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ABSTRACT. The Hyers-Ulam stability of mappings is in development and several authors

have remarked interesting applications of this theory to various mathematical problems. In this

paper some applications in nonlinear analysis are presented, especially in fixed point theory.

These kinds of applications seem not to have ever been remarked before by other authors.
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INTRODUCTION

In 1940 S.M. Ulam posed the following problem Given a group G, a metric group (G2,d) and

a positive number e’, does there exist a 5 > 0 such that if f:G -G: satisfies

d(f(xy),f(x)f(y)) < t for all x,y GI, then a homomorphism T:G - G exists with

d(f(x), T(x)) < e for all x,y G (cf [26], [27]).

The first affirmative answer was given by D.H. Hyers [9] in 1941 and a generalization of Hyers’

result was obtained by Th.M Rassias [24] in 1978. Several papers have been published on this

subject and some interesting variants of Ulam’s problem have been also investigated by a

number of mathematicians (cf. [11],[13],[10],[12],[15],[16],[$],[6],[23]). The concept of the

Ryers-Ulam stability of mappings was thus created and it is now currently used in the spirit

of Ulam’s problem. We note that till now the Hyers-Ulam stability has been mainly used to

study problems concerning approximate isometries or quasi-isometries, the stability of Lorentz

and conformal mappings, the stability of stationary points, the stability of convex mappings, or

of homogeneous mappings, etc. (cf. [11], [12], [23], [6]).
In this paper we intend to introduce another way for future applications of this theory. We will

apply some stability results, obtained recently, to the study of some important problems in

nonlinear analysis For example, the existence of fixed points on cones for nonlinear mappings,

the study of eigenvalues for a couple of nonlinear operators and the study of bifurcations to the

infinity, with respect to a convex cone, of solutions of the Hammerstein equation.

In nonlinear analysis it is well known that finding the expression of the asymptotic derivative of

a nonlinear operator can be a difficult problem In this sense, in this paper it is explained how
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the Hyers-Ulam stability theory can be used to evaluate the asymptotic derivative of some

nonlinear operators.

Since, by the Hyers-Ulam stability we come to find the expression at every point of the

asymptotic derivative of some nonlinear operators, we succeed in finding interesting

assumptions for new fixed point theorems and for some new existence theorems

The nonlinear problems considered in this paper have been much studied by several

mathematicians (cf. [1],[2],[3],[5],[7],[17-22],[25],[28],[29]) but the idea to use the Hyers-

Ulam stability theory for the study of these problems had not appeared earlier in the

mathematical literature.

PRELIMINARIES

Let E be a Banach space. We denote by S the set S= {x E[IIII 1}. A subset K cE is said to

be a cone if it is closed and satisfies the following properties:

!) K + K
_
K, 2) M(

_
K for all 2 R. and 3) K(-K) {0}. We denote by K" the dual of

K, e. K" {p E’}C(x) > 0 for all x K}. Each cone KcE induces an ordering on E by

x <_y ::,y- x K. If in E a closed cone is defined, we say that E is an ordered Banach space.

A cone K E is said to be generating if E K-K and it is said to be normal if there exists

t>_l such that for every pair x,y eK,[I< or+.[. W’e say that a cone KE is solid if its

topological interior is non-empty. The cone R. is solid. Let E CR($2 be the space of all

continuous functions from .O into R with the max-norm, where O is a topological compact

space. The cone C, (.t2)= {xr(t)> 0 on .t2} is solid.

The cones L:(X2)= {x Le(.f2x(t)>_Oalmosteverywhere} and 13 {x le{x, >_0 forall i} con-

sidered in if(.(2) and in /e respectively are not solid if l_<p<oo. We call a point x cK a

quasi-interior point if (xo)>O for any non-zero K’. If the cone K is solid, then the

quasi-interior points ofK coincide precisely with its interior points. There exist non-solid cones

but with quasi-interior points. For example, if K is the cone of nonnegative functions in

ff(.f2Xl<p<o), its quasi-interior points are the functions, which are positive almost

everywhere; similarly in the space leo < p < oo) the quasi-interior points of the cone K of all

nonnegative sequences are these sequences with only positive components. We denote by

L(E,E) the set of linear bounded operators from E into E. It is well known that for every

T L(E,E) the spectral radius r(T) is well defined, where r(T) rnax{l,[I, cr(T)} and a (T) is

the spectrum of T. We say that T ,L(E,E) is strictly monotone increasing if for all x,y E

such that x < y (i. e., x _< y and x * y) we have TO’ T(x) int(K). Let D cE be a bounded set.

