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ABSTRACT. We introduce a new comparison result which will be an important tool when we

apply cone valued Lyapunov like functions. We also introduce new concepts of 0-uniform Lipschitz

stability and (t,,k, 0)-practical stability and employ our comparison result to carry out stability

analysis of nonlinear systems. Our results are also applicable to nonlinear perturbed systems.
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1. INTRODUCTION.
The notion of Lipschitz stability in differential equations was introduced by Dannan and Elaydi

[4,5]. They obtained conditions for the Lipschitz stability of nonlinear systems using the techniques

of scalar Lyapunov functions. This concept of stability coincides with uniform stability in linear

systems [4] and lies somewhere between uniform stability and both asymptotic stability in variation

[2] and uniform stability in variation [3] for nonlinear systems. Moreover, one important feature

of Lipschitz stability is that unlike uniform stability the linearised system inherits the property of

Lipschitz stability from the original nonlinear system [4].
It is well known that the method of vector Lyapunov functions offers a very flexible and effective

mechanism to investigate qualitative properties of nonlinear differential equations [8,9,10,11,13,14].
However, in spite of the effectiveness of the method, the limitation is obvious [6,7,12]. To circumvent

this limitation, it was suggested [7], that employing arbitrary cones rather than the standard cone

[R which is utilized in the method of vector Lyapunov functions will be beneficial. Above all,
it is now well known that employing cone valued Lyapunov functions is beneficial in applications

[1,6,7,12].
We shall here introduce a new comparison result which will be an important tool when we apply

cone valued Lyapunov like functions. We also introduce new concepts of q0-uniform Lipschitz sta-

bility and (, ,k, q0)-practical stability and use our comparison result to carry out stability analysis

of nonlinear systems. Our results are also applicable to nonlinear perturbed systems.
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2. PRELIMINARIES.
We consider the differential systems"

y’= f(t,y) y(to) Xo (2.1)

F(t,z (2.2)(to) o

where f, F IR+ x IRn IRn are assumed continuous.

Let K C IR" be a cone, that is, K is closed, convex, with non-empty interior, and satis-

fies the conditions Kf3-K={0}, and ,kKcK for all ,k>0. For any z, y E JR", we let

z_<y iff y-z E K and for any functions u, v’IR+--IR", u_<v iff u(t)<_v(t) on IR+. Let

K" {$ JR" [($,z) >_ O, Vz K}, and let h’ K’,-{0}.
DEFINITION 2.1. A function 9 [R"---[R’ is said to be quasi monotone nondecreasing relative

to the cone K if $ I’( exists such that z <_ y and (q,y- x)= 0 implies ($,9(Y)- 9(z))>_ 0.

When K JR+ def. 2.1 says if x _< y and y, x, for some _< < n, then 9,(Y) 9,(z) >- O,
which reduces to requiring nonnegative off-diagonal entries of an n x n matrix A where 9(x) Az.

Consider the comparison system"

(2.), (t,,,) ,(to) =,o

where 9 IR+ x K--[R" is assumed continuous. Let u(t) u(t, to, Uo) be any solution of the system

(2.3). We formulate the following definitions.

DEFINITION 2.2. The differential system (2.3) is said to be Co-uniformly Lipschitz stable if

there exist M _> 1, 5 > 0 and 0 If such that (o,u(t, to, uo)) < M(o, u0) for (0, uo) < 6

and > to.
DEFINITION 2.3. The system (2.3) is (,k,,k, o)-practically stable if given 0 < A < A, there

exists o E K; such that (0, uo)<A implies (o,u(t, t0, uo))<a, t>_to, where to IR+.
It is said to be (., B, T, o)-strongly practically stable if given 0 < ,k < A, B < A and T > 0

there exists 0 K such that u(t, to, uo)is (,,0)-practically stable and (o, uo)< A implies

(0, u(t, to, Uo)) < B for > to + T, for some to R+.
Other stability and boundedness definitions based on definitions 2.2 and 2.3 can be formulated.

REMARK 2.4. If K [R. and 0 (1,1, 1), then we have special cases of definitions 2.2

and 2.3. These special cases for n reduce to the definition of uniform Lipschitz stability in [5]
and practical stability [11].

We now establish a new comparison result.

LEMMA 2.5. Let g’R+ KR" be continuous, and let g(t,u) be quasi monotone monde-

creasing in u relative to the cone K, for each IR+. Let r(t) be the maximal solution of (2.3)
relative to K existing on [to, oo) and for > 0 and a fixed Dini derivative,

D rn(t) < g(t, rn(t)) (2.4)

where rn" IR+-,K is continuous. Then m(to)<:uo implies rn(t)<Kr(t for t> to.
PROOF. Clearly, D_ re(t) < g(t, re(t)) and so by Theorem 1.5.5 in [13], rn(to) <. Uo implies

rn(t) < r(t) for > to.
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’FIIEOREM 2.6. l,et K C_ [R be a nonempty, closed, convex cone and assume that"

(H0) The solution y(t, to,.Vo) of system (2.1) is unique and continuous with respect to the

initial data and is locally Lipschitzian in z0.

