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ABSTRACT. We consider the semilinear elliptic eigenvalue problem

Lu+ f(z,u)=pu in Q. (r>0),
u=0 on 09,.

The asymptotic behavior of the variational eigenvalues 2 = p,,(r, @) obtained by Ljusternik-Schnirelman
theory is studied when the domain €, is deformed continuously. We also consider the cases that
Vol(Q,) — 0,00 as r — oo.
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1. INTRODUCTION.
In this paper we consider the following semilinear elliptic eigenvalue problem:

Lu+ f(z,u)=pu  in Q. (r>0), 1
u=0 on 99,. ’
where Q,(r > 0) is a bounded domain in R¥ (N > 3) with smooth boundary 8Q,. Let us assume that
(A1)
N
d du
Lu:= — Z — (aij("’)g.;) +ao(z)u,

ti=1 6::,-

a >0, a’t]=a]l(i1.7= 112,~"1N) ’

is a formally self-adjoint uniformly elliptic operator with suitably regular, bounded coefficients a;;, ap
defined on an open set 2 := U o<r<o0f2-. Furthermore, let us assume the following condition (A.2):
(A2) Suppose that at least one of the following conditions is satisfied:
(A21) f:QxR— R is continuous, odd in u, that is, f(x, — u) = — f(z,u), uniformly
continuous as a function of z for any fixed u € R and there exist constants C;,Cs > 0and 0 < h < %
such that

|f(z,w)] < Cilul* + C; (12)

Furthermore, for all (z,u) € Q X R,
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F(z,u) = /Ouf(:r,t)dtZO. (1.3)

(A22) fsatisfies(1.2)for0<h <1+ %

The main results in this paper concern the asymptotic behavior of the variational eigenvalues
u = p,(r,a) of (1.1) obtained by Ljusternik-Schnirelman (LS) theory when the original domain Qp is
deformed continuously. It is well known (cf. Courant-Hilbert [5]) that the n — th eigenvalues of the
linear eigenvalue problems vary continuously when the original domain €y is deformed continuously.
However, it seems few results corresponding to this classical linear result are obtained for nonlinear
eigenvalue problems. As is well known, the classical results of linear eigenvalues due to Courant-
Hilbert [5] can be partially generalized to the nonlinear case by virtue of (LS)-theory. In particular,
Chiappinelli [2-4] considered such problem as (1.1) by using (LS)-theory from a standpoint of L?-theory
(L2«(LS) theory) and succeeded to obtain the asymptotic formula of variational eigenvalues analogous to
Weyl's formula. Hence, it seems available to deal with the problem (1.1) under the framework of
L%-(LS) theory.

Motivated by this, we shall consider the classical problem of deformation of a domain for semilinear
elliptic eigenvalue problem (1.1) by using L2-(LS) theory and shall study the asymptotic properties of the
variational eigenvalues of (1.1). We also deal with the cases that the volume of 2, — 0, co asr — oo.

We shall explain notations before stating our results. Let

z = (z1,%2,...,ZN), D, = Bi' [2-] : Lebesgue measure of €, .
T,

C denotes various constants independent of r. For 0 <r < oo, let X, := WOI'Q(Q,) be the usual
Sobolev space and X/ the dual space of X,. Let

(u,0)y, = L vuvvde, fulll, = (uu)x,uv € X, ,

1/q
lull,, = ( / |u<z)|qu> :

(w,u), : the pairing between w € X, and u € X, ,

Yro(u) = - Z/ a;j(z)DyuDjudz + ~ / ao(z)u’dz for ue X,

1,5=1

Yo (u) = P o(u) + /Qr F(z,u)dz for ueX,.

For a fixed a > 0, we set
Mo, = {u€ X, : |ulf, = o’} .

For a closed, symmetric (— u € K whenever u € K) subset K C X, with 0 ¢ K, the genus of K is
defined by

~(K) = min{n € N : there exists H : K — R"\{0}, continuous and odd} .

