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ABSTRACT. Let P[A,B], —1< B < A <1, be the class of functions p analytic in the unit

disk E with p(0) = 1 and subordinate to ifgﬁ In this paper we define and study the classes Sg[A, B of

functions starlike with respect to symmetrical points A function f analytic in E and given by

f(z2) =2+3 a,2" is said to be in Sg[A, B] if and only if, for z € E, %flf(:—)_z) € P[A,B] Basic
n=2

results on S5 [A, B| are studied such as coefficient bounds, distortion and rotation theorems, the analogue
of the Polya-Schoenberg conjecture and others
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1. INTRODUCTION

Let A denote the class of functions, analytic in E = {z : |z| < 1} and normalized by the conditions
f(0)=0= f(0)~1 In [7] Sakaguchi defined the class of starlike functions with respect to
symmetrical points as follows

Let f € A Then f is said to be starlike with respect to symmetrical points in E if, and only if,

!
e?%>o, 2€E. an

We denote this class by S  Obviously, it forms a subclass of close-to-convex functions and hence
univalent Moreover, this class includes the class of convex functions and odd starlike functions with
respect to the origin, see [7]

Janowski [4] introduced the classes P{A, B] and S*[A, B] as follows

For Aand B, — 1< B < A < 1, a function p, analytic in E, with p(0) = 1, belongs to the class
P[A, B] if p(2) is subordinate to 142

A function f € A is said to be in S™[4, B], if and only if, 2 € P|A, B]

We now define the following
DEFINITION 1.1. Let f € A Then f € S3[A,B], —1< B < A< 1ifandonlyif, forz € E

22f'(2)

——~—— € P[A,B]. 12
- f=a S TAE 2
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It is clear that Sg[1, — 1] = S, and S3[1 — 2a, — 1] = Sg(a), the class of starlike functions with
respect to symmetrical points of order a defined by Das and Singh [2]

To show that functions in S5 [A, B] are univalent, we need the following

LEMA 1.1. [5] Let p, and p, belong to P[A, B] and «a, (3 any positive real numbers Then

" ﬁ[apl (a) + BPy(2)] € P[A, B].

THEOREM 1.1. Let f € S5[A, B] Then the odd function
= [f(z f(=2)], (13)
belongs to S*[A, B]
PROOF. Logarithmic differentiation of (1 3) gives
2r'(z) _ 2f'(2) + zf'( - 2)
7(2)  fR)-f(—-2) [f(2)-f(-2)
where p;, p, € P[A, B], since f € S5[A, B] Using Lemma 1 1 we have the required result
REMARK 1.1. From Theorem 1 1 and Definition 1 1 we conclude that
S3;|A,B]C K,

= ) + ),

where K is the class of close-to-convex functions This implies that functions in Sg[A, B] are close-to-
convex and hence univalent
2. COEFFICIENT BOUNDS

In the following we will study the coefficients problem for the class S3[A, B], we need the
following

LEMMA 2.1 [1] Let 7 be an odd function and 7 € Sg[1 —2a, — 1] and let 7(z) =

(e o]
2+ Z bgn, 122n_1 Then
n=2

|bon- 1|_( H[(l—a)+u]

This result is sharp as can be seen from the function

fo(2) = (W

2+ Z{ 1)' —a)1-a)+1..[01-a)+(n- 2)]}z2"_’ .

LEMMA 2.2. [1] Let 7 be an odd function belonging to S*[A4,B] and let 7(z) =z + 3
n=2

2n—1

bon-12 Put M = [ T B)] the largest integer not greater than ;=7 2(1 + B) We have the following

(i) IfA-B>2(1+ B),then

1 27A-B
bon_1] < —vB|, =23,.,.M+1. 2.1
‘“'—<n_1)!l=10[ 2 “}" @1
and
1 M TA-B
bon —-vB|,n>M+2
lban-1| < ( l)M!Il[ 5 v]n
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(i) IfA— B <21+ B),then
A-B

bm < —,
b2 Il_2(1'1.—1)

n=12,.. 22)
The bounds in (2 1) and (2 2) are sharp
00
LEMMA 2.3.[1] Letp€ P[A,Bland p(z) =1+ ) cn2™
n=1

Then
len| < A-B.

