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Some fundamental properties of maximal open sets are obtained, such as decom-
position theorem for a maximal open set. Basic properties of intersections of max-
imal open sets are established, such as the law of radical closure.
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1. Introduction. A proper nonempty open subset U of a topological space
X is said to be a maximal open set if any open set which contains U is X or
U. In [2], we study minimal open sets. Although the definition of the maximal
open set is obtained by “dualizing” the definition of the minimal open set,
the properties of them are quite different, as we see in this paper, especially
the results in the last two sections. The purpose of this paper is to prove
some fundamental properties of maximal open sets and establish a part of the
foundation of the theory of maximal open sets in topological spaces.

In Section 2, we prove some basic results which are necessary for the subse-
quent arguments. We obtain a relation among maximal open sets in Theorem
2.5. At the end of this section, we show that for any proper nonempty cofinite
open subset V, there exists, at least, one maximal open set U which contains
V (Theorem 2.7).

In Section 3, we study some relations among closure, interior, and maximal
open sets. As an application, we prove a result about a preopen set (Theorem
3.11).

Let U = {U, | A € A} be a set of some maximal open sets Uy. Then, we refer
to the intersection NU = NxeaUa as the radical of . In the last two sections,
we study various properties of radicals.

In Section 4, we prove fundamental properties of radicals of maximal open
sets. We establish a very useful decomposition theorem for a maximal open set
in Theorem 4.7. Theorem 4.7 will be applied to prove Theorem 4.8. Theorem
4.9 gives a sufficient condition for the set of all maximal open sets. In the rest
of this section, we study the case when radicals are closed sets.

In Section 5, we consider the closure of the radicals of maximal open sets.
We establish “The law of radical closure” in Theorem 5.4.

2. Maximal open sets. Let (X,T) be a topological space.
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DEFINITION 2.1. A proper nonempty open subset U of X is said to be a
maximal open set if any open set which contains U is X or U.

LEMMA 2.2. (1) Let U be a maximal open set and W an open set. Then, U U
W=XorwcU.
(2) Let U and V be maximal open sets. Then, UUV =X orU =V.

PROOF. (1) Let W be an open set such that UuUW =+ X. Since U is a maximal
open setand U c UUW, we have UUW = U. Therefore, W C U.
R)IfUUV +X,thenU CcV and V c U by (1). Therefore U = V. O

PROPOSITION 2.3. Let U be a maximal open set. If x is an element of U, then
for any open neighborhood W of x, WuU =X or W C U.

PROOF. By Lemma 2.2(1), we have the result. O

THEOREM 2.4. Let Uy, Ug, and U, be maximal open sets such that Uy # Ug.
IfUxnUg C Uy, then Uy = Uy or Ug = U,.

PROOF. We see that
UxnUy = Uxn (UynX)
=UxN(Uyn(UyuUg)) (byLemma 2.2(2))
=Uxn ((UynUy) U (UynUg))

2.1
= (UanUy) U (UynUxnUp) .1
= (UxnUy)U(UsnUg) (by UxnUgp C Uy)
=Uo(ﬂ(UyUU5).

Hence we have Uy NnU, = Ux N (Uy U Up). If U, # Ug, then U, UUp = X, and
hence UxN Uy = Uy; namely, Uy C U,. Since Uy and U, are maximal open sets,
we have Uy = Uy. O

THEOREM 2.5. Let Uy, Ug, and U, be maximal open sets, which are different
from each other. Then,

UxnNUp ¢ UxNU,y,. (2.2)
PROOF. If UxnUg C UxN Uy, then we see that
(U«nUg) U (UgnUy) C (UxnUy) U (UgnUy) (2.3)
hence,
Ugn (UxUUy) C (UxuUg) NUy. (2.4)

Since Uy u Uy = X = Uy U Ug, we have Ug C U,. It follows that Ug = Uy, which
contradicts our assumption. O
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PROPOSITION 2.6. Let U be a maximal open set and x an element of U. Then,
U = U{W | W is an open neighborhood of x such that WuU =+ X}. (2.5)

PROOF. By Proposition 2.3 and the fact that U is an open neighborhood of
x, we have

U c u{W | W is an open neighborhood of x such that WuU # X} c U. (2.6)

Therefore, we have the result. O

Finally, we prove an existence theorem of maximal open sets for special
cases. We refer to the complement of any finite subset as a cofinite subset.

