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ABSTRACT. We consider the semilinear elliptic eigenvalue problem

Lu + f(x, u) #u in ft,(r > 0),
u 0 on 0ftr

The asymptotic behavior of the variational eigenvalues/z =/z (r, a) obtained by Ljusternik-Schnirelman
theory is studied when the domain [20 is deformed continuously. We also consider the cases that

Voi ftr O, oo as r oo.
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INTRODUCTION.
In this paper we consider the following semilinear elliptic eigenvalue problem:

Lu + f(z, u) -/u in ft,(r >_ 0),
u 0 on Oftr (1.1)

where ft,(r > O) is a bounded domain in RN(N > 3) with smooth boundary Oft,. Let us assume that

(A.1)

:= +
,,j=l

ao > O, aij ai(i,j= 1,2,...,N),

is a formally self-adjoint uniformly elliptic operator with suitably regular, bounded coefficients a/j, a0

defined on an open set ft := t_J 0<,<ooft,. Furthermore, let us assume the following condition (A.2):
(A.2) Suppose that at least one ofthe following conditions is satisfied:

(A.2.1) f" ft R-- R is continuous, odd in u, that is, f(x,- u)= -f(x,u), uniformly
N+2continuous as a function ofx for any fixed u E R and there exist constants C1, C2 > 0 and 0 < h <

such that

If(x,u)l < Cllu[h -" C2. (1.2)

Furthermore, for all (z, u) e ft R,
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F(x, u) := f(x, t)dt >_ O

(A.2.2) f satisfies (1.2)for 0 < h < 1 + .
The main results in this paper concern the asymptotic behavior of the variational eigenvalues

/z =/z,(r, a) of (1.1) obtained by Ljustemik-Schnirelman (LS) theory when the original domain ft0 is

deformed continuously. It is well known (of. Courant-Hilbert [5]) that the n- th eigenvalues of the

linear eigenvalue problems vary continuously when the original domain f0 is deformed continuously.

However, it seems few results corresponding to this classical linear result are obtained for nonlinear

eigenvalue problems. As is well known, the classical results of linear eigenvalues due to Courant-
Hilbert [5] can be partially generalized to the nonlinear case by virtue of (LS)-theory. In particular,

Chiappinelli [2-4] considered such problem as (1.1) by using (LS)-theory from a standpoint of L2-theory
(L2-(LS) theory) and succeeded to obtain the asymptotic formula of variational eigenvalues analogous to

Weyl’s formula. Hence, it seems available to deal with the problem (1.1) under the framework of
Lg--(LS) theory.

Motivated by this, we shall consider the classical problem of deformation of a domain for semilinear

elliptic eigenvalue problem (1.1) by using L-(LS) theory and shall study the asymptotic properties ofthe

ariational eigenvalues of (1.1). We also deal with the cases that the volume of

We shall explain notations before stating our results. Let

0
z (z,z., ...,z),D, b-z,’ IfZl Lebesgue measure of fZ,..

C denotes various constants independent of r. For 0 < r < oo, let X, := W’2(ft,) be the usual

Sobolev space and Xtr the dual space of X,.. Let

(u, v)x, :- [ 7 u v vdx, Ilullc, :- (u, u)x,, u, v X,

(w, u), the pairing between w E X and u X

Cr,o(U := 1 ai.i(x)DiuD.iudx q- - a,o(x)u2dx for u . X,.

For a fixed ex > 0, we set

,.(u) ,,0(u) +/a, F(x, u)dx for u E X

For a closed, symmetric u E K whenever u E K) subset K C X with 0 K, the genus of K is

defined by

7(K) min{n E N" there exists H" K R"\{0}, continuous and odd}

We put

K,,,(c) {K c M,," compact, symmetric, 0 K, 7(K)= n}.
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We denote by #, (r) the n th eigenvalue of the corresponding linear eigenvalue problem (i e., f O)

of(.).
Now we shall give the definition of the variational cigcnvaluc #,(r, a). Wc cl (r, ) the

th variational cigcnvaluc of (I I) if the associated cigcnnction u (r, a) Mx satisfies

2(u.(r,a)) C.(r,a):= inf sup 2(u) (1 4)
KK, uK

It should bc remarked that (r, a) is given explicitly by

(,) (’((,)),(,))
2

where ’ is the Gteaux devative of.
We can now state our assumptions and present our main results. We assume that satisfies one

ofthe follong conditions (D. )-(D.3):
(D. I) There ests a bounded domain c R# with smooth bound md C-diffcomosm

such that as r

J(x) := d(x) IN ufoy in x Q (1.5)

where J(x) d IN stud for the Jacobi matrix of d the ut N x N matrix, respectively.

