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ABSTRACT. Let G be a locally compact group acting ergodically on X. We discuss relationships
between homomorphisms on the measured groupoid X G, conjugacy of skew product extensions,
and similarity of measured groupoids. To do this, we describe the structure of homomorphisms on

X G whose restriction to an extension given by a skew product action is the trivial homomorphism.
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1. INTRODUCTION. Ergodic group actions is one subfamily of the categorical generalization

of locally compact groups as suggested by Mackey in [3]. This generalization include measured

equivalence relations, measured foliations, and measured ergodic groupoids amongst others.

A concept for groups that extends to this category and in particular to ergodic group actions is

the homomorphism. This paper discusses relationships between homomorphisms of ergodic group

actions, their restrictions, conjugacy of skew product actions, and similarity of measured groupoids.

These relationships provide an answer to the following problem about locally compact groups.

If G H and G K are continuous homomorphisms whose ranges are dense in H and

K, respectively, does there exists an isomorphisn H K satisfying o ? If so, H and K

are conjugate G-spaces where the action of G on H is given by h.g he(g). We will investigate

the extent to which this problem generalizes to ergodic group actions. This paper will extend some

of the results obtained by Fabec in [1,2].
Before stating the main result, which is the theorem at the end of this section, we will briefly

review notions of group actions and homomorphisms of measured groupoids. The proof of the main

result will be given in the second section. In the third section, the theorem will be applied to

find relationships between conjugacy of skew product extensions of an ergodic group action and

similarity of measured groupoids. In particular, the above problem is answered there.
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Let G be a second countable, locally compact group. Suppose # is a a-finite measure on a

standard Borel space X. Then X is a G-space provided there exists a Borel mapping (z, 9) z "9

from X x G to X satisfying

(1) z. e z for all z,

(2) x.gx .92 z.9192 for all x,9,92, and

(3) (E-9) 0 if and only if (E) 0 for each 9 and Borel subset E.

Two G-spaces (Xa,#I) and (X,kt2) are isomorphic if there exists a Borel isomorphism

X X2 such that (x. g) ,(x).g /a-a.e. x for each g and (I).fi 10 (I) -a 2

i.e. .#x and #2 belong to the same measure class.

If (Y, u) is a G-space then a Borel map p: X Y is called an extension if p(x’9) p(z)"9 for all

(z,9) and p.# u. Two extensions Pl: (X1,1) (Y,u) and P2: (X2, #2) (Y,u) are isomorphic

over Y if there exists a G-space isomorphism from X1 to X2 such that p2 o (z) pl(z) a.e.z.

Let H be a complete separable metric group. A cocycle on the G-space (X,/z) with values in

H is a Borel mapping : X x G H satisfying (z,919.) (z,91)(z" 91,92) for all z,91,92. If

one defines (z,h).9 (x. 9, h(z,9)) then (X x H,# x ran) becomes a G-space where rnn is a

Haar measure on H. This G space is denoted by (X x H,# x mn) and is called the skew product

action defined by the cocycle .
The measure space (X x G, # x ma) is called the measured groupoid defined by the action of G

on (X, #). There is a partially defined multiplication on the groupoid, namely,

(z,9)(z 9,91) (z,991). Also, (x,9)-1 (x 9,9-a) defines an inverse operation in the groupoid.

Given Zl, z2, z3, z4 E X x G, one can directly verify that

if zlz2 z3 then ZIz3 is well-defined and z2 z;lz3. (1.1)

A homomorphism h X x G Y x H between measured groupoids or group actions is a pair

of Borel maps h (p, ) where p:X -- Y and :X x G -- H satisfy

(4) is a cocycle,

(5) p(x. g) p(x). (x, g) for all (x, g), and

(6) # (p-l(E)) 0 if and only if u(E) 0 whenever E is an invariant analytic subset of Y.

Statements (4) and (5) are necessary and sufficient conditions for h X x G Y x H to define

a multiplicative mapping between groupoids. An action of G is ergodic if E is a null or conull Borel

subset whenever E.g E for all g. In case (X,#)is an ergodic G-space and (Y, u) is an ergodic

H-space, one says h is a homomorphism between ergodic group actions. In this case, as pointed out

by Ramsay in [5, page 394], statement (6) is equivalent to the condition: p-l(E) is null whenever

E is an invariant analytic null subset of Y.