THEOREM 2.7. LetV be a proper nonempty cofinite open subset. Then, there
exists, at least, one (cofinite) maximal open set U such thatV C U.

PROOF. If V is a maximal open set, we may set U = V. If V is not a maximal
open set, then there exists an (cofinite) open set V; such that V¢ V; = X. If V3
is a maximal open set, we may set U = V1. If V] is not a maximal open set, then
there exists an (cofinite) open set V» such that V ¢ V; ¢ V, #+ X. Continuing
this process, we have a sequence of open sets

VeVigVoo - gVig ot (2.7)

Since V is a cofinite set, this process repeats only finitely. Then, finally, we get
a maximal open set U = V,, for some positive integer n. O

3. Closure, interior, and maximal open sets. We begin with the following
theorem.

THEOREM 3.1. Let U be a maximal open set and x an element of X —U. Then,
X —-U c W for any open neighborhood W of x.

PROOF. Since x € X —U, we have W ¢ U for any open neighborhood W of
x. Then, WU U = X by Lemma 2.2(1). Therefore, X—-U C W. O

COROLLARY 3.2. Let U be a maximal open set. Then, either of the following
(1) and (2) holds:

(1) for each x € X —U and each open neighborhood W of x, W = X;

(2) there exists an open set W such that X—U Cc W and W ¢ X.

PROOF. If (1) does not hold, then there exists an element x of X — U and
an open neighborhood W of x such that W ¢ X. By Theorem 3.1, we have
X-UcW. O

COROLLARY 3.3. Let U be a maximal open set. Then, either of the following
(1) and (2) holds:



1334 F. NAKAOKA AND N. ODA

(1) foreach x € X —U and each open neighborhood W of x, we have X —U ¢
w;
(2) there exists an open set W such that X —U =W =+ X.

PROOF. Assume that (2) does not hold. Then, by Theorem 3.1, we have X —
U c W for each x € X — U and each open neighborhood W of x. Hence, we
have X-U ¢ W. 0O

THEOREM 3.4. Let U be a maximal open set. Then, C1(U) = X or CI(U) = U.

PROOF. Since U is a maximal open set, only the following cases (1) and (2)
occur by Corollary 3.3:

(1) for each x € X—U and each open neighborhood W of x, we have X —U <
W: let x be any element of X —U and W any open neighborhood of x.
Since X —U = W, we have W nU #= @ for any open neighborhood W of
x.Hence, X—U c Cl(U).Since X =UuU(X-U) cUUCI(U) =CL(U) C X,
we have C1(U) = X;

(2) there exists an open set W such that X—U =W = X:since X—-U =W is
an open set, U is a closed set. Therefore, U = C1(U). O

THEOREM 3.5. Let U be a maximal open set. Then, nt(X -U) = X - U or
Int(X-U) = &.

PROOF. By Corollary 3.3, we have either (1) Int(X —U) = & or (2) Int(X —
U)=X-U. O

THEOREM 3.6. Let U be a maximal open set and S a nonempty subset of
X—-U. Then, CI(§) =X-U.

PROOF. Since @ +S C X—U, we have WNS + @ for any element x of X —U
and any open neighborhood W of x by Theorem 3.1. Then, X — U < CI(S). Since
X -U is a closed set and S ¢ X — U, we see that CI(S) cCl(X-U) = X-U.
Therefore, X —U = CI(S). O

COROLLARY 3.7. Let U be a maximal open set and M a subset of X with
U< M. Then, C1(M) = X.

PROOF. Since U ¢ M C X, there exists a nonempty subset S of X — U such
that M = UuUS. Hence, we have CI(M) =CI(SuU) =CI(S)UCl(U) > (X-U)u
U = X by Theorem 3.6. Therefore, C1(M) = X. O

THEOREM 3.8. LetU be a maximal open set and assume that the subset X —U
has two elements at least. Then, Cl(X — {a}) = X for any element a of X - U.

PROOF. Since U ¢ X — {a} by our assumption, we have the result by
Corollary 3.7. ]

THEOREM 3.9. Let U be a maximal open set and N a proper subset of X with
U C N. Then, Int(N) =U.
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PROOF. If N = U, then Int(N) = Int(U) = U. Otherwise N # U, and hence
U ¢ N. It follows that U Cc Int(N). Since U is a maximal open set, we have also
Int(N) c U. Therefore, Int(N) = U. O

THEOREM 3.10. Let U be a maximal open set and S a nonempty subset of
X —U. Then,

X-CI(S) =Int(X-S5) =U. (3.1)

PROOF. Since U C X —-S ¢ X by our assumption, we have the result by The-
orems 3.6 and 3.9. O

A subset M of a space (X, T) is called a preopen set if M C IntCl(M). Then,
Corollary 3.7 implies the following result.