(D.2)

lim n, l=O, lim#.(r)=.

.3) There efists a C-diffeomosm o , a constt C > 0 and a positive nction

A(r)(A(r) as r ) such that fory r 0d z o
c-l(r) l,r(X) 2.r(X) N,r(X) C(r)

where Asx(x)(j 1,2 ,N) is the j-th eigenvue ofthe N x N setfic matrix J(x)tj(x)(J(x)t"

the trsposed matrix of J(x)). Fuheore, there est nstts k th 0 k h d C > 0 such

that fory u 0d x

c s l/(z, )1 (.6)

EOM 1. Assume (A.1), (A.2) d .l). Let {(,)} be the set of the n-th

vation eigenvues of (1. l) th replaced by . Then for y fixed a > 0 d n N, there
ests e {(, a)} d a sequence {(rs, a)}(r as j ) such that

= lim ,(rs, a
j

OM2. Suppose that one ofthe follog conditions is tisfied:

(1) (A.1), (A.2.2), (1.3) d .2),
(2) (A.1), (A.2.1), .2)d the follong (1.7): for l (x, u) x R

f(x, u)u 2F(x, u) 0. (1.7)

Then for y fixed a > 0, (r, ) as r .
EOM 3. sume (A.1), (A.2.1) d .3). Then for y fixed a > 0, the follong

propeies hold

(a) If k > 1 d C2 0, then (r, a) 0 as r .
) If N>4,0h<l,Ok< g- d f(z,u)>O for x d u>O, then
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REMARKS. (1) The restriction of h in (A 2 2) comes from the existence result of variational

eigenvalues For the existence of variational eigenvalues on the manifold M,.,., we need to show that

is bounded below on Mo.r Clearly, /, is bounded below if (1 3) is satisfied. Hence, the existence
N+2theorem holds for 0 < h < under the condition (A 2 1) (see [2, Lemma 2])

If (1 3) is not assumed, then in order to obtain the boundedness from below, we apply the follow-

ing interpolation inequality, which is a direct consequence of the Sobolev embedding theorem for

h+l h+l-7 I1’ (1 8)

2N Then the inequality (1.8) and directwhere 7 0<7 </(h):=(N/p0)(po-(h+l)),po- N-2

calculation lead us to the following inequality (see [4, Theorem ]): on M,.

y,(u) > Cllull CcllullxWh-9/2 C CX’r

Here/3 (p + 1) (p 1)N/2. Hence, the restriction h < 1 + occurs.

(2) The condition (D.2) is satisfied, for example, under the condition that the lattice packing

density 6(At) is bounded below (see, e.g. Urakawa [6]).
(3) Under the suitable regularity condition on a,, a0 and f, (1.1) is equivalent to its weak

formulation, namely, that of finding u E Xr and # E R such that for any v X
N

Hence, in what follows, we consider (1.9) instead of (1.1).
2. PROOF OF THEOREM 1

We begin with showing the following important fact.

LEMMA 2.1. Assume (A. 1), (A.2) and (D. 1). Then for any fixed a > 0 and n N,

C,(r, C (oo, a).

PROOF. Supposing that the assertion does not hold, we shall derive a contraction. Since

In what follows, we denote any subsequence of {ra} by {ra} again. There are two possible cases: there

exists a subsequence of {r} such that

(1) C.(r,a) _>
(2) C. (r, or) _< C.(oo, c).

