follows"

COROLLARY. If (),semi-sepatesfi(’)d G S, then I().

PROPOSITION 4.6. If Io(), semi-separates fi() d G S, then " () d

"1 I ().

PROOF. We have >" () and "I{ is a msure by our previous gument. To s that

"lm I(.), let "(A’) for some A . Then by Note 3 above, there exists {L, }
such that A’ L and ( forM1 n. As in the abovegument, D GL 5() d

D g A’,thereexists E suchthat A’d"() 1.
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