Then we define :D) the measure of noneompactness of D to be the minimum of all positive

numbers such that D can be covered by finitely many sets of diameter less than 6’. A mapping
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f E--E is said to be a k-set-contraction if it is continuous and there exists k eR such that

for every bounded set D c dom(f), 7:(f(D)) <- k’(D) A mapping f E--> E is said to be a strict-

set-contraction if it is a k-set-contraction for some k < An appropriate reference for the

measure of noncompactness is [4] A mapping f E--)E is said to be compact if it maps

bounded subsets of dora(f) onto relatively compact subsets of E and f is said to be completely

continuous if it is continuous and compact Every completely continuous mapping is a strict-

set-contraction

Let K be a generating (ortotalie E=K-K) cone inE The mapping fK--E is said to be

asymptotically differentiable along K if there exists T L(E,E) such that

m Ill (x)ll__0

In this case T is the unique such mapping and we call it the derivative at infinity along K off
.We say that a mapping fE E is asymptotically close to zero along K if

lim llf(r)ll= 0.
xK

Let .R. --+ R_ be a function such that O(t) > 0 for all _> y’, where ), R+ We say that /’:K--) -is 9-asymptotically bounded along K if there exist b,c R+ \{0} such that for all x K, with

I111-> , we hv

I:(ql-< cl/I).
An interesting spectral analysis of (0-asymptotically bounded mappings can be found in [28].

Every asymptotically bounded mapping (along K) such that lim t)= 0 is asymptotically

close to zero.

IfK is a generating (or total) cone in E, then a mapping f:K- E is said to be differentiable at

x K along K if there exists f’(Xo) eL(E,E) such that

lim
I:(x + x)- f’( o)rll o.- I!11

In this case f’(Xo) is the derivative at x0 along K off and it is uniquely determined

THE MAIN RESULTS

Let El, E2 be real normed vector spaces The following definition was introduced in 15].

DEFINITION 1. For a given functton :R/ -- R, we say that a mapping fE- E:is W-

addtttve if and only tf there extsts a constant 0 > 0 such that

I:( /y) f(r) f(y)ll <- o[,(1111)+ :(ILll)] for all x,y E
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If the function {p’ satisfies the following assumptions:

i0) lim g(t-) 0

, gl(ts) <_ g/(t)(s) for all t,s R.,

,.) g/(t)<t forall t>

then we have the following result proved in 15]

TI:IEOREM 1. Consider E to be a real normed vector space, E2 a real Banach space and

f.E --> E: a mapping such that f(tx) ,s continuous m for each fixed x. Iff ,s Ip’-addtttve and

Ip’ satisfies the assumptions io), ,) and i2), then there exists a unique hnear mapping

ZE, --> E. such ,hat If(x)- T(x)l <
20 l//(l[rtl) for all x E. Moreover the express,on of T2- (2)

at everypomt x E, is T(x)= lim
f(2"x)

The class of functions which satisfy the assumptions i0), i) and iz) is not empty. In this sense

w.e can cite the following functions

) g/(t)= with p [0,1),
Oift=O

2 ’t’=[t’( ift>0, wherep< 0.

To enlarge the class of functions /such that the conclusion of Theorem remains valid we

consider the following:

Let F,, be the set of all functions g from R. into R/ satisfying the assumptions i) and i2) and

such that lim g/(t) 0. Let P( be the convex cone generated by the set F. We remark that

a function g/P() satisfies the assumption i0) but generally does not satisfy the assumptions

i) and i2). However, we will show that Theorem remains valid for g-additive functions with

g P(). Let E, and E= be normed vector spaces and f’E -+E= a mapping. The following

result is a consequence of the principal theorem proved by P. Gavruta in [8].

LEMMA. If ):E, x E, --> [0,+oo) is a mapping such that (x,y):= E 2- (2"x,2 y) < +m for
k=0

all x,y eE, and f:E, --> E is a continuous mapping such that [[f(x + y)- y(x)- y(y[ <_ (x,y),

for all x,yeE,, then there exists a unique linear mapping T:E,--+E such that

]If(x)- T(x] < -(x,x) for all x E. Moreover T(x)= lim for all x E.

A consequence of the Lemma is the following result.

