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ABSTRACT. The basis number, b(G), of a graph G is defined to be the least integer k such that

G has a k-fold basis for its cycle space In this paper we determine the basis number of the direct product

of paths and wheels. It is proved that P2 A W,is planar, and b(Pm A W,) 3, for all m > 3 and n > 4.
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1. INTROI)UCTION.

Throughout this paper, we consider only finite, undirected, simple graphs. Our notations and

terminology will be standard except as indicated For undefined terms, see [3].
Let G be a graph, and let el,..., eq be an ordering of its edges. Then any subset H of edges in G

corresponds to a (0,1)-vector (al,..., aq) in the usual way, with a, 1 if e, E H and a, 0 if’e, H.

These vectors form a q-dimensional vector space, denoted by (Z) over the field oftwo elements Z.
The vectors in (Z2) which corresponds to the cycles in G generate a subspace called the cycle

space of G, denoted by C(G). We shall say, however, that the cycles themselves, rather than the vectors

corresponding to the cycles, generate C(G). It is well known that (see [3], p. 39)

dimC(G) 7(G) q p + k, (1.1)

where q is the number of edges, p is the number of vertices, k is the number of connected components,

and 0’(G) is the cyclomatic number of G. A basis for C(G) is called k-fold, if each edge ofG occurs in at

most k of the cycles in the basis. The basis number ofG (denoted by b(G)) is the smallest integer k such

that C(G) has a k-fold basis. The fold of an edge e in a basis B for C(G) is defined to be the number of

cycles in B containing e, and denoted by ft,(e)
The direct product [5] (or conjunction [3])of two graphs G1 (V, El) and G2 (V2, E2) is the

graph denoted by G1 A Gg. with vertex set V Vz, in which (v,u) is joined to (v2,u2) whenever

vlv E E1 and UlU; E E;. It is clear that dClAC (v, u3) dcl (v,) dc (u3), where dH(v) is the degree

ofvertex v in the graph H. Thus the number of edges in G A G2 is 2[Eli [E2 I.
Let P, denote a path with m-vertices, and let W, denote a wheel with n vertices.

The first important result about the basis number was given by MacLane in 1937 (see [4]), when he

proved that a graph G is planar if and only if b(G) _< 2 In 1981, Schmeichel [6] proved that b(k,) 3

for n > 5, and for m, n >_ 5, b(k,.) 4. In 1982 Banks and Schmeichel [2] proved that b(Q,.,) 4,

for n > 7, where Q, is the n-cube In 1989, Ali [1 proved that b(Cm A P,) < 2, and for all m, n > 3,

b(C’ A (7,) 3, where C’ is a cycle with m edges. Next we restate Theorem of [2]



412 A A AL-RHAYYEL

THEOREM 1.2. For any connected graph G,

E [b(G’d(v)] >(girthG) dim(C(G)),
vV(G)

where d(v) denotes the degree of a vertex v.

The purpose of this paper is to determine the basis number of P, A W,. In fact it is proved that

b(P, A W,) 3, for all m > 3. It is also proved that Pg A W, is planar.
2. MAIN RESULTS

In what follows let { 1, 2, m be the vertices of Pm and let { 1, 2, n} be the vertices of
with the vertex of IV,, of degree n 1, and all other vertices of degree 3.

LEMMA 2.1. IfG P2 A IV,, then G is connected.

PROOF. This is clear since W, has an odd cycle, namely a 3-cycle (see [3], p. 25). QED
COROLLARY 2.2. IfG P2 A W,, then dim C(G) 2n- 3.
PROOF. Just apply (1.1) and Lemma 2.1. QED
THEOREM 2.3. IfG P2 A W,, then b(G) 2 and hence G is planar.
PROOF. Consider the following sets of4-cycles in G

E1 {(1,1)(2, i+1)(1, i+2)(2, i+3)(1,1)"i: 1,2,3,...,n- 3}
E2 {(2,1)(1, + 1)(2, i+ 2)(1,i +3)(2,1)" 1,2,3,...,n- 3}
E3 {(1,1)(2,n- 1)(1,n)(2,2)(1,1)}
E4 {(1,1)(2,n)(1,2)(2,3)(1,1)}
E5 {(2,1)(1,n- 1)(2,n)(1,2)(2,1)}

5

Let B I,.J Ea, then IBI 2n- 3 dim C(G). Next we show that B is an independent set of
j=l

cycles in C(G).
It is clear that E1 consists ofn 3 independent cycles, in fact ifC is a cycle in El, then C contains

the edge (1, + 2)(2, + 3), which is not an edge of any other cycle in El, hence C cannot be written as

a linear combination of the rest of the cycles in El. A similar argument shows that E2 consists ofn 3

independent cycles, and clearly each of E3, E4 and E5 consists of exactly one cycle; thus the cycles in
each Ea(j 1 ,5) are independent.