Two homomorphisms h and h’ from X x G to Y x H are cohomologous or similar if there is

a Borel mapping A X Y x H satisfying A(x)h(x,g) h’(x,g)A(x, g) a.e. (x,g). This will

be denoted by h h’. The idea of isomorphic groups extends to the notion of similar measured

groupoids. Let id be the identity mapping. If there exist homomorphisms J X x G Y x H

and J2 Y H--. X x Gfor which JaoJ2 idand J2oJ1 id, then X x G and Y x H are

called similar measured groupoids. Also, a homomorphism h X x G -- Y x H is said to be trivial
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if there is a Borel mapping A X Y x H satisfying

A(x)h(x,g) A(x. g) a.e. (x,g).

A homomorphism h (p, ) X G Y H between ergodic group actions is said to have

Mackey dense range if (x,h) p(x)h-* provides an ergodic decomposition of the skew product

G-space X H. In particular, a cocycle has Mackey dense range in the locally compact group

H if the skew product action is ergodic. An ergodic decomposition satisfies a universal property.

Namely, if f is a Borel function on X H with values in a countably separated Borel space and f
is essentially invariant, i.e. f(x. g, he(x, g)) f(x, h) a.e. (x, h, g), then there exists an essentially

unique Borel function F defined on Y such that F(p(x). h-) f(x,h) a.e. (x,h).
One can also restrict homomorphisms between measured groupoids. Indeed, if p0 X Y is

an extension of G-spaces, the homomorphism given by i(z,g) (po(z),g) from X G into Y G

is called an inclusion homomorphism. If h (p, ) is a homomorphism of Y G into W H,
the composition h o is called the restriction of h to X G and will be denoted by hlxa. So

hlxa(x,g) (p(po(x)),(po(x),g)) for all (x,g). The main result of this paper is the following

theorem and it is an extension of Proposition 2.1 in Fabec [2].
THEOREM Let h (p, ) X x G Y x H be a homomorphism with Mackey dense range

and let b (q, ) X x G ---, Z x K be a homomorphism between ergodic group actions.

Then b a o h for some homomorphism a Y H Z x K if and only if b[x,ga is trivial.

2. PROOF OF THEOREM. To organize and divide the proof, we will begin with two lemmas.

It will be shown that by changing a trivial homomorphism slightly one can change the ’almost

everywhere’ condition in (1.2) to one that will hold ’for all’.

LEMMA 2.1 Let W be a G-space and let W G K be a cocycle. Suppose W K

is a Borel mapping such that rl(w)(w,g rl(w. g) a.e. (w,g). Then there exist a cocycle

0: W x G K, a Borel mapping A2 W -- K, and a conull, Borel subset Wo of W with Wo" G
Borel satisfying

(a) A2(w)o(w, g) A(w g) for all (w, g),

(b) 0(w, g) (w, g) for all w e Wo G and g 6 G, and

(c) A(w)= rl(w a.e. w.

PROOF. Let J {(w,g) rl(w) rt(w. g)(w,g)-l}. If (w, gl) and (w. ga,g) are in J then

,(o. ala)(o,a,a)- ,(o. ala)(o, aa,a)-’(o,a)-a (o. al)(o,)- () .d o

(w, gigs) J. Since J is a conull, multiplicatively closed Borel subset of the groupoid W G, then

by Lemma A.4 in Fabec [2] and Lemma 5.2 in Ramsay [4] there is a Borel, conull subset W0 of W

such that

(i) if w, w .g W0 then (w,g) J,

(ii) W0" G is a Borel subset, and

(iii) there exists a Borel mapping 0 W0" G G such that O(w) e if w e W0,

nd w. 0(o) e W0 for all o e W0" G.
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If w E Wo. G then define As(w) zi(w O(w))(w,O(w))-1 otherwise set As(w) e.

Let o" W x G g be the cocycle defined by o(w,g) (w,g) if w E Wo" G, and if w Wo" G
set o(w,g) e. If w Wo" G,g G then (w. O(w),O(w)-gO(w g)) J, and cosequently,

A(w g)Vo(w, g)-1 (w gO(w g)) (w g, O(w g))-’ (w, g)-(. go(. g)) (,go(. g))-I (o()) (. o(), o()-gO(, g)) (, go(. g))-’
A(w). Hence, A=(w.g)o(W,g)-’ A=(w) for all (w,g).

LEMMA 2.2 Let b (q, ): W x G Z x K be a trivial homomorphism between

measured groupoids. Then there exist Borel mappings bo (qo, o) W G -+ Z K,

Ao (A1, A2): W Z x K, and a conull, Borel subset Wo of W with Wo" G Borel satisfying

(a) o: W x G g is a cocycle where o(w,g) (w,g) for all w Wo G and g e G,

(b) q(w)= qo(w) a.e w, and

(c) Ao(w)bo(w,g) Ao(w. g) for all (w,g).