We put
K, (o) ={K C M,,: compact, symmetric, 0 ¢ K,v(K) =mn}.
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We denote by p,(r) the n — th eigenvalue of the corresponding linear eigenvalue problem (i e., f = 0)
of (1.1).

Now we shall give the definition of the variational eigenvalue . (r,a). We call p,(r,a) the
n — th variational eigenvalue of (1 1) if the associated eigenfunction u,(r, a) € M, , satisfies

2, (un(r, @) = Cn(r,a) = Kein%,,_, uSng 29, (u) . 14

It should be remarked that p,(r, a) is given explicitly by
_ (W (un(r, @), un(r, a)),

/J'n(r)a) - 02

where /. is the Giteaux derivative of ,..

We can now state our assumptions and present our main results. We assume that €2, satisfies one
of the following conditions (D.1)-(D.3):

(D.1) There exists a bounded domain Q, C R with smooth boundary and C’-diffeomorphism
®,: Q, — N suchthat asr — oo

J(z) == Jg, (x) —» Iy uniformlyin z € Q, , (1.5)

where Jg_(z) and Iy stand for the Jacobian matrix of ®, and the unit N x N matrix, respectively.
(D.2)

lim |Q,] =0, limpy,(r)=o00.
=00 r—00

(D.3) There exists a C‘-diﬁ‘eomorphism ®, : Q — Q,, a constant C' > 0 and a positive function
A(r)(A(r) — oo as  — 00) such that for any r > 0 and = €

CINr) < Ap(z) < Mgplz) € ... < An(z) < CX(r) .

where A, (z)(j = 1,2,..., N) is the j-th eigenvalue of the N x N symmetric matrix J,(z)'J,(z)(J,(z)":
the transposed matrix of J,.(z)). Furthermore, there exist constants k with 0 < k < h and C > 0 such
that foranyu > Oandz € Q

Cu* < |f(z,u)| . (1.6)

THEOREM 1. Assume (A.1), (A.2) and (D.1). Let {¢,(co,a)} be the set of the n —th
variational eigenvalues of (1.1) with Q, replaced by Q,,. Then for any fixed « > 0 and n € N, there
exists ., € {u,(00, @)} and a sequence {p,, (r,, a)}(r; — co as j — oo) such that

Bo = lim p.(r;a).
Jj— o
THEOREM 2. Suppose that one of the following conditions is satisfied:
(1) (A1), (A22),(1.3) and (D.2),
(2) (A.1), (A2.1), (D.2) and the following (1.7): for all (z,u) € 2 x R

flz,u)u — 2F(z,u) >0 . 1.7

Then for any fixed o« > 0, p,,(r,a) — coasr — oo.

THEOREM 3. Assume (A.1), (A.2.1) and (D.3). Then for any fixed a > 0, the following
properties hold:

(@ Ifk>1andCy =0,thenpy,(r,a) » 0asr — oo.

®) If N>40<h<1,0<k<¥2 and f(z,u)>0 for £€Q and u>0, then
pa(r,a) = coasr — oo.
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REMARKS. (1) The restriction of k in (A 2 2) comes from the existence result of variational
eigenvalues For the existence of variational eigenvalues on the manifold M, ,, we need to show that v,
is bounded below on M, , Clearly, ¥, is bounded below if (1 3) is satisfied. Hence, the existence
theorem holds for 0 < h < xfg under the condition (A 2 1) (see [2, Lemma 2])

If (1 3) is not assumed, then in order to obtain the boundedness from below, we apply the follow-
ing interpolation inequality, which is a direct consequence of the Sobolev embedding theorem for

€ Wy*(Q)

lullfitt < Cll v ulls™ I} (18)

where 7:0 <y < B(h) == (N/p)(p — (h +1)), pp = 2% . Then the inequality (1.8) and direct
calculation lead us to the following inequality (see [4, Theorem 1]): on M, ,

¢, (w) > Cllully, - Ca®|ull X" - € - Car.

