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Some fundamental properties of maximal open sets are obtained, such as decom-
position theorem for a maximal open set. Basic properties of intersections of max-
imal open sets are established, such as the law of radical closure.
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1. Introduction. A proper nonempty open subset U of a topological space

X is said to be a maximal open set if any open set which contains U is X or

U . In [2], we study minimal open sets. Although the definition of the maximal

open set is obtained by “dualizing” the definition of the minimal open set,

the properties of them are quite different, as we see in this paper, especially

the results in the last two sections. The purpose of this paper is to prove

some fundamental properties of maximal open sets and establish a part of the

foundation of the theory of maximal open sets in topological spaces.

In Section 2, we prove some basic results which are necessary for the subse-

quent arguments. We obtain a relation among maximal open sets in Theorem

2.5. At the end of this section, we show that for any proper nonempty cofinite

open subset V , there exists, at least, one maximal open set U which contains

V (Theorem 2.7).

In Section 3, we study some relations among closure, interior, and maximal

open sets. As an application, we prove a result about a preopen set (Theorem

3.11).

Let �= {Uλ | λ∈Λ} be a set of some maximal open sets Uλ. Then, we refer

to the intersection ∩� = ∩λ∈ΛUλ as the radical of �. In the last two sections,

we study various properties of radicals.

In Section 4, we prove fundamental properties of radicals of maximal open

sets. We establish a very useful decomposition theorem for a maximal open set

in Theorem 4.7. Theorem 4.7 will be applied to prove Theorem 4.8. Theorem

4.9 gives a sufficient condition for the set of all maximal open sets. In the rest

of this section, we study the case when radicals are closed sets.

In Section 5, we consider the closure of the radicals of maximal open sets.

We establish “The law of radical closure” in Theorem 5.4.

2. Maximal open sets. Let (X,τ) be a topological space.
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Definition 2.1. A proper nonempty open subset U of X is said to be a

maximal open set if any open set which contains U is X or U .

Lemma 2.2. (1) Let U be a maximal open set and W an open set. Then, U∪
W =X or W ⊂U .

(2) Let U and V be maximal open sets. Then, U∪V =X or U = V .

Proof. (1) Let W be an open set such that U∪W ≠X. Since U is a maximal

open set and U ⊂U∪W , we have U∪W =U . Therefore, W ⊂U .

(2) If U∪V ≠X, then U ⊂ V and V ⊂U by (1). Therefore U = V .

Proposition 2.3. Let U be a maximal open set. If x is an element of U , then

for any open neighborhood W of x, W ∪U =X or W ⊂U .

Proof. By Lemma 2.2(1), we have the result.

Theorem 2.4. Let Uα, Uβ, and Uγ be maximal open sets such that Uα ≠ Uβ.

If Uα∩Uβ ⊂Uγ , then Uα =Uγ or Uβ =Uγ .

Proof. We see that

Uα∩Uγ =Uα∩
(
Uγ∩X

)

=Uα∩
(
Uγ∩

(
Uα∪Uβ

))
(by Lemma 2.2(2))

=Uα∩
((
Uγ∩Uα

)∪(Uγ∩Uβ
))

= (Uα∩Uγ
)∪(Uγ∩Uα∩Uβ

)

= (Uα∩Uγ
)∪(Uα∩Uβ

)
(by Uα∩Uβ ⊂Uγ

)

=Uα∩
(
Uγ∪Uβ

)
.

(2.1)

Hence we have Uα∩Uγ = Uα∩ (Uγ ∪Uβ). If Uγ ≠ Uβ, then Uγ ∪Uβ = X, and

hence Uα∩Uγ =Uα; namely, Uα ⊂Uγ . Since Uα and Uγ are maximal open sets,

we have Uα =Uγ .

Theorem 2.5. Let Uα, Uβ, and Uγ be maximal open sets, which are different

from each other. Then,

Uα∩Uβ �⊂Uα∩Uγ. (2.2)

Proof. If Uα∩Uβ ⊂Uα∩Uγ , then we see that

(
Uα∩Uβ

)∪(Uβ∩Uγ
)⊂ (Uα∩Uγ

)∪(Uβ∩Uγ
)

(2.3)

hence,

Uβ∩
(
Uα∪Uγ

)⊂ (Uα∪Uβ
)∩Uγ. (2.4)

Since Uα∪Uγ = X = Uα∪Uβ, we have Uβ ⊂ Uγ . It follows that Uβ = Uγ , which

contradicts our assumption.
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Proposition 2.6. LetU be a maximal open set and x an element ofU . Then,

U =∪{W |W is an open neighborhood of x such that W ∪U ≠X}. (2.5)

Proof. By Proposition 2.3 and the fact that U is an open neighborhood of

x, we have

U ⊂∪{W |W is an open neighborhood of x such that W ∪U ≠X} ⊂U. (2.6)

Therefore, we have the result.