THEOREM 3.11. Let U be a maximal open set and M any subset of X with
U C M. Then, M is a preopen set.

PROOF. If M = U, then M is an open set. Therefore, M is a preopen set.
Otherwise, U ¢ M, then IntCI(M) = IntX = X > M by Corollary 3.7. Therefore,
M is a preopen set. O

COROLLARY 3.12. Let U be a maximal open set. Then, X — {a} is a preopen
set for any element a of X —U.

PROOF. Since U C X — {a} by our assumption, we have the result by
Theorem 3.11. O

4. Fundamental properties of radicals

DEFINITION 4.1. Let U, be a maximal open set for any element A of A. Let
W= {Ux | A eA}; NU = NreaU, is called the radical of .

The intersection of all maximal ideals of a ring % is called the (Jacobson)
radical of & [1, 3]. Following this terminology in the theory of rings, we use
the terminology “radical” for the intersection of maximal open sets.

The symbol A\T means difference of index sets; namely, A\T = A-T, and
the cardinality of a set A is denoted by |A| in the following arguments.

THEOREM 4.2. Assume that |A| > 2. Let Uy be a maximal open set for any
element A of A and U, + U, for any elements A and p of A with A # .

(1) Let u be any element of A. Then, X — Naeay (3 Ua C Uy.

(2) Let p be any element of A. Then, Nyea\juyUa = .

PROOF. Let p be any element of A. (1) By Lemma 2.2(2), we have X — U, C U,
for any element A of A with A # p. Then, X — U, C Naea\iuy Ua. Therefore, we
have X — ﬂ)\gA\{u}U)\ C UIJ'

(2)If Npeav iy Ua = D, wehave X = Uy, by (1). This contradicts our assumption
that U, is a maximal open set. Therefore, we have Naea gy Ux #+ . O
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COROLLARY 4.3. Let Uy be a maximal open set for any element A of A and
U # Uy for any elements A and p of A with A = p. If |A| = 3, then UxnU, # @
for any elements A and p of A with A + .

PROOF. By Theorem 4.2(2), we have the result. O

THEOREM 4.4. Let Uy, be a maximal open set for any element A of A and
Ux # Uy for any elements A and p of A with A # p. Assume that |A| = 2. Let u
be any element of A. Then, Naea(y Ux € Uy & Naeayiuy Ua.

PROOF. Let u be any element of A. If Nxea\u3Ua C Uy, then we see that
X = (X — NaeaviyUa) U NacaviwyUa € Uy by Theorem 4.2(1). This contradicts
our assumption. If U, C Naeca\qu; Ua, then we have U, C U,, and hence U, = U,
for any element A of A\ {u}. This contradicts our assumption that U, # U,
when A = p. ]

COROLLARY 4.5. Let Uy be a maximal open set for any element A of A and
U # Uy for any elements A and p of A with A # p. If T is a proper nonempty
subset of A, then Naea\rUa ¢ NyerUy ¢ NaearUa-

PROOF. Let y be any element of I'. We see Naea\rUx = Nacavnuiyiniy Ua €
U, by Theorem 4.4. Therefore we see Naca\rUa ¢ NyerU,. On the other hand,
since ﬁyerUy = NyeA\(A\T) Uy <t ﬁAeA\rUA, we have ﬂyErUy (,t ﬂ,\eA\rU,\. O

THEOREM 4.6. Let Uy be a maximal open set for any element A of A and
Ur = Uy for any elements A and p of A with A = . If T is a proper nonempty
subset of A, then NaeaUx & NyerUy.