Here 5 = (p+1) — (p — 1)N /2. Hence, the restriction h < 1+ ﬁ occurs.

(2) The condition (D.2) is satisfied, for example, under the condition that the lattice packing
density 6(A;) is bounded below (see, e.g. Urakawa [6]).
' (3) Under the suitable regularity condition on a,;, ap and f, (1.1) is equivalent to its weak
formulation, namely, that of finding u € X, and g € R such that for any v € X,

N
/a,](a:)D,uDJvda:+/ ao(a:)uvda:+/ f(x,u)vdx:u/ uvdz . (1.9
1 Ja, r o Q.

1,]=

Hence, in what follows, we consider (1.9) instead of (1.1).
2. PROOF OF THEOREM 1
We begin with showing the following important fact.
LEMMA 2.1. Assume (A.1), (A.2) and (D.1). Then for any fixed @ > 0andn € N,

lim C,(r,a) = Cp(00,a) .

PROOF. Supposing that the assertion does not hold, we shall derive a contraction. Since
C,(r,a) does not converge to C,(o0,a) as r — oo, we can choose a constant § > 0 and a sequence
{r;}32; such that r, — coas j — ocoand

|Cr(r),a) — Cr(o0,@)| > 6. 2.1

In what follows, we denote any subsequence of {r,} by {r,} again. There are two possible cases: there
exists a subsequence of {r,} such that

(1) Cu(rj,a) > Cp(oo,a),

) Cu(r),a) < Cp(o0,a).
Since both cases can be treated similarly, we consider only the case that (1) holds. By definition of
C,, (00, a), there exists K € K, (a) such that

)
0< sup 29, (u) — Cp(oo,0) < = . 2.2)
ue K 2
We put
au
K,={peX,: u:vo@,J,ve K}, K;1 = {v: il U € KJ} CM,,, .
2,r,
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Then it is clear that the mapping G, : K — K, and G2 : K, — K, ; are odd homeomorphisms under the
condition (D 1) More precisely,
Gi(-v)= —vod, = —Gi(v), vEK,Gp(—u) = ﬁi‘i = - G(u), ueK,,
u 2,r,
and by (D.1) G; and G, are homeomorphisms. Since the genus is preserved by odd homeomorphisms,
we have

V(K1) =v(K,) =vK)=n,

and hence K ; € K, (a). Then, noting that Cy,(r,, @) < sup,. K, 211:,] (u), we obtain by (2.2) that

Cn (7‘],0) - Cn(oova) = Cn(rj1a) - sup 2¢r1 (u) + sup 2¢r, (u)

u€ K, u€ K,
+osup 2, (w)— sup 26, (W)= sup 2(u)
u€ K, v €K u€ K

+ sup 2y (u) — Cp(oo, )
ue K 23)

é

<| sp 2w~ sp 20, ()| +| sup 20, (W)~ sup 2 (W) +

ue K, u€ K, u€eE K, u€e K 2
é
::Il+12+5.

We shall estimate I;. At first, we consider the case that there exists a subsequence of {r,} such that

sup 20, (u) > sup 2, (). @4
u € K, ’ u€ K, !

Since K is a compact in X, , we can choose v; € K; which attains the supremum of the left hand side of
(24). We put o, = [[v,ll,, and w, = T2 € K,1. Then by (1.5), we easily obtain that &) — o as

j — oo, and moreover,

sup llullx, <C <oo. (2.5)
jeJuck, 7
from which it follows that
I I, < 0(1 i ) (2.6)
v; — w; -—). .
i~ Willx, = a;