Finally, we prove an existence theorem of maximal open sets for special

cases. We refer to the complement of any finite subset as a cofinite subset.

Theorem 2.7. Let V be a proper nonempty cofinite open subset. Then, there

exists, at least, one (cofinite) maximal open set U such that V ⊂U .

Proof. If V is a maximal open set, we may set U = V . If V is not a maximal

open set, then there exists an (cofinite) open set V1 such that V ⊊ V1 ≠X. If V1

is a maximal open set, we may set U = V1. If V1 is not a maximal open set, then

there exists an (cofinite) open set V2 such that V ⊊ V1 ⊊ V2 ≠ X. Continuing

this process, we have a sequence of open sets

V ⊊ V1 ⊊ V2 ···⊊ Vk ⊊ ··· . (2.7)

Since V is a cofinite set, this process repeats only finitely. Then, finally, we get

a maximal open set U = Vn for some positive integer n.

3. Closure, interior, and maximal open sets. We begin with the following

theorem.

Theorem 3.1. Let U be a maximal open set and x an element ofX−U . Then,

X−U ⊂W for any open neighborhood W of x.

Proof. Since x ∈ X−U , we have W �⊂ U for any open neighborhood W of

x. Then, W ∪U =X by Lemma 2.2(1). Therefore, X−U ⊂W .

Corollary 3.2. Let U be a maximal open set. Then, either of the following

(1) and (2) holds:

(1) for each x ∈X−U and each open neighborhood W of x, W =X;

(2) there exists an open set W such that X−U ⊂W and W ⊊X.

Proof. If (1) does not hold, then there exists an element x of X−U and

an open neighborhood W of x such that W ⊊ X. By Theorem 3.1, we have

X−U ⊂W .

Corollary 3.3. Let U be a maximal open set. Then, either of the following

(1) and (2) holds:
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(1) for each x ∈X−U and each open neighborhoodW of x, we have X−U ⊊
W ;

(2) there exists an open set W such that X−U =W ≠X.

Proof. Assume that (2) does not hold. Then, by Theorem 3.1, we have X−
U ⊂ W for each x ∈ X −U and each open neighborhood W of x. Hence, we

have X−U ⊊W .

Theorem 3.4. Let U be a maximal open set. Then, Cl(U)=X or Cl(U)=U .

Proof. Since U is a maximal open set, only the following cases (1) and (2)

occur by Corollary 3.3:

(1) for each x ∈X−U and each open neighborhoodW of x, we haveX−U ⊊
W : let x be any element of X−U and W any open neighborhood of x.

Since X−U ≠W , we have W ∩U ≠∅ for any open neighborhood W of

x. Hence, X−U ⊂ Cl(U). Since X =U∪(X−U)⊂U∪Cl(U)= Cl(U)⊂X,

we have Cl(U)=X;

(2) there exists an open set W such that X−U =W ≠X: since X−U =W is

an open set, U is a closed set. Therefore, U = Cl(U).

Theorem 3.5. Let U be a maximal open set. Then, Int(X −U) = X −U or

Int(X−U)=∅.

Proof. By Corollary 3.3, we have either (1) Int(X−U) = ∅ or (2) Int(X−
U)=X−U .

Theorem 3.6. Let U be a maximal open set and S a nonempty subset of

X−U . Then, Cl(S)=X−U .

Proof. Since∅≠ S ⊂X−U , we haveW∩S ≠∅ for any element x of X−U
and any open neighborhoodW of x by Theorem 3.1. Then, X−U ⊂ Cl(S). Since

X −U is a closed set and S ⊂ X −U , we see that Cl(S) ⊂ Cl(X −U) = X −U .

Therefore, X−U = Cl(S).

Corollary 3.7. Let U be a maximal open set and M a subset of X with

U ⊊M . Then, Cl(M)=X.