PROOF. By Corollary 4.5, we have NnaeaUx = (NaeayrUa) N (NyerUy) <
ﬂyerUy. O

THEOREM 4.7 (a decomposition theorem for maximal open set). Assume
that |A| = 2. Let Uy be a maximal open set for any element A of A and Uy # Uy,
for any elements A and u of A with A + u. Then, for any element u of A,

Uy = (Naea Ua) U (X = Nacaviu Un). (4.1)
PROOF. Let u be an element of A. By Theorem 4.2(1), we have
(Naea Ua) U (X = Naeavim Un) = ((Naeaiu Ua) N UL) U (X = Naeariu Un)
= ((NMaeaviuy Ua) U (X = Naeariw Ua))
4.2)
N (Uy U (X =Naeariuy Un))

=UuU (X —Naeavim Ua) = Uy

Therefore, we have Uy = (NaeaUx) U (X = Naeav iy Ua). O
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THEOREM 4.8. Let Uy be a maximal open set for any element A of a finite set
A and Uy = Uy for any elements A and p of A with A = p. If Naca Uy s a closed
set, then U, is a closed set for any element A of A.

PROOF. By Theorem 4.7, we have U, = (NaealUx) U (X — NrcaviuyUr) =
(NaeaUnr) U (Uaeayjuy (X —Ua)). Since A is a finite set, we see that Uaea ju3 (X —
U,) is a closed set. Hence, Uy, is a closed set by our assumption. O

As an application of Theorem 4.7, we give another proof of Theorem 4.6.

ANOTHER PROOF OF THEOREM 4.6. Since A 2 T # O, there exists an ele-
ment v of A such that v ¢ T and an element py of T. If |T'| = 1, then we have
NaeaUx C Uy. If NacaUx = Uy, then we have U, C U, for any element A of A.
Since U, is a maximal open set for any element A of A, we have U, = U,, which
contradicts our assumption. Hence, we have NycaUx € Uy. If [T| = 2, then by
Theorem 4.7, we have

Uy = (m)\e/\ UA) > (X_ m/\EA\{V}UA)v

4.3)

Uy = (Nyer Uy) U (X = NyeruUy).
If NpepUx = ﬁyerUy, then ﬁyerU}/ = NaeaUr C NMaeavivyUa C ﬁyerUy. Hence,
we have Naeay(viUa = NyerUy. Therefore, NacayiviUx = NyerUy C Nyer\iuy Uy.
Hence, we see that U, D U,,. It follows that U, = U, with v # u. This contradicts
our assumption. O

THEOREM 4.9. Assume that |A| > 2. Let Uy be a maximal open set for any
element A of A and Uy # Uy for any elements A and p of A with A # p. If
NaeaUx = G, then {U, | A € A} is the set of all maximal open sets of X.

PROOF. If there exists another maximal open set U, of X, which is not
equal to U, for any element A of A, then @ = NacaUr = Nacauvivi)\ivi Ua.
By Theorem 4.2(2), we see that NacaupvinviUa #= &. This contradicts our
assumption. O

EXAMPLE 4.10. If each point {x} is closed (e.g., X is a Hausdorff space or a
cofinite space or a cocountable space), then X — {a} is a maximal open set for
any element a of X. Moreover, we see that {X — {a} | a € X} is the set of all
maximal open sets of X by Theorem 4.9, since Nngzex (X —{a}) = @.

PROPOSITION 4.11. Let A and B be subsets of X. If AUB = X, ANB is a closed
set, and A is an open set, then B is a closed set.

PROOF. Since X — A C B, then we see that
(ANB)U(X—-A) = (AU(X—A))N(BU(X—A)) =BU(X—-A)=B. (4.4)

Since AN B and X — A are closed sets, we see that B is a closed set. O
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PROPOSITION 4.12. Let Uy be an open set for any element A of A and Uy U
Uy = X for any elements A and p of A with A = . If Nacp U, 1S a closed set, then
Naear(uy Ua 18 a closed set for any element p of A.

PROOF. Let u be any element of A. Since U) U U, = X for any element A of
A with A = u, we have

Uu U (Naeavip Un) = Naeavip (Ug U TUL) = X. (4.5)

Since Uy N (NaeayiuyUa) = NaeaUa is a closed set by our assumption, Naeay (3 Ua
is a closed set by Proposition 4.11. O

THEOREM 4.13. Let Uy be a maximal open set for any element A of A and
Ur = Uy for any elements A and p of A with A # p. If NxeaUa is a closed set,
then Naea gy U s a closed set for any element p of A.

PROOF. By Lemma 2.2(2), we have Uy UU, = X for any elements A and u of
A with A = p. By Proposition 4.12, we have that Naecay\ (3 Ua is a closed set. O

If the assumption of Proposition 4.12 does not hold, then the condition that
NaeaUa is a closed set does not always imply that Njea(uy Ua is closed. The
following is an example.