Then using (1.5), (2.5) and (2.6), we obtain by simple calculation that j — oo
B < 20, 0) - 2, ) < (1 2) 0.
J
In the same way as that used above, we can also choose a subsequence of {r,} such that I; — 0 as
Jj — oo in the case that there exists infinitely many j satisfying

sup 20, () < sup 29, (u).
u€e K j u €K il
Consequently, we can choose a subsequence of {r,} such that I; — 0 as j — oo.
As for I, by the same method as that used above, we can also choose a subsequence of {r,} such
that I, — 0 as j — oo. Thus, it follows from (2.3) that C,,(r;, a) — Cp(00, &) < % for sufficiently large
j. This contradicts (2.1). Thus the proof'is complete. [
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Forry > 1, we consider the mapping <I>,'0 'o®, :Q,,. Sinceby (1.5), J,,,’-;o,,.' (z) — Iy uniformly
inz € Q, as r — ry, we obtain the following corollary by the same argument as that used in Lemma 2.1.

COROLLARY 2.2 Assume (A1), (A.2) and (D.1). Then for a fixed« > O and n € N, C,(r, a)
is continuous with respect to 7 for 1 < r < oo.

Let us introduce the following lemma due to Chiappinelli [2].

LEMMA 2.3 ([2, LEMMA 5)). If(A.1), (A.2 1) and either (D 1) or (D 2) are satisfied, then there
exist constants C3, C4 > Osuchthatfor0<r<ooandn € N

|Cn(r, @) — &P, (r, )| < C3P(Cp(r, @)V PV 4 Cha, 27

where 6= (p+1)—(p—1)N/2

LEMMA 2.4. Assume (A 1), (A.2) and (D.1). Then {,(r,a) : r > 1} is bounded.

PROOF. If(A.1), (A.2.1) and (D.1) are satisfied, then the assertion is the immediate consequence
of Corollary 2 2 and (2.7).

Next, assume that (A.1), (A.2.2) and (D.1) are satisfied. At first, let h > 1. Then

|Ca(ry ) — 0y (1, )] = [ (un(r @) +2 /Q F(z, un(r, a))dz

- (d’r,o(‘un("»a))+ /Qr f(r,u,.(r,a))un(r,a)d:c)

2 /(;' F(z,u,(r,a))dz — L fz,u,(r, a))u, (r,a)dz

<C / lun(r, )" 'dz + Coa . (2.8)
Q,
By setting v = B := b(h) = (h + 1) — (h — 1)N /2 in (1.8), we obtain that for u € X,

N(h-1)/4
/ lu*'dz < Co® (/ | vulzdx> . 2.9)
Q. Q

Then we obtain by (2.8) and (2.9) that

N(h-1)/4
|Cu(r, @) — &?p, (r,a)| < Ca? (/ | 7 un(r, a)|2da:) +Ca. (2.10)
Q.

By ellipticity, we have by (2.8) and (2.9) that

Cu(r,a) — 2/ F(z,uy(r,a))dz

ar

[ 19 m(ralfds < Obyg(untria) = ©
Q.
< C(C,.(r, a)+ f un(r, a)lh“dx)
Q.
N(h-1)/4
< C(C,,(r,a) +Cof ( / | 7 un(r, a)|2dx) + Ca) .@1)
Q.

Sincel < h <1+ Jiv and C,(r, ) is bounded by Corollary 2.2, it is obvious by (2.11) that
llua(r,@)lly, < C . (2.12)

Now, by (2.10) and (2.12) we obtain
lo® 41, (r, @)| < |Ca(r, @)| +|Ca(r,@) = &y (r,a@)| < C + Car . (213)

Thus the proof is complete for & > 1.
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If 0 < h < 1, then by Chiappinelli [3, Theorem 2.2] we have
e (ra) = p, ()] <C. (214

Thus the conclusion immediately follows from (2 14) O
By Lemma 24, we may assume that g = lim,_pu, (r, @), otherwise, we choose a suitable
subsequence. Let

av, (1)

v, (1) = up(r, @) o<I>:1 € Xooy @ = [[Un(7)lg 000 Wa(r) = EMyw -
LEMMA 2.5. Assume (A.1), (A 2)and (D.1). Then
sup_[[wn(r)lly, < C < oo @15
r>1 ®

