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ABSTRACT. Let X be an arbitrary non-empty set, and a lattice of subsets of X such that

3, X E/2 .A() denotes the algebra generated by and I() those zero-one valued, non-trivial, finitely
additive measures on .A() /o() denotes those elements of I() that are a-smooth on , and In()
denotes those elements of I() that are -regular while I(/2) IR(/:) N Io() In terms of those and

other subsets of I(), various outer measures are introduced, and their properties are investigated Also,
the interplay between the measurable sets associated with these outer measures, regularity properties of
the measures, smoothness properties of the measures, and lattice topological properties are thoroughly
investigated- yielding new results for regularity or weak regularity of these measures, as well as

domination on a lattice of a suitably given measure by a regular one Finally, elements of Io (/2) are fully
characterized in terms of induced measures on a certain generalized Wallman space
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1. INTRODUCTION.
Let X be an arbitrary non-empty set, and/2 a lattice of subsets of X such that X, 0 E E..A(/2)

denotes the algebra generated by E, and I(/2) denotes those zero-one valued, non-trivial finitely additive

measures on t(/2) /o(E) denotes the set of# E I(E) that are a-smooth on/2, that is, if L, E E, for all

n, and if L, J. 0, then#(L,) 0. J(E) denotes the strongly a-smooth elements of I(E), that is, those

# I(E) such that if L, + L, where L,, L E/, then #(L,) #(L). I(E) denotes those # E I(E)
which are a-smooth on .,4(/2), which is equivalent here to # being countably additive In(E) denotes
those # E I(E) which are E-regular, and In(E)NIo(E)= IT(E Further specialized subsets of

measures are introduced in Sections 3 and 4

Associated with these measures are certain outer measures (finitely or countably subadditive) #’, #",
/2, We investigate the behavior of these outer measures on both E and/2’, the complementary lattice

to/2 and other related lattices to characterize the various specialized sets of measures, and thereby extend

the results given in [5,6,7] We also consider the interplay of the lattice/2 with the measurable sets of

some ofthese outer measures

tn Section 4 we use these results to obtain conditions for a # G [o(/2) or J(/2) to be dominated on/2

by a u I7( or to be equal to a u I(/2) Since some of these results can be expressed in terms of

generalized Wallman spaces, we close Section 4 with a brief look at one of these spaces
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We give a review in Section 2 of the notation to be used, and of some standard lattice-measure
theoretic results. Related matters can be found in [2,4,5,6]
2. BACKGROUND AND NOTATIONS

In this section, we introduce the relevant notation and terminology that will be used throughout the

paper. All of this is fairly standard and is consistent with [1,3,6,8]; we include it for the reader’s

convenience. We also include in this section several recent results as well as several new results

pertaining to various induced outer measures.

X will denote throughout, an arbitrary non-empty set, and a lattice of subsets such that , X E E.
.A(E) will denote the algebra generated by E, and I() those non-trivial zero-one valued, finitely additive
measures on .,4 (E).

Io() denotes those elements of I() that are a-smooth on , namely, if # E Io() then L, I 0,
L, E, implies #(L,) 0. J() denotes those elements ofI() that are strongly a-smooth on , i.e.,

if L, t L, where L, E and L /2, then #(L,) #(L). I(a) denotes those # I() which are a-

smooth on .A() or, equivalently, are countably additive. In() denotes those # E I() which are -regular, namely

#(A) sup{#(L)lL C A, L },
where A A(). It is easy to see that if# Io() and if # In(f-.), then # E I (); we denote these
elements by I().

For # I(), ,S(#) denotes the support of#, and is given by

8(#) (L I#(L) 1}

Next, we denote by the complementary lattice of, i.e., ’ {L’[L }, and where the prime
stands for complement.

6(): lattice of all countable intersections of sets of. is a delta lattice if 6() , i.e., if is

closed under countable intersections. Now, for # 1(), define for any set E C X

#’(E) inf{#(L’): E C L’, L E }.

Clearly, #’ is zero-one valued, #’(X) 1, #’(O) 0, #’ is monotone, and #’ is finitely subadditive. We
will sometimes refer to #’ as a finitely subadditive outer measure. Similarly, we define (g) by taking
the coveting class to be instead of’.