TlqEOREM 2. Let E be a real normed vector space, E a real Banach space and f’E, --> E
a continuous mapping. Iff is [-additive with P) then there exists a unique linear

mapping T:E, -- E= such that I/’(x)- T(x)ll < 20
=_ (=)(lll), for all x E. Moreover the
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express,on of T at every pot,,, x E, ,s g,ven by T(x): lim
f2"x’(

PROOF. We apply the Lemma for the function (x,y)=

the properties of the functions P(), we can show that (x,y)< for 1 x,),E and the

conclusion of the Theorem follows Q E D

REMARKS. The last Theorem is significant since the class of -additive functions with

P() is strictly larger than the class of functions defined in Theorem 1. In this sense we

remark the following results

1) If f.E E is a -additive mapping with g P() and L(E,E:) then T0 + f is a

-additive mapping with respect to the same function

2) If f.E E is a -additive mapping with g P() and L(Ez,E) then of is a

g-additive mapping with respect to the same function g.and the constant 8 replaced by

3) If f,fz.E E: are mappings such that fx is -additive and f is -additive with

g,g e() then for every a,az R we have that af +azf: is a -additive mapping. In

this case the nction is defined by g(t)= g(t)+g:(t) for all R+ and 0= m(aO,aO:).
TBEOREM 3. Let E be a Banach space ordered by a generating cone K and let

f:E E,g:K K be o mappings such that."

). f is completely continuous, postttve and -addtttve wtth respect to a function P()
and ,o a constant 0 > 0 (i.e. f(K) K)

) there exists a quasi-interior point x K and 0 < Z < such that lim f(2., x), 0Xo

(g) g ts asymptottcally close to zero along K;

(h) h f + g is a strict set-contraction from K to K.

Then h f + g has afixedpoint in K.

PROOF. By assumption ) and Theorem 2 we have that T(x) lim
f(2x)

is well defined for

every x E and T is the unique linear operator satising the inequality

20T( )II <  (ll ll) for NI x e E

Since f is compact, we have that f( is bounded, which implies that T is continuous. Indeed,

the continuity of T is a consequence of the following inequalities

20 20[l r)ll 1 (4[I + 11 4-f( )[I ,1) for 1 x S.
2- 2)

From the definition of T and the fact that f(K)K we deduce that T is positive (i.e

T(K) K) From inequality (if) and the properties of we have that
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lim
]y(x)- T(x)l

=0,

that is T is the asymptotic derivative off along K. Also, from the principal theorem of 14] or

from [1] we have that T is completely continuous (and also it is a strict-set-contraction). From

assumption (gl) we have

l(x) T(x)< lim ]l)]l+ ixi]
l/’(x) T(xl

=0,

that is T is also the asymptotic derivative of h along K.

Since T is completely continuous its spectrum consists of eigenvalues and zero. Suppose that

r(t) > 0. From assumption (f_) we have that T(xo)< 2oX and using the Krein=Rutman Theorem

K"([29], Proposition 7.26, p.290) we have that there exists 0o \{0} such that

T’(o)=r(T) and o(xo)>0 (since Xo is a quasi-interior point of K). (We denote by T" the

a.djoint of T). Hence we deduce

r(T) [T’(O)](x)= 0(T(x)) < O(2x) $o

that is, r(T) < 1.

Now, all the assumptions of Theorem of [1] are satisfied and therefore h f + g has a fixed

point in K. Q.E.D.

REMARK. If f f,:E-E are continuous g/-additive mappings respectively to

, , P()and a,f(S) is bounded (where a a, R) then using the properties of
z=l

functions , ,, and Theorem 2 we can show that the asymptotic derivative of the mapping

a,f, is exactly T(x) lim ’=’ for all x E,.
2=|

COROLLARY. Let E be a Banach space ordered by a generating cone K and let f:E --) E be

a mapping satisfying conditionsfl) andfl). Thenfhas afixedpoint in K.

REMARK. In Theorem 3 and its Corollary we can replace assumption (j’2) by the following:

20
(f3): for all , _> andx g\ {0} there follows >  (11 11).

Hereafter we investigate the existence of non-zero positive fixed points.

THEOREM 4. Let E be a Banach space ordered by a generating cone K and let

f:E --) E,g:.K - K be mappings satisfying (f), (g), (h) and:

(f,): there exist 20 > and x -K such that lim
f(2"x’’)

>_ ,oXo

20 l//(lcl[) for all x K \{0)2-1//(2)
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(h.). h ts dtfferenttable at 0 along K and h(O) O,

(h.a). h "(0) does not have a positive etgenvector belonging to an eigenvalue 2 >_

Then h f + g has aftxedpoint in K {0}.
PROOF. As in the proof of Theorem 3 we have that h is asymptotically differentiable along K

and its derivative at infinity along K is T(x)= lim for every x E Moreover T is
2"

completely continuous and the inequality (if) is also satisfied. From assumption (f) we have

that 1 is not an eigenvalue with corresponding positive igenvector of T. From assumption (f4)

we obtain that r(T)> 2"0. Indeed, if r(T)< 2 and since r(T)= !i [[rll (the Gelfand’s formula),

 g"llrll_ ," for sufficiently large n and some k < 1. Because T(xo)> 2,oX we deduce

2,g"T"(x0)_>x (since T is positive) and if we pass to the limit in the last relation we obtain

x _< 0, i.e. x -K, which is a contradiction. Using again the Krein-Rutman Theorem we have

that r(T) is an eigenvalue of T with an eigenvector in K. Thus all the assumptions of Theorem

of [5] are satisfied and we conclude that h has a fixed point x. K {0}.