PROOF. At first, we assume (A.1), (A.2.1) and (D.1). Then by (A.1) and (1.3) there exists a
constant Cg > 0 such that

lun(r, @)y, < Cotrp(un) < Coth,(un) = CsCh(r, ) . (2.16)

Then by Corollary 2.2 it is clear that C,(r,a) is bounded for 1 « r < co. Therefore, we obtain our

assertion by (1.5) and (2.16).
Next, we assume that (A.1), (A.2.2) and (D.1). Multiplying (1.1) by 4, (r, @) and integration by
parts together with the fact that u,(r, a) € M, ., we obtain

2,0 un(rr ) + L F(@tn(r @) Jun(r, @)z = o (r, @) . @.17)

If 0 < h < 1, then by (1.2) and Hoélder's inequality we obtain

' / F(@, un(r, @))un(r, a)dz| < / Cil(un(r, @)|** + Colun(r, a)|)dz
o, Q. (2.18)
< C1a"Q, [TV 4 ChalQ|
Since {y,, (r, @) : r > 1} is bounded by Lemma 2.4, we obtain by (2.17) and (2.18) that
lun(r, @)%, < Cpo(un(r,a)) < C . 2.19)

If h > 1, then our conclusion is exactly (2.12). Now (2.15) is an immediate consequence of (1.5). O

LEMMA 2.6. There exists a subsequence of {w,(r)} such that as r — oo

Voo (0 (1) = Y (wn(r)) <"’°°(w"(;)2)'w"(’)>' wa(r) =0 in X, (220)

PROOF. We set S, := {v € X : ||v|lx_ =1}. For v € S, we put v, =vo®, € X,. For
p=(pi,P,-..py) € RY and ¢ = (g1, %, ....qv) € RY, we set (p,q),, =p,g, for ,5=1,2,..,N.
Then we obtain that
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[¥o00(wr (™)) = e (P (W (1), v)

= Ssup {/ Z az](y Dwn(r D Udy+ /Qm f(yv wn(r))vdy

‘UESOO mz_]]

B $(2¢m,o(wn("))+/ f(y,w,,(r))wn(r)dy)/ wn(r)vdy}

= sup { / Zau(@ (2))(Jr(x) ¥ un(r,a), J-(z) v v,) )y I (z)|dz

v E Soo 1,7=1
+ [ f(«b,(x),w)v,u,(x)ldx
Q, ar
1
- ( / Zau 1(2) T (7, @), 1 (2) 7 n(r, @), (2)|dz

+£1r /m f(@r(x)’-——au"cir’a)>un(r,a)]J,(:c)|d:c> L u,,(r.a)vrlJr(z)ldw}- 221

r

On the other hand, since u,(r, a) satisfies (1 1), we have for any v,

/ Zau(z) V un(r, @) vv,da:+/ f(z,un(r, @))vdx

1,7=1

=a” (wr,o(un(r, a)) + /n, f(z,un(r, @))ua(r, a)dx) /Q Uy (r, @)v dz . (2.22)

We compare (2.21) with (2.22). Then noting that sup,; ,cs [lv-llx. < C and o, — a as r — oo, we
can easily obtain (2.20) by direct calculation using (1.5), (2.21) and (2.22). 0O

Now we are in the position to prove Theorem 1.

PROOF OF THEOREM 1. Since we know from Chiappinelli [2, Lemma 1], [4, Theorem 1] that
the functional 1, satisfies the parais-Smale condition on M, ., that is, the sequence {y e} C Moo
satisfying (2.15) and (2.20) contains a strongly convergent subsequence in X,,. Hence, by Lemma 2.5
and Lemma 2.6 we can choose a subsequence of {w,(r)}, which converges strongly to some u, € M,
in Xo. By definition of w,(r), we can easily find by letting r — oo in (1.9) that u,, and p, satisfies
(1.9).