Proof. Since U ⊊M ⊂ X, there exists a nonempty subset S of X−U such

that M = U∪S. Hence, we have Cl(M)= Cl(S∪U)= Cl(S)∪Cl(U)⊃ (X−U)∪
U =X by Theorem 3.6. Therefore, Cl(M)=X.

Theorem 3.8. LetU be a maximal open set and assume that the subsetX−U
has two elements at least. Then, Cl(X−{a})=X for any element a of X−U .

Proof. Since U ⊊ X − {a} by our assumption, we have the result by

Corollary 3.7.

Theorem 3.9. Let U be a maximal open set and N a proper subset of X with

U ⊂N. Then, Int(N)=U .
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Proof. If N = U , then Int(N) = Int(U) = U . Otherwise N ≠ U , and hence

U ⊊N. It follows that U ⊂ Int(N). Since U is a maximal open set, we have also

Int(N)⊂U . Therefore, Int(N)=U .

Theorem 3.10. Let U be a maximal open set and S a nonempty subset of

X−U . Then,

X−Cl(S)= Int(X−S)=U. (3.1)

Proof. Since U ⊂X−S ⊊X by our assumption, we have the result by The-

orems 3.6 and 3.9.

A subset M of a space (X,τ) is called a preopen set if M ⊂ IntCl(M). Then,

Corollary 3.7 implies the following result.

Theorem 3.11. Let U be a maximal open set and M any subset of X with

U ⊂M . Then, M is a preopen set.

Proof. If M = U , then M is an open set. Therefore, M is a preopen set.

Otherwise, U ⊊M , then IntCl(M)= IntX = X ⊃M by Corollary 3.7. Therefore,

M is a preopen set.

Corollary 3.12. Let U be a maximal open set. Then, X−{a} is a preopen

set for any element a of X−U .

Proof. Since U ⊂ X − {a} by our assumption, we have the result by

Theorem 3.11.

4. Fundamental properties of radicals

Definition 4.1. Let Uλ be a maximal open set for any element λ of Λ. Let

�= {Uλ | λ∈Λ}; ∩�=∩λ∈ΛUλ is called the radical of �.

The intersection of all maximal ideals of a ring � is called the (Jacobson)

radical of � [1, 3]. Following this terminology in the theory of rings, we use

the terminology “radical” for the intersection of maximal open sets.

The symbol Λ\ Γ means difference of index sets; namely, Λ\ Γ = Λ− Γ , and

the cardinality of a set Λ is denoted by |Λ| in the following arguments.

Theorem 4.2. Assume that |Λ| ≥ 2. Let Uλ be a maximal open set for any

element λ of Λ and Uλ ≠Uµ for any elements λ and µ of Λ with λ≠ µ.

(1) Let µ be any element of Λ. Then, X−∩λ∈Λ\{µ}Uλ ⊂Uµ .

(2) Let µ be any element of Λ. Then, ∩λ∈Λ\{µ}Uλ ≠∅.

Proof. Let µ be any element of Λ. (1) By Lemma 2.2(2), we have X−Uµ ⊂Uλ
for any element λ of Λ with λ ≠ µ. Then, X−Uµ ⊂ ∩λ∈Λ\{µ}Uλ. Therefore, we

have X−∩λ∈Λ\{µ}Uλ ⊂Uµ .

(2) If∩λ∈Λ\{µ}Uλ =∅, we haveX =Uµ by (1). This contradicts our assumption

that Uµ is a maximal open set. Therefore, we have ∩λ∈Λ\{µ}Uλ ≠∅.
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Corollary 4.3. Let Uλ be a maximal open set for any element λ of Λ and

Uλ ≠Uµ for any elements λ and µ of Λ with λ≠ µ. If |Λ| ≥ 3, then Uλ∩Uµ ≠∅
for any elements λ and µ of Λ with λ≠ µ.

Proof. By Theorem 4.2(2), we have the result.

Theorem 4.4. Let Uλ be a maximal open set for any element λ of Λ and

Uλ ≠ Uµ for any elements λ and µ of Λ with λ ≠ µ. Assume that |Λ| ≥ 2. Let µ
be any element of Λ. Then, ∩λ∈Λ\{µ}Uλ �⊂Uµ �⊂ ∩λ∈Λ\{µ}Uλ.