(II,) I.et S(p) {.. E JR" [[z zo < p}, V C(R+ S(p),K) is locally Lipschitzian rel-

ative to K and for to < s _< l, x ( [R’, V satisfies

where

D_V(s,y(t,s,z)) <-u g(t, V(s,y(t,s,z)))

D_V(s,y(t,s,z))- liminf
h-o- -[V(s + h,y(t,s + h,z + F(s,:c)))- V(t,y(t,s,:c))]

(H2) 9(t, u) C(R+ K, ") and is quasi monotone nondecreasing in u relative to K and

the maximal solution r(t, to, Uo) of (2.3) exists for _> to.
Then if x.(t)= :c(t, to, xo) is any solution of (2.2) we have V(t,x(t, to, zo)) <_,. r(t, to, uo), >_ to,

provided V(to, y(t, to, zo)) < uo.
PROOF. Let z(t) be any solution of (2.2) and set

.() v(,(t,,()))

where to < s < t. Thus rn(t0) V(to, U(t, to, zo)). Soil V(to, u(t, to, zo)) <,.. uo, then rn(to) <.uo,
and

,( + )- .() v( + , u(t, + h,( + )))- v( + h,u(t, + h,() + hF(, ())))

+V(s + h,y(t,s,x(s)+ hF(s,x.(s))))- V(s,y(t,s,x(s)))

Therefore, if t0 s t, then

D+m(s) 9(s, V(s,y(t,s,x(s)))) 9(s,m(s))

By Lemma 2.5, V(s,y(t,s,x(s))) r(s, to, uo) for t0 < s t, provided V(to, y(t, to, xo)) uuo.
Now V(t,y(t,t,z(t)))= V(t,z(t, to, xo)), so ifwe set s t, we have V(t,z(t, to, zo)) ur(t, to, uo),
tto..

REMARK 2.7. (i) V(to, y(t, to, xo))= Uo implies V(t,x(t, to, xo)) ur(t, to, V(to, y(t, to, xo))),
t0 < T which shows the connection between the solutions of systems (2.1) and (2.2) in terms

of the maximal solution of (2.3) relative to the cone K.

(ii) If K R, then Theorem 2.6 reduces to Theorem 2.1 in [13] and so our result is an extension

of the main comparison theorem in [13] to cone-vMued Lyapunov functions.

(iii) Let P, Q be cones in R" such that P C Q and suppose the assumptions of Theorem 2.6 hold

with K P, then if V(to, y(t, to, zo)) uo, we get V(t,z(t, to, xo)) 5r(t, to, V(to, y(t, to, xo))),
for t0. If however Q R+ ,we have a component wise estimate.

(iv) The trivial function f(t,y) 0 is admissible in Theorem 2.6. In that ce, Theorem 2.6

reduces to Theorem 3.1.3 in [9].
3. APPLICATION TO STABILITY ANALYSIS.

We shall now present results on practical stability and uniform Lipschitz stability of the system

(2.2) using our comparison theorem.



438 O. AKINYELE

THEOREM 3.1. Assume that (Ho) of Theorem 2.6 holds.

(I) Let V6C(IR+xRn, K) and V(t,z)is locally Lipschitzian in z relative to K,
(II) g6C(iR.+ x K,{") and for (t,u) eiR+ x If, D+Y(t,u) <h.g(t,Y(t,u)), where g is quasi

monotone nondecreasing in u relative to K for each 6 IR+,
(III) For (t,x) 6 IR+xS(p), and 6 K, b(llxll) < (, v(t,x)) < a(llxll), where a, b 6 IK, the

set of all a6C(R+,[{+), such that a(r) is strictly increasing in r and a(r)--oo as r-oo.

(IV) 0 < , B < A are given with a()< b(A) and the unperturbed system (2.1) is (,)-
uniformly practical stable.