Since both cases can be treated similarly, we consider only the case that (1) holds. By definition of

C,, (oo, c), there exists K e Kn,oo (c) such that

We put

0 _< sup 2boo(u) Cn(oo, a) < (2.2)
uK 2

C,(r,c) does not converge to C,(oo, c) as r - oo, we can choose a constant 6 > 0 and a sequence
{r}__ such that r oo asj oo and

IC.(ra, a)- C.(oo, a) > i. (2.1)
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Then it is clear that the mapping G1 K K and Go. Kj K2.1 are odd homeomorphisms under the

condition (D 1) More precisely,

Gl(-V)=--vo(b,:-Gl(V), v K,G(-u)=

and by (D. 1) G1 and G2 are homeomorphisms. Since the genus is preserved by odd homeomorphisms,
we have

’)’(K3,1 ’)’(K) 7(K) n,

and hence K2,1 E Kn,r:(a). Then, noting that Cn(r3, a) < sup,K,.12@r:(u), we obtain by (2.2) that

Cn(rj, a)-C(oo, ce)-C(r3, a)- sup 2,(u)+ sup
"a C K3,1 zt C K2,1

sup 2/,,., (u) sup 2ap,., (u) sup 2oo (u)
u e K u e g u E K
sup 2apoo(u
uK

sup 2(u)- sup 2,(u)
e g. eg

5
:=I+I2+-

2

+ sup 2p,, (u) sup 2,o, (u)
uCK uCK

(2.3)

+-
2

We shall estimate I1. At first, we consider the case that there exists a subsequence of {r } such that

sup ,,(,) > sup ,,(,). (2.4)

Since K is a compact in Xr,, we can choose vj Kj which attains the supremum ofthe left hand side of-- E K31. Then by (1 5), we easily obtain that cb a as(2.4). We put o IIvll.,, and w ’
j oo, and moreover,

sup II,llx,, < C < oo. (2.5)
j_J,uCK

from which it follows that

Then using (1.5), (2.5) and (2.6), we obtain by simple calculation that j ---, oo

I _< 2r, (v)- 2,(w) <_ 6’ 1- 0.

In the same way as that used above, we can also choose a subsequence of {r} such that 11 0 as

j oo in the case that there exists infinitely many j satisfying

sup 2/,,.: (u) < sup 2,,.: (u)
u e Kj u e Kj.1

Consequently, we can choose a subsequence of {r} such that I1 --* 0 as j -- oo.

As for 12, by the same method as that used above, we can also choose a subsequence of {ra} such

that 12 0 as j - oo. Thus, it follows from (2.3) that C(r3, a C(oo, a) < for sufficiently large

j. This contradicts (2.1). Thus the proof is complete. I"1
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For ro >> 1, we consider the mapping tI,-I
r0

o I,r" f/0- Since by (1.5), J,;oo,. (z) IN uniformly

in z 6 fr as r r0, we obtain the following corollary by the same argument as that used in Lemma 2.1.

COROLLARY 2.2 Assume (A.1), (A.2) and (D.1). Then for a fixed a > 0 and n N, Cn(r,a)
is continuous with respect to r for 1 << r <

Let us introduce the following lemma due to Chiappineili [2].
LEMMA 2.3 ([2, LEMMA 5]). If (A. 1), (A.2 1) and either (D 1) or (D 2) are satisfied, then there

exist constants C3, C4 > 0 such that for 0 < r < oo and n N

[Cn(r, c C2/./,n(r, )1 <_ C319(Cn(r, ot))N(h-1)/4 q-C40t (2 7)

where/ (p + 1) (p 1)N/2
LEMMA 2.4. Assume (A 1), (A.2) and (D. 1). Then {#, (r, a) r >> 1 } is bounded.

PROOF. If (A. 1), (A.2.1) and (D. 1) are satisfied, then the assertion is the immediate consequence
of Corollary 2 2 and (2.7).