Each cycle of E2 contains the dege (2,1)(2,i + 1) which is not in El, hence E t.J F-,2 is an

independent set of cycles. The cycle E3 contains the dege (1, n)(2, 2), which is not in E t_J E2, hence

E1 t.J E2 t.J E3 is an independent set of cycles. The cycle E4 contains the dege (2, n)(1, 2), which is not

in/Yl 1.3 F-,’2 I..J/3, hence/1 t.J E,’2 U E3 I..J/4 is an independent set of cycles. Finally it is clear that the
5

cycle E cannot be written as a linear combination of the cycles in [,J Ej. Hence B I,.J Ej is an
j=l .7=1

independent set ofcycles in G, and, since IBI dimC(G), B is a basis for C(G).
Next, we show that B is a 2-f01d basis of C(G). Notice that if e is an edge ofE E t3 E3 t2 E4

ofthe form {(1, 1)(2,i + 3) 1 n 3} then rE(e) 2, and ires, is an edge orE, which is not of
the given form, then rE(eL)= 1. Moreover, if e is an edge of E, E2 t3 E5 of the form
{(2,1)(1, + 1) 1,..., n 2}, then fz(e) < 2, and ifeL is an edge of E,, which is not ofthe given
form then fE (eL) 1, now clearly the edges of the above two forms are disjoint, hence fB(e) < 2 for

any e E G; thus b(G) < 2. Now b(G) > 1 because each cycle must have at least 3 edges, which is more

than the number ofedges in G. Thus b(G) 2, and hence G is planar.
REMARK 2.4. IfG P, A W,, then for all m > 3, n > 4, we have:

dim C(G) 3m 4(m + n) + 5.

THEOREM 2.5. IfG Pr ^ W,, then for all m > 3, b(G) > 3, and hence G is 3onplanar.
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PROOF. lf b(G) < 2, then by Theorem 2, we have

d(v)> [b(Gd(v) > (girthG)dim(e(G)),

where, d(v) is the degree of the vertex v, hence

2IE(G)I > 4[IE(G)I- nm + 1], (girthG 4)

ie,

0 >_ 2IE(G)I- 4nm / 4,

Now ifwe evaluate and divide the inequality by four we get:

0 > ran- 2m- 2n + 3 (m- 2)(n- 2) 1,

and since n > 4, we have

1 _> (m- 1)(n- 2) _> 2(m- 2).

Hence m 5 2.5 < 3, thus we conclude that ifm > 3, then b(G) _> 3, hence G is non planar. QED
TI-IEOREM 2.11. IfG =Pm A Wn, then for all m > 3, b(G) 3.

PROOF. The plan here is to give an independent set of cycles B in C(G), such that ]B dim

C(G), and to show that B is a 3-fold basis for C(G) To this end consider the following sets of 4-cycles
in C(G) for k 1, m 1, let

Ek {(k, 1)(k + 1,i + 1)(k, + 2)(k + 1,i + 3)(k, 1)" 1,...,n 3},
Ekg {(k + 1, 1)(k,i + 1)(k + 1,i + 2)(k,i + 3)(k + 1,1)" 1,...,n 3},
A, {(k, 1)(k + 1,n- 1)(k,n)(k + 1,2)(k, 1)},

A,/, {(k, 1)(k + 1, n)(k, 2)(k + 1,3)(k, 1)}, and
A,/,,, {(k + 1,1)(k,n 1)(k + 1,n)(k,2)(k + 1, 1)}

And for k 1,..., m 2, let

Dk {(k + 1, 1)(k + 2,i + 1)(k + 1,i + 2)(k, + 1)(k + 1,1)" 1,...,n 2}

and

D/, {(k + 1,1)(k + 2,n)(k + 1,n- 1)(k,n)(k + 1,1)}

Let

Fk Ek U EkL U Ak U AkL U Ak, (1, 1, m 1).
m-1 m-2

F F, H Dk U DkL (k I, m 2), H= H, and let B F U H. Then
k=l k=l

IBI IF] + [el (m- 1)(2n- 3) + (m- 2)(n- 1) 3m- 4n- 4m +5 dime(G).

For each k 1, m- 1, notice that Fk is just a copy of the cycle basis of P2 A W, (with
(k, k + 1} as vertices of P2), hence the cycles in each F are independent, and since Ft is just a copy of

the cycle basis of b2 A W (with {e,g + 1} as vertices of P2), then it follows that If k g in

{ 1, m 1), then the cycles in Fk are edge disjoint from the cycles in Ft, hence F is an independent set

of cycles.
Consider H, for each k 1, m 2, it is clear that the cycles in H are edge disjoint, hence Hk

is an independent set of cycles. Moreover, if k : e in {1, m- 2}, then the cycles in H are edge
m--2

disjoint from the cycles in He, hence H I,J H s an independent set of cycles Now if C is any 4-
k--1

cycle in H, then C belongs to H for some k, and clearly C consists of two edges in F, and two edges in
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Fk+l, hence C cannot be written as a linear combination of cycles in F, hence B F U H is an

independent set of cycles with IBI dimC(G) Thus B is a basis for C(G).
It remains to show that B is a 3-fold basis for C(G), but this is clear since if e is an edge of G, then

it follows from the result when m 2 that fF(e) < 2, and fn(e) < 1, hence fB(e) < 3 (i e., b(G) < 3).

Now combining this with Theorem 2 5, we see that B is a 3-fold basis for C’(G) QED
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