Also, let

#"(E) -i #(L’,) E C L’,, L,
_

Then #" is a zero-one valued outer measure with #"(X) 1 if # Io(E). We note, if # Io(), then
there exists a sequence L, , L, , and #(L,) 1 all n; hence, UL X and #(L) 0 all n, so,
#"(X) 0, and consequently, #" 0. For this reason, when dealing with #", we usually assume that

# Ia(). Likewise, we can consider where the countable covering class is now taken to be E.
Clearly, analogous statements hold for .

We will write for either measures or outer measures # _< v() if #(L) _< v(L) for all L e . It is
now easy to see that if# e Io(), then

# _< #" _< #’() and #" _< # #’(’). Also, (2.1)

_< # p _< #" _<//(). (2.2)
And if# 6 ]o(’), then

#" _< # #’
_

_< (’). (2.3)

We recall that if v is an outer measure (finitely subadditive or countably subadditive), then
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the P-measurable sets {E C XIu(G) u(G A E) + u(G E’)} for all

G c X We then have for # E I(/:)

8,, {E c XIE z L ,#(L) or E’DL6,#(L): 1}

For $, we need just replace L by L’ and by ’.
Next, for # E Io(),

S.,, {E a X[E D 0 L.,Ln E ,#(L.) 1,
n:l

all n

or E’D N L,,L,.,e,#(Ln)=I, all n}.

The corresponding statement for ,_q is clear

Various lattice topological properties such as compact, countably compact, normal, regular, etc.

have been characterized in a measure theoretic way, see [6]. We note a few of these here, but, instead,

give characterizations in terms of the above outer measures.

(a) is T2 ifffor any # I() one ofthe following is true"

(i) #’({x}) 0 for all x X

(ii) #’({x}) 1 for some x X, and U’({Y}) 0 for all y :/: x, y E X

(b) is compact ifffor any # I(), there exists an x X such that #’((x}) 1.

(c) /: is regular iff for any # I(/:), $(#) S(#’), where S(#’) is defined in the obvious way with

respect to .
(d) /: is normal ifffor #,u I(), # <_ u() then #’ u’().
(e) /2 is countably compact iff for every # E I(E), #" 0.

The following theorem (b,c) is generally well-known, see [4], and we just state it without proof;
while (a) is clearly true.

THEOREM 2.1.

(a) If# I(), and if/: is countably compact then #" #’(/:).
(b) If# Io(/:), and if/: is 6-lattice which is normal then #" #’(/:).
(c) If# Io(/:), and if/: is normal and countably paracompaet (c.p.), then #’
The next theorem is less well-known in the form given, so we provide a proof.
THEOREM 2.2. If 2 is complement generated (e.g.) and if# E Io(/:’) then # #’ (/:) which

implies # E I(/:).
PROOF. # Io(/:’) implies that # E Io(/:) since/: is complement generated, and, therefore c.p.

Thus < # _< #" _< #’(/:) v (2.2). Suppose there exists an L /: such that (L)= 0, and

#’(L) 1. Since/: is c.g., L [") L, L, /: for all n. Then (L) I all n. From which we get
n--1

that (L’)=0, but (L)=0. Hence, (X)=0, a contradiction, since # Io(/:’). Thus,

’() which clearly implies that # I(/:).
The following theorem is known (see [4]).
TIIEOREM 2.3. If# /(/:) then #" #’= #(’)iff# J(/:).
Replacing/: by ’, we have that if# Io(/:’) then # (/:) iff# E J(/:’). Clearly, such dual

statements can be obtained in general, and we will not bother to point this out in the future except for

certain important cases.