Next, assume that (A. 1), (A.2.2) and (D. 1) are satisfied. At first, let h > 1. Then

[C.(r, a) a2#n(r, a)l [%bno(un(r, a)) -F 2In F(x, un(r, a))dx

-(P,0(un(r,o)) + fn.f(x,u(r,a))u.(r,)dx)
2fF(x,u(r,a))dx-/ff(x, un(r, cr))un(r, cr)dx

<_ cf Iu.(r,)lhldx +C (2.8)

By setting 3’ =/ := b(h) (h + 1) (h 1)N/2 in (1.8), we obtain that for u 6 X

lulh+ldx < CaB u[2dx (2.9)

Then we obtain by (2.8) and (2.9) that

(fFt )N(h-1)/4IC,,(r,a)- a2#,(r,a)l < CaB IVu,,(r,a)12dx +Ca. (2.10)

By ellipticity, we have by (2.8) and (2.9) that

fn 7u(r,a)12dx <_ Ceno(u(r,a)) C[C(r,a) 2 fF(x,u.(r,a))dx
< C(C(r,a) +f lu.(r,a)’h/ldz)

( is. )"-’" )_< C C.(r,)+Cz Ivu.(r,a)ldz +Ca (2.11)

Since 1 < h < 1 + and Cn (r, a) is bounded by Corollary 2.2, it is obvious by (2.1 l) that

I]u,(r, a)]]x _< C. (2.12)

Now, by (2.10) and (2.12) we obtain

I.(, )1 _< Ic.(n )1 / Ic.(n )- ..(n )1 _< c /c. (2.13)

Thus the proof is complete for h > 1.
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If 0 < h < 1, then by Chiappinelli [3, Theorem 2.2] we have

I/n(r,t)-/n(r)l C (2 14)

Thus the conclusion immediately follows from (2 14) ["1

By Lemma 2 4, we may assume that #o limr-.#n(r,a); otherwise, we choose a suitable

subsequence. Let

Vn(r) Un(r,o) o-1E Xo,otr Ilv.(r)llu,oo, w.(r)
av,(r)

Mo.o

LEMMA 2.5. Assume (A. 1), (A 2) and (D. 1). Then

sup II-()llxoo C < oo. (2 15)
r>>l

PROOF. At first, we assume (A.1), (A.2.1) and (D.1). Then by (A.1) and (1.3) there exists a

constant C6 _> 0 such that

Ilu(r, )11X <-- 66113r,0(un) C6br(un) C6Cn(r,t) (2.16)

Then by Corollary 2.2 it is clear that Cn(r, a) is bounded for 1 << r _< c. Therefore, we obtain our

assertion by (1.5) and (2.16).
Next, we assume that (A.1), (A.2.2) and (D.I). Multiplying (1.1) by #,(r,a) and integration by

parts together with the fact that un (r, a) E M,,r, we obtain

2’(u’(r’ a))+/a, f(x,u,(r,a))u(r,a)dx #(r,a)t2 (2.17)

If 0 < h < 1, then by (1.2) and HOlder’s inequality we obtain

ff f(x, u(r, ))un(r, a)dx -</o Cll(U’(r’a)lh+l + O.lu,(r,)l)d
(2.18)

Since {#,(r, a) r >> 1} is bounded by Lemma 2.4, we obtain by (2.17) and (2.18) that

Ilu(,)llc c,,o((,)) < c. (2.19)

If h > 1, then our conclusion is exactly (2.12). Now (2.15) is an immediate consequence of(1.5).

LEMMA 2.6. There exists a subsequence of {w,(r)} such that as r --, oo

[3

:=
t

w(r) 0 in X’ (2.20)IX)"

PROOF. We set So := {v e Xoo Ilvllx }. For v e Soo, we put vr v o ,Ir 6 X. For

P-- (Pl,,...,PN) RN and q (ql,q2,’",qN) 6 Rv, we set (P,q)i. P,q for i,j 1,2,...,N.

Then we obtain that
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(2.21)

On the other hand, since u, (r, a) satisfies (1 1), we have for any vr

N

f a,3(x) un(r,o)vrdx-q- f f(x, un(r,o))vrdx
,3=

a-2(2br,o(un(r,a)) W ff(x, un(r, ot))un(r,a)dx) un(r,c)vrdx (2.22)

We compare (2.21) with (2.22). Then noting that supr>>l,,,esollvrllx, < C and ar a as r co, we

can easily obtain (2.20) by direct calculation using (1.5), (2.21) and (2.22). rl

Now we are in the position to prove Theorem 1.