This result is sharp

To solve the coefficient problem for the class S3[1 — 2a, — 1] we will use the technique of
dominant power series which is defined as follows

Let f and F be given by the power series

f) =Y e wnd F()=3 An,
n=0 n=0

convergent in some disk E : |2) < R, R >0 We say that f is dominated by F (or F' dominates f),
and we write f < F if for each integern > 0

lan| < An.
00
THEOREM 2.1. Let f € S5[1 — 2a, — 1] and be given by f(2) = 2+ Y_ a,2z". Then
n=2

() laal <(1-a), las| < (1-a)

n k-2
(i) |aan|s“;—"){1+2[ﬁ H((l—a)+v)]},n22.
k=2 v=0
n—1 k-2
(iii) lagn-1] < %‘—3{1 +2 [ﬁ 1_10((1—a>+v)}}

n-2
+(2—njl—)!(—nT)!vI:IO (1-a)+v), n>3.

These bounds are sharp.
PROOF. Since f € Sg[1 — 2a, — 1], then by Theorem 1.1 (with A =1 —2a, B = — 1) there
exists an odd starlike function of order a, T where 7(z) = % [f(2) = f( = 2)] such that
2f'(z) = 1(2)p(2), p€ P[1-2qa, —1]. 23)
From Lemma 2.1 we see that
2
O
and it is known [1] that
1+ (1-2a)z
p(2) <« 1-2)

Hence using these facts with (2.3) we obtain

z 1+ (1-2a)z
-2 (-2

zf'(2) < (2.4)

Simple calculations show that
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2(1+(1- 20:) =
=z+ A",
a-=-22)" Z

where
A)=2(1—a A-;=3(1—a)

2
on =2(1—a) {1+Z O] H((l-a)-i-v)}}
0
Azn.|=2(1—a){1+z ‘_11)! Hu((l—a)'l-'v)}}

1)'H((l a)+v), n>3.
v=-0

Using this in (2 3) we obtain the required result
These bounds are sharp as can be seen from the function

_ 2 1+ (01 -2a))
f(z) = /(; (1 _ 5) (1 _ {2)(1~a)

The method of proof used in the above theorem unfortunately does not work for the general class
S5[A,B] However, the above coefficients bounds for Sg[1 —2a, — 1] do suggest the form of
coefficients bounds for functions in Sg[A, B] In fact we have the following,

o0
THEOREM 2.2. Let f € S3[A, B] and be givenby f(2) = z+ 3 a,2" Let M be as in Lemma
n=2

d¢ € S3[1—2a, —1].

22 Then we have the following
(i) laol < 2458, Jag) < 458 2.5)
(i) fA—B>2Q1+B),thenforn=2,3,....M+1

A-B n 1 *2/A-B
loznl < =57 {”;[@_mg( 2 “”B)]}

and forn =3,4,.... M +1

lazn—1] < 3 o B{ +nzi[(k—1)' ﬁ (A;B—UB>]}

v=0
1 A-B
+(2n—1)(n—1)!£1(,( 2 ‘”B)~ @6)

and forn > M +2

A-B L
lo2nl < = {H;

and

|a'2n II <

(k —11)M! Ulli(A;B _“B>]}
=

> | H(AzB"“B)]}

+(2n-—1)(1n_1)M! E)(A;B_UB)

(i) IfA— B <2(1+ B), then
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A-B . A-B
on| < 1 ) = 4,9,
lasn| < In { +E 2(k—1)} n=273

k=2
and (V)]
A-B i A-B 1
a1l < 1 =34,..
lazn 1] Zn—l{ +g;xk—1f+xn—n}’" 3.4,

The bounds in (2 5), (2 6) and (2.7) are sharp

PROOF. Since f € Sg[A, B}, then by Theorem 2 1 there exists an odd function 7 € S*[A, B]
where 7(z) = %[f(z) — f( = 2)] such that