PROOF. Let A (, r/) W Z x K be a Borel mapping satisfying

((w), y(w))(q(w), (w,g)) ((w. g),y(w, g)) a.e. (w,g). By Lemma 2.1 we can choose a cocycle

o: W x G -, K, a Borel mapping A2 W K, and a conull, Borel subset Wo with Wo" G Borel

such that (a)- (c) of Lemma 2.1 holds. Let g ((w,g): (w) (w. g)}. Since g is a conull,

multiplicatively closed Borel subset of the groupoid W x G then by Lemma A.4 in Fabec [2] and

Lemma 5.2 in Ramsay [4] there exists a conull, Borel subset W of W such that

(i) if w, w .g G W then (w,g) J,

(ii) Wx. G is a Borel subset, and

(iii) there exists a Sorel mapping 0: W-G G where O(w) e for w E W1, and. 0() e w, for n e w. G.

Let A W Z be the Borel mapping given by Al(W) (w. O(w)) if w e W1. G and if

w W1 G set Al(w) zo where zo is some fixed element of Z independent of w. If w W1 G

then (wO(w),O(w)-lgO(w g)) g and so Al(w. g) (w gO(w. g)) (TO(w)) Al(W). Thus,

Al(w" g)-- Al(w) for all (w,g).
Define a Borel map qo: W -- Z by letting qo(w) Ai(w)A(w). Since A(w) rl(w a.e. w

and (w). r(w) q(w) a.e. w then qo(w) q(w) a.e.w. Set bo (qo, 0) and Ao (A,A).
Then (Al(w),A(w))(qo(w), o(w,g)) (Ai(w. g),A2(w, g)) for all w,g. []

Turning to the proof of the Theorem, suppose b a o h. Since ’cohomologous’ defines an

equivalence relation, one can assume b a o h. If A(x, h) a(p(x)h-1, h) then A(x, h)b(x, g)
a(p(x)h-1, h)a(p(x), (x, g)) a(p(x)h-1, he(x, g)) a(p(xg)(x, g)-Xh-, he(x, g))
A(xg, h(x,g)). Thus, A(x,h)b(x,g) A((x,h). g) for all (x,h),g and blxHxa is trivial.

Conversely, suppose blxx,HxG X H x G Z K is trivial. According to Lemma 2.2,

with W X x H, there are Borel mappings bo (q0, o) X H G Z x K and

Ao (A1, As) :X x H Z x K and conull Borel subsets Wo, W2 C_ X H, with Wo" G Borel

for which

(a) 0 is a cocycle and Co(x, h,g) (x,g) for all (x, h) Wo" G,g G,

(b) q(x)= qo(x,h) for all (x,h) W2, and

(c) Ao(x,h)bo(x,h,g)= Ao(x. g,h(x,g)) for all x,h,g.
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Let W3 W2 fq (W0. G). Then bo(x,h,g) b(x,g) for all (x,h) 6 W3, g 6 G.
Set E {(x,h,h2) (x,h,),(x,h’hl) 6 Wz}. If (x,h,h2) 6 E, g 6 G then Ao(x,h)b(x,g)
Ao(x.g,h,(x,g)) and mo(x,h{lh)b(x,g) Ao(x.g,h{ahl(x,g)). In particular, by (1.1),
Ao(x, hl)Ao (x,hlh) -1

is a well-defined element of Z x K for all (x,h,h) 6 E. Fix a point

z0in ZanddefineaBorelmappingF:XxCHxHZxKby

Ao(x,h,)Ao(z,h{*hl) -1

if(x,h,,h)6EF(x,h,,h2)
(z0, e) otherwise.

Given g G,(x,h,h2) E such that (x.g, ha(x,g),h) E, then F(x.g, ha(x,g),h)

Ao(x,h)Ao(x,hh)- F(x,h,h). Since E is a conull, Borel subset and (x, h) p(x)h? is an

ergodic decomposition, there exists a Borel mapping a: Y x H Z x K satisfying a (p(z)h;, h)
ao(x,h)ao(x,hha)-1 a.e. (x,h,h). Moreover, a(p(x)h-,hh) (x,h) (x,hh{h)-(x, h) (x,h;h)-aao (x,h;ah) (x,hhh)- a(p(x)h-,h)a(p(x)h-h,h)
a.e. (x,h,h,h), and hence, a is almost multiplicative. By Proposition A.7 in Fabec [2], one c

sume a is strictly multiplicative. Since a is given as a pair of Borel maps, there exist a Borel

function s Y Z and a cocycle y Y x H K which by definition satisfies

OI(X, hl),A2(,hlOI(x,hlhl). A(z,h’h),A(z,h’h,)- (2.1)

for a.e. (x,h,h). So y (p(x)h;a,h) A(x,h)A(x,hh)- a.e. (x,h,hz). Set L(x,h)=
A(x,h)- (p(x)h-,h). Then L(x,hlh) A2(x,hh)- (p(x)h;ah2, hh)

a.e. (x,h,h). Since G is the only conull mutiplicatively closed subset of a group, L(x,hh)
L(x, h) a.e. h, for each h, a.e.x. Thus, by Lemma A.3 in Fabec [2], there exists a Borel mapping