APPLICATIONS
Q.E.D.

We will apply now Theorem 4 to the following nonlinear eigenvalue problem. Let E be a

Banach space ordered by a cone K. Given the mappirgs L, f and A from E into E (possibly

nonlinear) find x. E\{0} and 2, R/ \{0} such that (b) L(x.)+f(x.)=x.+XA(x.).
DEFINITION 2. We say that 2, R+ \{0} is an asymptotic characteristic value of (L,A) if L

and 2,4 are asymptotically equivalent (with respect to K) i.e.,

lim
 r( )ll

0.
M

An asymptotic characteristic value of (L,A) is a characteristic value of (L,A) in the sense of the

definition given by Mininni in [22], i.e., 2, is a characteristic value of (L,A) in Mininni’s sense, if

there exists a sequence {x,},v of elements ofK such that

The following result is a consequence of Theorem 4.

COROLLARY. Let E be a Banach space ordered by a generanng cone K c E, f:E -+ E a

mapping such that f(K)_ K and L,A mappings from E into E. If the following assumptions

are satisfied:
(1): fsatisfies condi’ions (f), (f) and (fs);

(2): 2, is an asymptotic charactertstic value of (L,A);

(3): h f + L- 2,4 satisfies conditions (hi) (h).
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Then the nonhnear eigenvalue problem (b) has a solutton.

It is well known that the study of the nonlinear integral equation

v):(v,
known as the Hammerstein equation, is of central importance in the study of several boundary-

value problems (cf. [17], [18], [19], [29]).

Also some special interest is focused to the eigenvalue problem

(fl) x(u)= "aG(u’v)y(v’x(u))du’ (cf. t29] and its references).

If we denote by G the linear integral operator defined by the kernel G(u,v) and by f the

Nemyckii’s nonlinear operator defined by f(v,x(v)), ie.f(uv)= f(v,v)), then the equation

( takes the abstract form

(r)
For the equation (y) we consider the following hypotheses:

H): (E, and (F,P) are real ordered Banach spaces. The cone K is normal with non-empty

:nterior.
H): The mapping f:E F is continuous and the operator G:F E is linear, compact and

posttive.

m): G is strongly positive, i.e., x < y implies a(y)-a()int(K).

We recall that (,) is a bircation from infinity of equation (a)if > 0 and there is a

sequence of solutions (2,,x,) of( such that 2, : and I =11
THEOREM 5. Consider equation (y) and suppose that H), He) and H) are satisfied If in

additton the following assumpttons hold:

1") f(K) K andfl is bounded,

2*) f is -additive with P(),

3*) lim > 0 for every xK{0}

then setting T(x)= lim for all x E and r(GT)-’ we have that (,) is the only

bifurcationfrom infini of equation .
PROOF. First we note that T is the asymptotic derivative off along K. Since by assumption

3*) we have that T is strictly positive on K we remark that r(GT) > 0. We set

ifx=0ifx0
We know that g’(0)= T and (A,+) is a bircation point of x Gf(x) if and only if (,0) is a

bifurcation point of x 2Gx). The Theorem now follows from Theorem 7.H of [29]. Q.E.D.
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REMARK Concerning Theorem 5, the two-sided estimates for the spectral radius that have

been obtained recently by Stetsenko in [25], are very essential Stetsenko showed that if

.4 E - E is a completely continuous operator and E is a Banach space ordered by a generating

closed cone K with quasi-interior points and if some special assumptions are satisfied, then we

can define the numbers 20, p, the vectors u0,v and a functional 0 such that

 o(V0)
0o(,,o)P

OPEN PROBLEM. It seems to be an interesting probl’em to find new and more efficient two-

sided estimates for the spectral radius of the operator GT where

T(x) lim
f(2" x)

whenfis a /-additive mapping with E P().
Such an estimate of r(GT), similar to the estimate (, is important for the approximation of

the bifurcation point (2.,+), of the equation ()
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