2f'(z) = 7(2)p(2), p € P[A, B]. (28)
Let7(z) =z + i bon_12*"Vand p(z) = 1+ i‘ 2"
n=2

n=1

Then

[o ] 00
z+ Zna,,z" = [z + Zbg,,_lzh_l
n=2 n=2

00
1 +Zc,,z"] .

n=1
Equating the coefficients of 22, z%, 2% and 22"~! in both sides we obtain

2ay = ¢

3a3 = ¢ + b3,

n
2nag, = con_1 + ZbZk—1C2n—(2k—l) ,

k=2
n-1
(20— 1)agn1 = Con-2 + ) bok-1C2n-2k + ban-1 -
k=2
Hence
|ea|
<
laa| < ==,
ea| , Ibs]
ag| < 2L B3
las| < 3 3
2nagn| < lezn-1 + Y 1b2k-1] lezn-a-1),
=
and
n-1
(2n — Vlagn-1| < lean-z| + ) [boe-1] lan-2| + [B2n-1].
k=2
Using Lemma 2 3 we obtain
A-B A—B b
lag| < ,|43|ST+—3—,

A-B o
|02n|S 2 {1+Z|b2k-1|}» n22
n k=2
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and

1|b2u-1|, n>3.

lage 1] < 2 o {1+Z|bok .|}

Using Lemma 2 2 we get the required result The bounds in (2 5) and (2 6) are sharp as can be

seen from the function

(1- A" 5

/ ( 5,,)(1+B§2) P d¢, B#0
flz) = { o N BE

/0 "(1- Ag") exp(A€/2) fede, B =0,

While the bounds in (2 7) are sharp as can be seen from the function

_ [1-Af" [A-B ,,
f(Z)—/Ol_Bgn [ s]g

SPECIAL CASE. Fora =1, B = — 1 we see that
lan| <1, n>2,
which is the coefficient bounds for the class Sg obtained by Sakaguchi [7].
3. DISTORTION AND ROTATION THEOREMS

To derive our results we need the following
LEMMA 3.1. [3] Let f € S"[A B]. Thenfor|z|=7<1

r(1— Br) < [F(2)| < r(1+Br) " for B #0

rexp( — Ar) < |f(2)| < rexp(Ar) for B=0.
These bounds are sharp.
LEMMA 3.2. [4] Letp € P[A, B], thenfor|2] =7 < 1
1- Ar 1+ Ar
< < < .
o <Rep(:) < Ip(a) < T
These bounds are sharp.
THEOREM 3.1. Let f € Sg[A, B]. Thenfor 2] =7 < 1.
. 1- Ar o\ &2 , (1 + Ar) 48
- < < 1 B .
@ (I_Br)(l Br) " <|f ()< (15, )A+B") 7, B#AO @1
and
Ar? Ar?
(1- Ar) exp( - T) <If'(2)] <1+ Ar) exp<—2-) , B=0 3.2)

.. T(1-Ar oy &2 T (1 + Ar oy A2
(ii) /O(I_Br>(1—3r) dr5|f(z)|5/0(l+Br)(1+Br) dr, B#0  (33)

/T(l — Ar) exp(_—Arz) dr < |f(2)| < /r(l + Ar) exp(iri)dr, B=0 3.9
0 2 0 2

These bounds are sharp
PROOF. Since f € S5[A, B], then from (2.8) we have
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l2f'(2)| = Ip(2)l I7(2)], (33)

where p € P[A, B] and 7(z) = §(f(z) — f(— 2)] and T € S*[A, B] (Theorem 1 1)
Using Lemma 3 1, we have the following bounds for the distortion of the odd function 7 € S*[A, B]
for|z| =r <1,

A-B A-B
2B B

r(1-Br?)® <|r(z)|<r(1-Br’)®, B#0

and

2 2
rexp(— ATT) <|r(z)| < rexp(ATT), B=0.