PROOF OF TItEOREM 1. Since we know from Chiappinelli [2, Lemma ], [4, Theorem that
the functional o0 satisfies the parais-Smale condition on M,,, that is, the sequence {y} C M,,oo
satisfying (2.15) and (2.20) contains a strongly convergent subsequence in Xoo. Hence, by Lemma 2.5
and Lemma 2.6 we can choose a subsequence of {w(r)}, which converges strongly to some uo 6 M,.
in Xoo. By definition of w, (r), we can easily find by letting r co in (1.9) that uoo and #oo satisfies

(1.9).
Finally, we have only to show that 2boo(Uoo) C,,(co, a), which follows immediately from (1.4),

(1.5), the definition ofw,, (r) and Lemma 2.1. Thus we get Theorem 1. El

3. PROOF OF THEOREM 2 AND THEOREM 3.

PROOF OF THEOREM 2. Ifwe assume (A.1), (A.2.2), (1.3) and (D.2), then by Chiappinelli [2,
Theorem 6] we know that for I < h < 1 + N

4-

#n(r, C)= #n(’?’)+ O(#n(r)N(h-1)/4);

this implies our consequence. If 0 < h < 1, then our conclusion follows immediately from (2.14) and

(D.2).
Ifwe assume (A. 1), (A.2.1), (D.2) and (1.7), then we obtain by (1.3), (1.7) and (2.17) that
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a2#,(r)= inf sup 2,,0 (u) <_ inf sup 2ap(u)
KK,, uK KK, uK

Cn(r,o) ,0(u.(r,o))+2 F(x,u.(r,o))dx

,0(u(r, )) + f f(x,u(r,))u(r,)dx o2.n(r,

Thus the proof is complete !-!

We shall prove Theorem 3 in the rest of this section.

PROOF OF TIIEOREM 3 (a). Under the condition (D 3), it is easy to show by mini-max

principle that #,(r) 0 as r co. Furthermore, it is easy to see that the constants C3 and C5 in

Lemma 2.3 do not depend on Ifl Since C2 0, we know from Chiappinelli [2, Lemma 5] that C4 0

in (2.7) and that

Cn(r, 0) _< c2n(r) -- CTOt+N(h-1)/2(Zn(r))N(h-1)/4where/3 (h + 1) (h 1)N/2. Hence, we see that Cn(r,a) --, 0 as r co. Now Theorem 3(a)
follows immediately from Lemma 2.3.

PROOF OF THEOREM 3(b). We assume that {#n(r,a)} is bounded and derive a

contradiction. For u E Mo,r, we write vr u(b(x)) Xo. By (D.3), we obtain that

a2 gf lu(y)12dy= .v(x)l IJ(x)ldx (3.1)

c-l(r)N/2 f Ivr(x)12dx <- fo Ivr(x)12 IJr(x)ldx C(r)N/2 ffto Iv(x)12dx (3.2)

Weset v,(r,a) =u(r,a) o(x) Xo w(r) ") Then it follows om (1.5), (1.6) d (3.1)IIv.()ll,0

that

a2pn(r,a) 2,o(u(r,a)) + . f(x, un(r,a))un(r,a)dx

(.

CA(r)N/ellv(r,)ll+lf Iw(r,)l+dx
C(r)N(1-k)/4 f Iw(r, )l+dx

Since {llu(r, a)llx} is bounded by (3.3), we obtn by .3) that

f W v(r,)(x)ldx u(r,)(Y)l IJ((y)Idy

ca()N/ f I(,)(u)ldu CA()N/

wch together th (3.2) and (3.3) implied that

L Iw(r’a)(x)ledx live(r, a)llg L V v(r,a)12dx C(r)N (3.4)

We obtn by Berger 1, p. 43] that

Ilw(r, )112,0 < CIIw(, )11+1,0 Ilw (, )llf (3.5)

N(1-k)where N(-k)+2(+) Hence, it follows from (3.3)-(3.5) that
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1 < CA(r)-BN(1-k)/(4(I+k))A(r)N(1-B)/2 CA(r)N/2-N(3+k)B/(4(l+k))

Then the exponent of A(r) in (3.6) is: ifN > 4 and k < N-2, then

N(2_ 3+k ) N (4-N)k2+2(N+4)k+(4-N)-- l+k
fl 4(1+k) N(1-k)+2(l+k)

(3.6)

This is a contradiction, since A(r) oo as r oo Thus we get Theorem 3(b). El
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