B: X g such that B(x) L(x, h)-x a.e. (x, h). It follows from the definition of n(x, h) that

A(, ) (p()-, ) () a.,. (, ) (.)

and so

A (z g,h(x,g)) (p(x g)(x,g)-lh-a,h(x,g)) B(x g)

r (p(x)h-,h) rl(p(x),(x,g))B(x, g)

A2(x,h)B(x)-lq(p(x),(x,g))B(x. g) (2.3)

a.e. (x,h) for each g. On the other hand, A2(x. g,h(x,g)) A2(x,h)o(x,h,g) A2(x,h)(x,g)
a.e. (x, h, g) by (a) and (c). Together with (2.3), one obtains

(x,g) B(x)-Irl(p(x),(x,g))B(x.g) a.e. (x,g). (2.4)

Since s(p(x)h-) Aa(x,h)a.e. (x,h) by (2.1)and Aa(x,h)Ag.(x,h)= qo(x,h) for all (x,h) by

(c), then q(z)= s(p(z)h-)A(z,h) a.e. (x,h) by (b). Combining this with (2.2), one has

q(x) s (p(x)h-1) q (p(x)h-1, h) B(x) s (p(x)) B(x) a.e.x.
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Let r: X Z be the Borel function given by r(x) s (p(x)). So q(x) r(x)B(x) a.e. x and

s (p(x))0 (p(z), (x,g)) s (p(z)(x,g)) s (p(z. g)) r(x. g). Thus, by (2.4), one obtains

(r(x), B(x))(q(x), (x,g)) (s (p(x)), (p(x), (x, g)))(r(x, g), B(x. g)) a.e. (x, g).
Finally, we have to show a (s, r) satisfies (6) of the definition of a homomorphism. Let Z0

be an invariant analytic null subset of Z. So {x: s(p(x)) E Z0} is null iff {x: q(x)B(x)-1 e Z0}
is null iff {x: q(x) Zo" B(x)} is null iff {x: q(x) Z0} is null. Since b is a homomorphism,

(p- o s-1) (Z0) is null. Since h is a homomorphism and s-(Zo) is an invariant analytic subset of

Y, s-X(Zo) is null. Thus, a is a homomorphism and b is cohomologous to a o h. Q

3. SKEW PRODUCT ACTIONS. In this section, the Theorem is applied to study the

relationship between conjugacy of skew product actions and similarity of groupoids. The following

proposition is itself interesting and will be useful.

PROPOSITION 3.1 Let h (p,) X x G Y x H be a homomorphism with Mackey

dense range and suppose J (q, ) Y x H Y x H is a homomorphism such that J o h h.

Then J id where id(y,h) (y,h).

PROOF. Choose a Borel mapping B (Ba,B2) :X Y x H satisfying

a.e. (x,g). By Fubini’s Theorem, equation (3.1) holds a.e. x for a.e.g. But the set of all g for

which there exists a conull Borel subset Xg of X, depending on g, so that (3.1) holds on Xg
is a multiplicatively closed subset of G. Since G is the only conull multiplicatively closed subset of

G, then (3.1) holds a.e. x for each g.

Consider the mapping F: XH H g given by F(x, ha, h.)
Then F (x -g, h(x, g), h) haha(x, g)B.(x, g) (p(x. g), (x, g)-a hi’h)
hahlB2(x) (p(x), (x,g)) (p(x g), (x, g)-lh;l h2) hlhl B2(x)(p(x), h’lh2) F(x, ha, h2)
a.e. x, for each g, hl, and h2. Since F is invariant in its first two variables and (x,h) ---, p(x)h-1 is

an ergodic decomposition of X x H, there exists a Borel mapping C Y H -- H for which

C(p(x)h[a,h) hahlB(x)g2(p(x),h[ah2) a.e. (x,h,,h). (3.2)