Using Lemma 3 2 and (3 6) in (3 5) we obtain the required result
Equality signs in (3 1), (3 2), (3 3) and (3 4) are attained by the function f, € Sg[A, B] given by

(M)(HB&QZ?)%, B#0
f: (z) _ 1+ Bz \ (3 7
a +61Az)exp<A6222 ) B=0, |6 =[] = 1

SPECIAL CASE. For A=1-2a, B= -1, we get the distortion theorems for f € S3(a),
see [2]

Before proving the rotation theorem for f € S%[A, B], we need the following

LEMMA 3.3. [3] Let g € S*[A,B] Thenfor|z]=r<1

arg@,<{A;Bsin_’(Br), B;eo}

~|4ar, B=o0
These bounds are sharp
THEOREM 3.2. Let f € S;[A, B]. Thenfor|z|=7r <1

A-B (A-B)r
2B 1- ABr?’

,,.2
-+ sin”! (Ar), B=0

sin”! (Br?) + sin™! B#0

larg f'(2)] <
These bounds are sharp.
PROOF. From (2.8) we have
T(2
larg f'(2)| < Iarg%‘ + larg p(2)|, (.8)

where 7 is an odd function 7 € S*[4, B] and 7(2) = } [f(2) — f(— 2)], p € P[A, B). It is known [4]
that for p € P[A,B]andfor |2| =7 < 1

@ 1- ABr?| _(A-B)r
o =1 B | S 1-B2
from which it follows that
. 1(A=B)r
|arg p(2)| < sin ‘—i — B (3.9)

Using Lemma 3.3, we have the following bounds for the argument of the odd function 7 € S*[A, B]

(notice that T(2) = 1/g(22) )
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Using Lemma 3 3, we have the following bounds for the argument of the odd function T € S™(A, B)

(notice that 7(z) = {/g(z?) )

A-B . 2
(z) 5 Sn '(Br*), B#0
< 2
arg—— | <4 42 5o (3 10)
20 T

Using (3 9) and (3 10) in (3 8) we get the required result

Equality signs are attained by the function f, € Sg[A, B] given by (3 7)
4. THE ANALOGUE OF THE POLYA-SCHOENBERG CONJECTURE

In 1973 Ruscheweyh and Sheil-Small [6] proved the Polya-Schoenberg conjecture namely if f is
convex or starlike or close-to-convex and ¢ is convex, then f * ¢ belongs to the same class, where (¥)
stands for Hadamard product or convolution In the following we shall prove the analogue of this
conjecture for the class S5[A, B] and give some of its applications We need the following

LEMMA 4.1. [6] Let ¢ be convex and g starlike Then for F analytic in E with F(0) =1,
‘%‘5‘1 (E) is contained in the convex hull of F(E)

THEOREM 4.1. Let f € S5[A, B] and let ¢ be convex Then (f x¢) € S[A, B]

* . . @) .
PROOF. To prove that (f*¢) € S5[A, B], it is sufficient to show that —4—( 7 ;(’i)f_f}‘;;(_z) is

¢ontained in the convex hull of I—(Q%
Now
22(f *4)' () 22f'(2) * $(2)

() - (F*d)(—2) ()~ (= 2)*¢(2)
B() ot - L
- (z) » LAJCA

Applying Lemma 4 1, with g(z) = L97/C3 € §*[4,B] and F(2) = we obtain the

_22f(z)
f()-f(-2)>
required results

REMARKS 4.1. As an application of Theorem 4 1 we note that the family S5[A, B] is invariant

under the following operators
g = [ L ae= 00
() =2 [ 10 = (r+an)(2)
A= [T s <1, 2 1
= (f * ¢3)(f)
Fif) = [[e i@t Ree>0
= (f * ¢4 ) (Z ) )

where ¢,(i = 1,2, 3,4) are convex, and
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)= 22" = —logl-2),

N 2 —2[z +log(1 — 2)]
#(z) = 2= »
Z:]n+l z
X 1-z 1 1-zz
2) = "= 1 Lzl <1, 1,
$3() §n(1_z)z —lg T el <1, 2 #
1+c¢
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