EXAMPLE 4.14. Let X = {a,b,c,d,e} with topology 0 = {@,{a},{d},{a,d},
{b,d},{c,d},{a,b,d},{a,c,d},{b,c,d},{a,b,c,d},{b,c,d,e}, X}, U = {a},
U, = {a,b,d}, and Uz = {a,c,d}. Then, Uy nU, n U3z = U; is a closed set. It
follows that Uy uU, = U, +#+ X, UyuU3 =Us +# X, U uUs = {a,b,c,d} + X. We
see that U> N Uz = {a,d} is not a closed set.

5. More about radicals of maximal open sets. In this section, we study the
closure of radicals. We begin with a proposition.

PROPOSITION 5.1. Let U, be a set for any element A of A. If Cl(NaeaUa) = X,
then C1(Uy) = X for any element A of A.

PROOF. We see that X = Cl(nxeaUx) C CI(U,). It follows that C1(U,) = X
for any element A of A. |

THEOREM 5.2. Let U, be a maximal open set for any element A of a finite set
A If Cl(NpaeaUn) = X, then there exists an element A of A such that C1(Uy) = U,.

PROOF. Assume that Cl1(Uy) = X for any element A of A. Let i be an element
of A. Since Naea\yuyUa is an open set, we have

Cl(NaeaUx) = CL((Naeaviur Ua) NUL) D (Naeariuy Un) NCL(UL)
= (Maeaviw Ua) N X (5.1)

= Naea\{uy Ua.
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Hence, Cl(Naeay(u3Ua) € Cl(NacaUa). On the other hand, we see that NacaUa C
NAeA\{u} U,, and hence Cl(NxeaUa) C Cl(ﬁ)\e/\\{u} U, ). It follows that Cl1(NaeaUa)
= Cl(Naea\fpyUr). Then, by induction on the element of A, we see that
Cl(npaeaUy) = Cl(Uy) = X for an element A of A. This contradicts our assump-
tion that CI(npepaUa) # X. Therefore, we see that there exists an element A of
A such that CI(U,) = U,. O

Theorem 5.2 is not true when A is not a finite set, as we see by the following
example. This example also shows that if A is not a finite set, then Theorem 4.8
is not always true.

EXAMPLE 5.3. Let X = R", the n-dimensional Euclidean space. Let Uy =
X — {x} for any element x € X. Then, U, is a maximal open set and we have

Cl(NyexUx) =Cl(D) = @ = X. (5.2)

However, C1(Uy) = X for any element x of X.
The radicals of maximal open sets have the following outstanding property.

THEOREM 5.4 (the law of radical closure). Let A be a finite set and U, a
maximal open set for each element A of A. Let T be a subset of A such that

Cl(Uy) =Ux forany A €T,

Cl(Uy) =X forany A € A\T. (5:3)

Then, Cl(ﬂ)\eAU,\) = NaerUax (=X if I'=039).

PROOF. IfT = O, then we have the result by Theorem 5.2. Otherwise I' = &,
and hence we see that

Cl(NaeaUa) = CL((nacr Ua) N (Naearr Ua)) 2 (Naer Ua) NCl(Nacar Un)

= (NaerUa) N X = NacrUn 64
by Theorem 5.2 and the fact that npcrUy is an open set. It follows that
Cl(naeaUx) = CI(CL(NacaUr)) D Cl(NacrUy). On the other hand, we see
that NaeaUx C NaerUa, and hence Cl(NpaeaUa) C Cl(NaerUy). It follows that
Cl(naeaUa) =Cl(NnperUa). The radical NnperU, is a closed set since U, is a closed
set for any A € T by our assumption. Therefore, we see that Cl(NxeaUy) =
NaerUa. O

As an application of Theorem 5.4, we give another proof of Theorem 4.8.
ANOTHER PROOF OF THEOREM 4.8. LetI be a subset of A such that

Cl(Uy) =Uy foranyA€T,

5.5
Cl(Uy) =X forany A € A\T. (5-3)
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We suppose that the radical NnycpUa is a closed set. We see that I' # & by
Theorem 5.4. Then, NxeaUx = Cl(NacaUa) = NacrU, for the subset T of A by
Theorem 5.4. Then, we see that A =T by Theorem 4.6. O
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