Define r/: X g H by r/(x, hi)-- hlB2(x)(p(x),h[1). By using (3.1), rl(x.g, ha(x,g))=

haB(x)(p(x),ha) q(x,h) a.e. x for each g,h. Since J has Mackey dense range,

(x, h) p(x)h- is an ergodic decomposition of the the skew product G-space X H and thus

there exists a Sorel mapping : Y H such that (p(x)ha) haB(x)(p(x),h[a) a.e. (x, ha).
From (3.2), one finds C(p(x)h1, h) h h,B(x)(p(z), h[’)(p(x)h[, h2)

h(p(x)ha)(p(x)h[a,h) a.e. (x, ha, h). Also, by the definition of and (3.2), one

obtains (p(x)h-[lh) hhaB(x)(p(x),hlh) C(p(x)h[a,h) a.e. (x, ha,h).
Consequently, h(p(x)h[ h) (p(x)h[) (p(x)ha, h) a.e. (x, h, h). Thus,

(y)(y, h) h2(y, h) a.e. (y, h). (3.3)
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On the other hand, as a consequence of (3.1) and the fact that J is a homomorphism, one finds

p(x)h[l(p(x)h[1) p(x)h[ hiB2(x)(p(x), hi) p(x)B(x)(p(x), hi)
B(z)B(x)(p(x),h[) q(p(z))(p(z),h’) q(p(z)h[ 1) a.e. (z, hl). Thus, y-(y) q(y) a.e.

y and by (3.3), (y,f(y))(q(y),(y,h))=(y,h=)(y.h,f(y.h))a.e. (y, h2). Hence, g..id. []

COROLLARY 3.2 Let :X x G H be a cocycle with Mackey dense range.

Suppose J zs an endomorphism of H such that J o . Then J is an inner conjugation.

PROPOSITION 3.3 Suppose h (p, ):X x G Y x H and

h’ (p’, ’) X x G Y’ x H’ are homomorphisms with Mackey dense range. If the skew product

G spaces X x H and X x, H’ are conjugate extensions of X then Y x H and Y’ x H’ are similar

groupoids.

PROOF. If X x H and X , H’ are conjugate extensions of X then there is a Borel

mapping f: X H H’ satisfying (z. g,h(z,g)) (z,h). ’(z,g) a.e. (z,h) for each g.

Let c: XH Y’ be the Borel mapping given by c(z, h) p’(z).f(z, h)-. Then c is G-invariant

since c ((z, h)- g) p’(z.g)(z.g, he(z, g))- p’(z.g)’(z, g)-(z, h)- p’(z)(z, h)- a(z, h)
a.e. (z,h) for all g. Consequently, ((z,h),f(z,h))(p’(z),’(z,g)) (a((z,h).g),f((z,h).g))
a.e. (z,h) for all g and so h’lX x H x G is trivial. Similarly, hlX , H’ G is trivial.

By the Theorem, there must exist homomorphisms J and J’ such that J’ o h’ h and J o h h’.

Thus, J’ o J o h h and J’ o J id follows by Proposition 3.1 Similarly, J o J’ id.

This shows Y H and Y’ H’ are similar groupoids. [3

In Proposition 3.3, if Y and Y’ are points one obtains an interesting corollary that extends

Theorem 1.3 in Fabec [1]. Also, if X is a point, the problem stated in the introduction is answered.

COROLLARY 3.4 Suppose :X x G H and X x G K are cocycles with Mackey

dense range. Then the following are equivalent

(a) restricted to X x K x G and restricted to X x H x G are both trivial

(b) there is an isomorphism J from H onto g such that J o is cohomologous to

(c) the skew product actions of G on X x H and on X x K define
conjugate extensions of X.

PROOF. If (a) holds then by the Theorem, there are homomorphisms J H K and

J. K H such that Jl O and J o . So J o J o and J2 o J o .
By Corollary 3.2, J1 must be an isomorphism and (b) is proved.

If (b) holds then there is a Borel map A: X K satisfying J((x,g)) A(z)(x,g)A(x. g)-
a.e. z for each g. Let : X xcH X xcK be the function given by (x, h) (x,J(h)A(z)). Then

(x. g,h(x,g)) (x. g,J(h)J(x,g)A(x, g)) (x. g,J(h)A(x)(x,g)) (x,h).g a.e. (x,h)
for each g. Note, is a Borel isomorphism whose inverse is given by l(x,k) (x,g- (kA(x)-)).
Moreover, a direct calculation shows .(# mH) mg where mH and mg are Haar measures

on H and K, respectively. Thus, X H and X K are conjugate extensions of X.

Finally, in the proof of Proposition 3.3 it is shown (c) implies (a). []
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