We close this section with a simple but useful observation, namely,

Io(/:’) C Io(/:) ifffor all # e Io(/:’), <_ "(/:) (2.4)

Indeed, if Io(/:’) c Io(/:), then _< # _< #"(/:) by (2.1).
#"(/:), then 1 (X) #"(X), and #

Conversely, if for # E/(’),
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3. APPLICATIONS OF THE ASSOCIATED OUTER MEASURES
We continue in this section to study the applications of#’, #", and We first recall from [5].
DEFINITION 3.1. # E Is(E) if # E/o(E), and #(L’) 1, L E, implies there exists L,, E,

n 1,2,... such that #(L,) 1, all n, and L’ D L,,. Such a measure # is often referred to as being
n-1

slightly regular It is known that (see [5]).
THEOREM 3.1. (a) If# Is(L) then E c S,,, # #"(E) and # I(E).
(b) If# #"(E) then E c S,,, and # E Is(E).
We continue in this spirit. First we show

THEOREM 3.2. Let # Io(E) n Io(.). Then #"(E) implies that

PROOF. Let L $ n z;. Then by the hypothesis and by (2.3),

(X) (L) + (L’) _> #"(L) + #"(L’) _> #"(X)

But (X) #"(X) #(X) since # /o(E) n L(z:’), and bythe regularity of#", L S,, n.
REMARKS 3.1. We recall that an outer measure v (finitely or countably subadditive) is regular if

for any E C X there exists an M E S, such that E C M, and v(E) v(M). Clearly, if v is just zero-

one valued, then v is regular.
THEOREM 3.3. # Z,(E) implies that #" <_ , and, consequently ,.q C S,,.
PROOF. Let E C X, and #"(E)= 1. If (E)= 0, then there exists A, E such that

E C U A,, #(A) 0 all i. Since # e In(/:), #(A,) 0 implies

A, C L’, e E’, #(L’,)= 0.

Therefore, E c U n:, #(n:) 0, so, #"(E) 0, a contradiction. Thus, #" _< .
The following theorem is easy to prove, and we will just state it.

TIIEOREM 3.4. # J(E) if and only iffor L,., E, L, , (L,) inf #(L,., ). If, however,

# e Is (E), we have:

THEOREM 3.5. # Is(C) implies L) inf (L), where L , L , and

(()).
PROOF. Since # Is(C), # I(E) by Theorem 3.1(a). Hence, # J(/) iq d(’). Thus,

# () since # d(’), and since

# J(.), n L,) inf #(Lr,) >_ inf (L,.,),

using Theorem 3.4. Now, in general, <_ . We show (6()). Suppose (if)L,’)= 0, but
VI /

L,, 1, L. . Then L, C A,, A, : and #(Am) 0 all m. But #(L,) 1 sinCe

(n L,)-- 1. Thus,

U ’o VIA’ , 0

Consequently, #" A 0 which implies here that 1 #" U A,) _< #"(A,).

Hence, #"(A,)= 1 for some m. But #"(A,)=#(A,) sine #Is(E). However,
#"(A’,) #(A) 1, all m, sine # J() (see Theorem 2.3). Thus, we have a contradiction, and,
therefore, (6(E)), and clearly, n Lr,) inf (Lr,).

The following results are generally well-known, and we list them for completeness:
If# I(E), then

S., n (L c : #(L) #’(L)} (3.1)
If# J(:), then
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Su" 71/2 {L C I#(L) #"(L)} (3 2)
If# Io (/2), and if

$,,, {L c I#(L) #"(L)}, (3 3)

"then # J (/2)
We extend some of these results to the following
THEOREM 3.6. If # /(), then/2 C $,, if and only if for every L /2, #"(L’) 1 implies

L’ D (] L,, L, /2, #(L,) 1 for all n

PROOF. (a) Suppose # /0(/2) To show that/2 C $,, under the above hypothesis, we need just

consider two cases If #"(L’) 0, where L /2, then, trivially, L ,S,, If #"(L’) 1, then L’ D
L,, L, /2, #(L,) 1, and L S,, by the results of Section 2.

(b) Conversely, if c S,,, then again by Section 2, either

LD 9]L, L+ L,

and #(L,) 1, all n, or L’ D N L,, Ln J., L, , and #(L,) 1, all n. Now, if #"(L’) 1, then, in

the first case, L’ c U L’,, #(L’,) 0, all n, so, #"(L’) 0. Hence, the second case must hold which

completes the proof.
As an immediate consequence, we get
COROLLARY 3.6. If# J(/2) and if/2 c Su,, then # Is(
Next, we recall (see [4])
DEFINITION 3.2. # Iw(/2) (weakly regular) if # I(/2), and if #(L’) 1, L /2, implies

L’ D , /2 such that #’() 1

Clearly, In( c I,(/2). It is not difficult to show that if/2 is normal, then Lo() In(
We now establish the following:
TIIEOREM 3.7. If 6(/2’) separates , then # Io(L’) 711w(/2) implies that # In().
PROOF. Suppose #(L’) 1, where L /2. Then L’ D , /2 with #’() 1, since # Iw().

