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ABSTRACT. The purpose of this paper is to show that the weighted s-shift operators and so the

weighted shift and the right shift operators have the SVEP, but the left shift operator has not Also, if

T, S E B(X) are quasi-similar operators then, it is shown that T has the SVEP iff S has the SVEP

Finally, the paper shows that the fight and left shift operators are not decomposable
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INTRODUCTION.

Throughout this paper, the following notations are used

C the complex plane, X-A complex Banach space, B(X) the class of all bounded linear operators

on X,
a(T) the spectrum ofT E B(X),
ap(T) the point spectrum oft B(X),
A the closure ofA (in a given topological space),
A the interior ofA (in a given topological space),
T* the adjoint ofT,
T/Y the restriction ofT B(X) to the invariant subspace Y c X
1. THE SINGLE-VALUED EXTENSION PROPERTY (SVEP)
DEFINITION 1.1.

T B(X) is said to have the single-valued extension property (SVEP) if for every function

f D( C C) - X analytic on the open set D, the condition

(A-T) f(A)=0 on D implies f=0.

If T has SVEP then for any z X, pT(:r,) will denote the maximal domain of existence of the

analytic X-valued function : such that (A T).(A) z, and the complement of pT(z) will be denoted

by aT(z) and it is called the local spectrum oft at z

IfT has the SVEP then for any closed set F c C, we put

XT(F)--{z’zEX and aT(a:)cF}.
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0 (T) Now, consider the Hilbert space 12 ofT Yoshino [5] proved that T E B(x) has the SVEP if err,
all square-summable sequences, e,

and 1,1 < c.

DEFINITION 1.2. [4]
Let s be an integer greater than 0 and let (a,) be an arbitrary sequence of non-zero complex

numbers An operator T B(12) is said to be a weighted s-shift with weights (a,) if there exists an

orthonormal basis (e,)o of 19_ such that

Te, a,e,,_ n=1,2,3,....

Note that ifx 12 then x (xl,x2,x3, ...) and

Tx (0, 0 ,0, alXl, (y2x2, a3x3, ...)

THEOREM 1.1.

If T B(/2) is a weighted s-shift operator with weights (a,,)’, then ap(T) and hence T has

the SVEP

PROOF.
Let A ap (T), then there exists 0 :/: x E 12 such that x (xl x2 and

Tx=#x for all #ED(A)

where

D(A)={#:I#-AI<r, r>o}.

Hence,

(0, O, O, alx,, az, ...) (x,,zg.,z,, ...)

and so

#x=0, rn=l,2 ,s and #x+.,=a,x,,, n=1,2,....

If # 0 then x, 0 for all n(a, 0). If/z # 0 then x,, 0, m 1, 2, s and i.txs+l crlXl 0

which implies Xs+l 0

In the same manner, we show x+,, 0, n 2, 3, Therefore x 0 and this contradicts that

x :/: 0 Hence, ar,(T and T has the SVEP

COROLLARY 1.1.

V I. lstratescue [3] defined the weighted shift operators as: S B(l,2) is called weighted shift

with the weight sequence (W,)’ if

,..(Xl,X2,X3, ...) (0, WlXl, W2x2, ...).

It is clear that weighted 1-shifts coincide with weighted shifts with non-zero weight sequence. Hence, by
Theorem 1, every weighted shift operator with non-zero weight sequence (W,) has the SVEP.

PROPOSITION 1.1.

Let H be a Hilbert space, if T B(H) is an isometric non-unitary operator then T" has not the

SVEP

COROLLARY 1.2.

The right shift operator R E B(/2) is defined by

R(z, z, z3, ...) (0, z, z, ...).



ON THE SHIFT OPERATORS 609

It is clear that the right shift operators coincide with weighted/-shifts with weights (1) Hence, by

Theorem 1, every right shift operator has the SVEP

COROLLARY 1.3.

The left shift operator L 65 B(lg.) is defined by

L(xl,X2,x3,...) (Z2,X3,Z4,...)

Note that R’= L. Since R is an isometric non-unitary operator (see [2]) and L R’, then, by

Proposition 1, every left shift operator has not the SVEP

THEOREM 1.2.

Let T be a weighted s-shift operator on 19. If G is an open set such that G C r(T) and 0 9 G,
then XT(G) {0}
PROOF.

Let x 65 XT(G) then aT(X ([ G, since o G, we have 0 65 pT(X) and hence, there is an analytic

function f" V0 - 12 such that

(#- T)/() on Vo,... (.)

where V0 is a neighborhood of0 Since, f is analytic on V0 and f(bt) 65 12, then

f(#) (fl (#), f2(/), ...)

where f, V0 C is analytic on V0 for all n By (1 1), we have

#f,(#) =zm, m= 1,2,...,s

and

L+.(’) o.f.(g) +., n= 1,2,...

since 0 65 V0 then xm 0, m 1, 2, s let # :/: 0 then we have

fl (/.t) f2 (bt) ..... f(#) 0.

Hence,

#fs+l (#) lfl (#) 2s+l

which implies that fs+l()=Zs+l/[ since fs+l is analytic at 0 then Zs+ =0 and so

xs+2 xs+3 ..... 0. Hence x 0 which proves that

x() {o}.

DEFINITION 1.3. [3]
T, S 65 B(X) are called quasi-similar if there exist injective operators P, Q B(X) with dense

ranges and such that:

(i) TP PS;
(ii) QT= SQ.
TFIEOREM 1.3.

IfT, S B(X) are quasi-similar then T has the SVEP iff S has the SVEP

PROOF.
Since T, S B(X) are quasi-similar then there exist P, Q B(X) such that

TP=PS and QT=SQ.
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Now, let T have the SVEP and (A- S)f(A) 0 where f" D X is an analytic function on D Then

P(A S)f(A) 0, which implies that (A T)Pf(A) 0, since Pf D X is analytic and T has the

SVEP, then Pf(A) 0 By the injectivity of P, we have f(A) 0 and S has the SVEP
Conversely, let S have the SVEP and (# T)#(#) 0, where g G X is analytic on G Then,

by the same manner above and QT SQ, T has the SVEP

2. DECOMPOSABLE OPERATORS
Given T E B(X), an invariant subspace Y is called the spectral maximal space of T if for any

invariant subspace Z, the inclusion

r(T/Z) C r(T/Y)

implies Z C Y Denote by SM(T) the family of spectral maximal spaces ofT.

DEFINITION 2.1. 1]
The operator T 6 B(X) is called decomposable if, for any open cover {G,} of e(T), there is a

system {Y} C SM(T) such that

(i) cr(T/Y) c G,, l < < n,

(ii) X Y

PROPOSITION 2.1.

IfT 6 B(X) is decomposable then r(T) 4); i.e, T has the SVEP

PROPOSITION 2.2.

If T B(X) is decomposable and F C r(T) is a closed set such that XT(F) {0}, then F has

no interior point in

COROLLARY 2.1.

The right and left shift operators are not decomposable.
PROOF.

Let T be a fight shift operator and G an open set such that G c r(T) and 0 G.
Since T is a weighted 1-shift with weights { 1}o then, by Theorem 1.2, we have

Xr(G) {o}. (2.)

Now, since or(T) {A" I,l -< 1} (see [2]), and F G c a(T) is a closed set, we get.

F fq r(T) # qb. (2.2)

Therefore, by (2.1), (2.2) and Proposition 2.2, we have T is not decomposable. Finally, let 5’ be a

left shift operator. Then by Corollary 3, S has not the SVEP. Hence, by Proposition 2.1, S is not

decomposable
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