Then the (, B, T, 0)-strong practical stability of system (2.3) implies the (, B, T)-strong prac-

tical stability of the perturbed system (2.2).
PROOF. Since (2.3) is (,B,T,0)-strongly practical stable and given 0 < , B < A, with

a() < b(A), we can find 06 If such that (0, u0)< a() implies (o,u(t, to, uo))< b(A) for

t>to and (o, uo)< a(A) also implies (o,u(t, to, uo))< b(B) for t>to + T. Now system (2.1)is
(), )-practical stable (see [14] for definition of uniform practical stability), hence I1oll < m implies

Ily(t, to, xo)ll < , for t>to for all to 6 IR+. With this choice of a, Ilxoll < A, we claim that

IIx(t, to, xo)ll < A for t>to where z(t, to, xo) is any solution of (2.2). Were this not true, then a

solution x(t, to, zo) of (2.2) would exist with Ilxoll < A nd tl > to such that IIx(t, to, Xo)II- A,

IIx(t, to, xo)II < A, where to < < t. Setting uo V(to, y(t, to, xo)), Theorem 2.6 implies that

V(t,x(t, to, xo)) <:r(t, to, uo), for > to. Hence, by (III), and the choice of 06 K, we have

b(A) < (o,V(t,z(t,to, zo)))
< (o,r(ta,to, V(to,(t,to, xo))))
< (o,r(t,to, a(lly(t,to, xo)ll)))
_< (o, (t, to, ())).

Since (o, uo) < a(,) implies (o, r(t, to, a(.))) < b(a) we arrive at a contradiction; hence the claim.

Also for all > to, with I1oll < , nd ine (Co, no)< a(m) implies (o,r(t, to, uo)) < b(B) for

t>to+T

b(llx(t, to, xo)ll) <_ (o,V(t,x(t, to, xo)))

< (o,r(t, to, V(to, y(t, to, zo))))
< (o,r(t, to, a(]ly(t, to, xo)ll)))
< (0, (t, to, a())) < (B)

Therefore IIx(t, to, Xo)]1 < B for > to + T, and the proof is complete.

We now give the following result in respect of uniform asymptotic stability of the system (2.2)
the proof of which is straightforward.

THEOREM 3.2. Assume that assumption (Ho) of Theorem 2.6 holds along with (I), (II) and

(III) of Theorem 3.1. Let the zero solution of the unperturbed system (2.1) be uniformly stable.

Then the 0-uniform asymptotic stability of system (2.3) implies the uniform asymptotic stability

of system (2.2).
REMARK 3.3. We see that the choice of F(t,x)= f(t,x)+ R(t,x) and an application of

Theorem 3.2 shows that the uniform asymptotic stability of the perturbed system (2) can be
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achieved even if the unperturbed system (2.1) is only uniformly stable. All we need do is require

the comparison system to be $0-uniformly asymptotically stable (see [1] for the definition of $0-

uniform asymptotic stability of the comparison system). A similar remark can be made of the

usefulness of Theorem 3.1 in stability analysis of perturbed systems.

TIIEOREM 3.4. Assume that

(I) 9EC([R+ K,[R’), 9(/,0)= 0 and 9(t,u)is quasi monotone nondecreasing in u relative

to K,

(II) VEC(+S(p),), V(t,0)= 0 and V(t,) is locally Lipschitzian in x relative to K
and for o E K* b(llxll <_ (, V(t,x)) where bE [K such that b(au) <_ uq(a) with q(a) > 1, c >_
and D_V(t,z) _, g(t, V(t,x)) for (t,x) E [R+xS(p).

If the zero solution of (2.3) is Co-uniformly Lipschitz stable, then the zero solution of (2.2) is

uniformly Lipschitz stable.

PROOF. Assume that the zero solution of (2.3) is Co-uniformly Lipschitz stable, then there exist

L _> 1, > 0 and o E K, such that (o,u(t, to, uo)) < L(o, Uo) for > to and (o, Uo) < 6. Set

f(t,y) =_ 0 in (2.1) with Xo chosen such that Uo Y(to, xo), then y(t, to, xo)= Xo and hypothesis

(Ho) of Theorem 2.6 is trivially verified. Hence Y(t,x(t, to, xo)) <-u r(t, to, Uo) and

b(llx(t, to, xo) ll) <_ (0, V(t,x(t, to, xo))) <_ (o,r(t, to, uo))
< L(0,o)< LIl011" I1011

LIloll" IIV(to,o)ll <_ LNIIolI" I1oll

Hence IIx(t, to, xo)]l < b-(LN]loll I[Xoll) <_ q(LN]loll)llXol MIIxol I.
REMARK 3.5. (i) If K JR+ and 0 =(1,1,1, ...,1) then Theorem 3.4 is the method of

vector Lyapunov functions for uniform Lipschitz stability. If n 1, we get Theorem 2.1 in 5 ].
(ii) In Theorems 3.1, 3.2, and 3.4 we can employ a general measure for the cone valued Lyapunov
function instead of the particular measure (, V(t, x)) defined by E K. The corresponding results

demonstrate the flexibility that can be achieved when dealing with cone valued Lyapunov functions,

particularly in relation to perturbed nonlinear differential systems.
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