Therefore, since 6(/2’) separates /2, there exists A,, B /2 such that L C I"]A’,, C f"lB, and

["l (A’, 71B) 0 (may assume + ). Thus, since # Io(/2’), #(A’, N B) O, n, m > N. But

#’() 1 implies that #(B’) 1, all m So, #(A’,) 0, n _> N. Consequently, #(A,) 1, n _> N,
and A, c L’. Therefore, # In( This completes the proof.

I)EFINITION 3.3. /2 is slightly normal if # Io(/2’), # < t,1(), # < u2(/2), where Ul,

u2 6 In( implies ul u2.

THEOREM 3.$. If6(’) separates , then is slightly normal.

PROOF. Suppose # Io(’), # < u1(),/.t _< u2(), where Ul, t,2 IR(). Suppose ul :/:
Then there exist L, , such that ux(L)= u2(f-,)= 1, and u(f_,)= u2(L)ff 0, and L71f_,
Also, by hypothesis, there exist L,, Z k where Lt, -,

k
, all i, k, such that L C L’,, Z C Lk,~’ (and

may assume L’, and ’k ), and =,(71 L) 71 (3 ,k). Now, since ux(L)= 1, and # < r’1(/2), then
#(L’,) 1, all i, and similarly, #(,k)= 1, all k. Therefore, #(L,Nk)= 1, all i,k, but

L’,Z’, . Hence, we have a contradiction, since # Io(/2’). Therefore, t,1 t,2, and consequently,

E is slightly normal. This completes the proof.
DEFINITION 3.4. /2 is almost normal, if A, B /2 and A B implies there exist A: T,

A, such that A c I,.J A’, and there exists B, with A’, C B,, all and B, f3 B 0, for all i.

NOTE. It is not difficult to show that if/2 is a delta lattice, and if/2 is almost normal, then/2 is

normal.

We now show the following:

TItEOREM 3.9. Let/2 be almost normal. Suppose # 1(/2) and # _< t,(/2), where u I(),
then t/’ =/.t" (/2).
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PROOF. Since # _< v(), v" _< #" everywhere, and consequently, v" _< #"(/2) Let L E be
such that v(L)= v’(L)=0 Then v(L’)= 1, and therefore, L’ D , E‘ with v()= 1, since

v I,() Therefore, (by Definition 3 4), there exists A, such that , c U A’,, A’, " A, , and there

exists B such that B,c,A’,cB,, all i, and B, t3L=0 So, for some io, v(A)= 1, i>_io

Therefore, #(A,) 1, for all >_/0 Consequently, #(B) 0, all/_>/o Hence, #(B) 0, >_/0.

But, L C B, for all Therefore, #’(L)= 0 Therefore, #"(L)= 0 Hence, v’= ff’(E‘). This

completes the proof.
We can extend this result even further. First, recall (see [5])
DEFINITION 3.5. # Iv(L;) (# is vaguely regular) if# E Io(), and if

#(L’) 1, L ,
then L’ , , and #"(,) 1. Clearly, I,() C/() C/(L;), and it is easy to see that

L,(/:) c J(E‘) With appropriate modifications, it is now easy to extend Theorem 3.9.

THEOREM 3.10. Let E‘ be almost normal. Suppose # I(/:) and # _< v(E‘), where v Iv(E).
Then v" #"()

THEOREM 3.11. If v E J(E‘), and if # _< v(), and if E‘ is normal and semi-separates 6(), then
,,- #,,().

PROOF. Since v J(), it is not difficult to see that we can extend v uniquely to J(6()), and we
denote the extension by v again. Now, # <_ v _< v" _< #’(). Since L: is normal, we have (see Section
2) v’=#’(L). Suppose LL and v’(L)=O. This implies that LcL,L,ffE‘, all n, and

v(L’n) O, all n. Therefore, L’ D L,, v(L,) 1, all n, and consequently, v L, 1.