Finally, we have only to show that 21 (us) = Cy, (00, ), which follows immediately from (1.4),
(1.5), the definition of w, (r) and Lemma 2.1. Thus we get Theorem 1. O

3. PROOF OF THEOREM 2 AND THEOREM 3.
PROOF OF THEOREM 2. If we assume (A1), (A.2.2), (1.3) and (D.2), then by Chiappinelli [2,
Theorem 6] we know that for1 < h <1+ 1iv

Ha(ry @) = p(r) + O(pn(r)N(h—l)M) :

this implies our consequence. If 0 < h < 1, then our conclusion follows immediately from (2.14) and

D.2).
If we assume (A.1), (A.2.1), (D.2) and (1.7), then we obtain by (1.3), (1.7) and (2.17) that
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2 . .
a‘p = f 2y, o(u) < nf 2y, (u
(") K emK,,, “SGUPK rou) < K el K,, “seupK r(w)

= Culra) = ¥yalun(r,)) +2 | Fl,ua(r,c)de
Q
< o(un(r,a)) + / flz,un(r,a))un(r,a)dz = ann(r, a) .

Thus the proofis complete O

We shall prove Theorem 3 in the rest of this section.

PROOF OF THEOREM 3 (a). Under the condition (D 3), it is easy to show by mini-max
principle that p,(r) — 0 as r — co. Furthermore, it is easy to see that the constants C3 and Cs in
Lemma 2.3 do not depend on |©2,| Since Cy = 0, we know from Chiappinelli [2, Lemma 5] that Cy =0
in (2.7) and that

Ca(r, @) < @y (r) + Cra M2 () VA

where 8 = (h+1) — (h — 1)N/2. Hence, we see that C,(r,a) — 0 as  — co. Now Theorem 3(a)
follows immediately from Lemma 2.3.

PROOF OF THEOREM 3(b). We assume that {u, (r,a)} is bounded and derive a
contradiction. For u € M, ,, we write v, = u(®,(z)) € Xo. By (D.3), we obtain that

o = L lu(y)Pdy = /90 v, (2)* |, (z)|dz GD

cIAr)N? / v, (z)[*dz < / o ()2 |J-(z)|dz < CA(r)N/? / o, (z)Pdz . (32
Q Q Q

We set v, (r,a) = un(r, @) 0 ®,(z) € Xo, wa(r) = rﬁl— Then it follows from (1.5), (1.6) and (3.1)

that
W11, (r, @) = 2 o (un(ry @) + / £ tn(r, @) (r, @)dz
Q.
>0 [ ) ay=C [ foulr )" 1@z
& % (3.3)
> O\ (@l [ Tunr @) de
Q
> C/\(r)Na'k)“/ |wn (T, a)|k+ld:l.'.
Qo

Since {|lun(r, @)l .} is bounded by (3.3), we obtain by (D.3) that
[ 1vnta@ie = [ 19uear i ol
<A™ [ 17w @)@y < oAn™”,
Q
which together with (3.2) and (3.3) implied that
/ wn(r, @)(@)[*dz = |lva(r, @)ll3 / | 7 va(r, @)’ dz < )™ . G4
Qo D
We obtain by Berger [1, p. 43] that

lwn(r, @)llg.o < Cllwn(r, @)ll7 10 llwn(ra)lly” (3.5)

where 8 = % . Hence, it follows from (3.3)-(3.5) that
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1< CA(r) BNO-R/O4R) ) (AN=B)/2 _ oy (r)N/2-NB+R)B/(4(1+K) (3.6)
Then the exponent of A(r) in (3.6) is: if N > 4 and k < x;g , then
5(2_3“‘;3)_ N (4-N)k*+2(N+4)k+(@4—-N) 0
4 1+k7) 41 +k) NQA-k)+2(1+k) ’

This is a contradiction, since A(r) — oo asr — oo Thus we get Theorem 3(b). O
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