Now, L, 6() and since semi-separates 6(E‘), there exists A E such that L N A and
A D f"l L,. So, v(A) 1, v(A’) 0 and L C A’ implies v’(L) 0. Whence, #’(L) 0. But #" <

everywhere, therefore, #"(L) 0. Hence, v" #"(E‘). This completes the proof.
As a final observation in this section, we note that the measures of Is(E‘) are maximal in the

following sense. Let # <_ v(E‘), where # E Is(E‘) and v /(E‘). Then v Is(E.). This is clear since

# <_ v <_ v" <_ #"(E‘) (see (2.1)), but # #’(E‘) since # Is(E.) (by Theorem 3.1). Hence, v

and therefore, v Is(E‘). Moreover, if#l </.2(L), and 1, 2 IS(E), then/z P’2 as is easily seen.

This has the following consequence. Let # Is(E), then there exists a v IR(L) such that # <
Now if L is normal and c.p., then v IR(E), and, consequently, # v. Hence if E‘ is normal and c.p.,
then Is (L) I(E).
4. FURTHER APPLICATIONS ON REGULARITY.

In this section, we consider applications ofthe associated outer measures to regularity properties.
If# I (), and, for E C X, we define the usual induced outer measure:

#*(E) in/ #(A,) E C A,, A, .A(E‘)
t=l

We note trivially that if # I,(E‘), then #*= #", and if, in addition, is a delta lattice then

#* #" #.
We consider those # Io(L) which satisg, the following condition:

(i) #"(L’) 1 implies there exists an , C L’ with #() 1, where L, E‘.
THEOREM 4.1. Let # Io(E‘), and let # satisfy condition (i) Then E‘ C ,S,n and

#"l(z:) I(E‘).
PROOF. Suppose # Io(E‘), and # satisfies condition (i). Then if L E‘, and if #’(L’) 0 then

L’ ’-qu". Therefore, L 8u-. Also, if #"(L’) 1 then L’ D E‘, and #() 1, by condition (i),
but L’D E‘ and #()= 1 implies L ,Su, C ,Su,. Therefore, E‘ C "-qu", and consequently,



OUTER MEASURES. MEASURABILITY, AND LATTICE REGULAR MEASURES 3/49

#"l.a!C; E I(E) and # < #"() Also, #"(L’) 1 implies L’ , () 1, Hence,

"(L) 1 and "IA I()
For Io (), we also consider the following weaker condition.

(ii) "(L’) 1 implies there exists C L’ with "( 1, where L,
We then have
THEOM 4.2. If Io() and if C S,,, then "lc) I(), and if satisfies condition

(ii), then #"1() I()
PROOF. The proof is clear

In the same spirit, we have
THEOM 4.3. If# Io(E), and ifE c S,, and ifE semi-separates (), then #"lA(c)
PROOF. Suppose # Io(E), E C S#-, E semi-separates (E) and #"(L’) 1, L Then

#"(L) 0, since E C S, Therefore, there exists L such that L C U Lt and #(L’) 0, all n.

Hence, L’ 3 L, #(L) 1, all n. By semi-separation, L C E, d L O Therefore,

#"(L) 1 and #"(L) 1, since E C S#,. Thus, #"(Z) 1. Now # #"lc I(E) clearly.

COROLLARY 4.3. If# d(), and ifE C S#,, and ifE se-separates (E), then #
PROOF. We note that this follows easily om Corolla 3 6, Theorem 3 (a), and Theorem 4 3.

Next, we note some measurability conditions.
THEOM 4.4. (1) Let # Io(Et) and let A E and A B, B E. Then A S.
(2) Let # Io(E), and let be nodal Then if A E, and if A B, B, , all n. Then

PROOF. (1) If (A) 0, then, clearly, A S. Suppose (A) 1. Then #(A) 1 since

#(E) (by 2.2, Section 2). Now, A B, and A c Bt, all n, d #(A) 1 implies #(B’) 1,

all n. Therefore, A S.
(2) Suppose #Io(), and E nodal. Suppose A= B,AE,B, fll n. Now, if

#’(A)=0, then we’re done; while if #"(A)= 1, then #"(B)= 1, all n. By nobility,

A C Ct c D C B’, C, D , fll n. Therefore, A D,, d #"(A) 1 implies #"(C’,) 1.

Hence, #(Ct) 1 (since #" #(t)), d consequently, #(D,) 1, all n. Thus A S#, (see Stion

2). Ts completes the proof.. We note, by p of Theorem 4.4, that if # Io() d if is c.g., then c S.
so, if # Io(E) d if is e.g., then it is easy to see that condition (ii) is satisfied, wch gives
fltemate approach to Theorem 2.2.

We conclude ts section th some remEks on the Wfllm space I(), V(). We recfll (see [2]),
for A A(C), V(A) {# I(C) #(A) }. Then for

A,B A(): V(AUB)= V(A) UV(B),V(AOB)= V(A) O V(B),
V(A’) V(A)’ d V(A) c V(B)

ifand oy ifA C B, V(())= (V()), where V()= {V(L)IL }.
For # I(), we define a set nction on (V()) by (V(A)) #(A) for A (). Ts

sets up a bijtion between I() d I(V()).
From the above, it readily follows that V() is a base for the closed sets of a topolo, rV()

designates the closed sets ofthe topolo and consists ofl bitr imersections of sets ofV(). Then

I() th ts topolo is compact, T0.
Now, we denote, for z X, by #, the Dirac measure concentrated at z, e.,

1 if
(A)= 0 if xA where A()



3 50 PONNLEY

If is To then the map :r #x. embeds X in I() We assume now that ; is To. and we have:

THEOREM 4.5. (1) If # E Io(), and if n V(L,) C I() X, where V(L,) .L, L, , then

-fi(V(L)) 0

(2) # E J() implies J(V())
(3) # E I(.), then-fi’(V(L)) #’(L)
PROOF. (1) Let # Io(.), and let [’] V(L,) c I() X, where L, , and V(L,) .. Then

clearly L, $ 0 and -(V(L,)) #(L,) O.

(2) Let # J(;) and let V(Ln) V(L) where L,, L then L, L, and consequently,

-fi(V(L.)) #(L) #(L) -fi(V(L)).
(3) The proof is clear.

Since V() is a compact lattice, it is certainly c c and, hence,

I(V()) =/(V()).

Thus, to obtain a characterization of those # E Io(E) in terms of the associated g, we must look

elsewhere.
In fact, we have:

THEOREM 4.6. (1) Let # E I(..). If’( N V(L,)) 0, for all t V(L,) C I(E) X, where

V(L,) , L, E , then # E Io (), and L, E St‘, for all n sufficiently large.

(2) Conversely, if # E Io(), and if t V(L,) C I(.) X, where V(Ln) , Ln E E, and if

L 6 St‘, for all n _> N, then g’( N V(L,)) O.

PROOF. (1) Let L,E, and L,O. Then fV(L,)CI()-X and V(L,)].. Thus,

’ V(L,)) 0. Hence, there exists

L , V(L) C V(L)’ -fi(V(L)’) O -fi(V(L)) I #(L) I #(L’) O

Now f V(L,) f V(L) 0. Hence, V(L, N L) 0 implies that V(L, L) O, n >_ N. since

V(E) is compact. But, V(L, t L) O implies L, L J. Whence, L, C L’, n _> N and #(L,) 0,
n > N. Therefore, # E Io(), and L, C L’, n _> N, #’(L,) _< #’(L’) #(L’) 0. So, #’(L,) 0,
n _> N, and L 6 St‘,, n _> N. Hence, # Io (f..), and L, St,, n >_ N.

(2) Suppose -fi’( V(L,)) 1. Then -fi’(V(L,.,)) 1, all n. But, then #’(L,) 1, all n (Theorem
4.5 part (3)). But /(L,)= #(L,), for n _> N, by (3.1). Therefore, #(L,)= 1, all n _> N, a

contradiction, since # Io (). Therefore, ’ C] V(L,)) 0. This completes the proof.
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