Proof. Let µ be any element of Λ. If ∩λ∈Λ\{µ}Uλ ⊂ Uµ , then we see that

X = (X −∩λ∈Λ\{µ}Uλ)∪∩λ∈Λ\{µ}Uλ ⊂ Uµ by Theorem 4.2(1). This contradicts

our assumption. If Uµ ⊂∩λ∈Λ\{µ}Uλ, then we have Uµ ⊂Uλ, and hence Uµ =Uλ
for any element λ of Λ \ {µ}. This contradicts our assumption that Uµ ≠ Uλ
when λ≠ µ.

Corollary 4.5. Let Uλ be a maximal open set for any element λ of Λ and

Uλ ≠ Uµ for any elements λ and µ of Λ with λ ≠ µ. If Γ is a proper nonempty

subset of Λ, then ∩λ∈Λ\ΓUλ �⊂ ∩γ∈ΓUγ �⊂ ∩λ∈Λ\ΓUλ.
Proof. Let γ be any element of Γ . We see ∩λ∈Λ\ΓUλ =∩λ∈((Λ\Γ)∪{γ})\{γ}Uλ �⊂

Uγ by Theorem 4.4. Therefore we see ∩λ∈Λ\ΓUλ �⊂ ∩γ∈ΓUγ . On the other hand,

since ∩γ∈ΓUγ =∩γ∈Λ\(Λ\Γ)Uγ �⊂ ∩λ∈Λ\ΓUλ, we have ∩γ∈ΓUγ �⊂ ∩λ∈Λ\ΓUλ.
Theorem 4.6. Let Uλ be a maximal open set for any element λ of Λ and

Uλ ≠ Uµ for any elements λ and µ of Λ with λ ≠ µ. If Γ is a proper nonempty

subset of Λ, then ∩λ∈ΛUλ ⊊∩γ∈ΓUγ .

Proof. By Corollary 4.5, we have ∩λ∈ΛUλ = (∩λ∈Λ\ΓUλ) ∩ (∩γ∈ΓUγ) ⊊
∩γ∈ΓUγ .

Theorem 4.7 (a decomposition theorem for maximal open set). Assume

that |Λ| ≥ 2. Let Uλ be a maximal open set for any element λ of Λ and Uλ ≠Uµ
for any elements λ and µ of Λ with λ≠ µ. Then, for any element µ of Λ,

Uµ =
(∩λ∈ΛUλ

)∪(X−∩λ∈Λ\{µ}Uλ
)
. (4.1)

Proof. Let µ be an element of Λ. By Theorem 4.2(1), we have

(∩λ∈ΛUλ
)∪(X−∩λ∈Λ\{µ}Uλ

)= ((∩λ∈Λ\{µ}Uλ
)∩Uµ

)∪(X−∩λ∈Λ\{µ}Uλ
)

= ((∩λ∈Λ\{µ}Uλ
)∪(X−∩λ∈Λ\{µ}Uλ

))

∩(Uµ∪
(
X−∩λ∈Λ\{µ}Uλ

))

=Uµ∪
(
X−∩λ∈Λ\{µ}Uλ

)=Uµ.

(4.2)

Therefore, we have Uµ = (∩λ∈ΛUλ)∪(X−∩λ∈Λ\{µ}Uλ).
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Theorem 4.8. Let Uλ be a maximal open set for any element λ of a finite set

Λ and Uλ ≠ Uµ for any elements λ and µ of Λ with λ≠ µ. If ∩λ∈ΛUλ is a closed

set, then Uλ is a closed set for any element λ of Λ.

Proof. By Theorem 4.7, we have Uµ = (∩λ∈ΛUλ) ∪ (X − ∩λ∈Λ\{µ}Uλ) =
(∩λ∈ΛUλ)∪(∪λ∈Λ\{µ}(X−Uλ)). Since Λ is a finite set, we see that ∪λ∈Λ\{µ}(X−
Uλ) is a closed set. Hence, Uµ is a closed set by our assumption.

As an application of Theorem 4.7, we give another proof of Theorem 4.6.

Another proof of Theorem 4.6. Since Λ ⊋ Γ ≠ ∅, there exists an ele-

ment ν of Λ such that ν �∈ Γ and an element µ of Γ . If |Γ | = 1, then we have

∩λ∈ΛUλ ⊂ Uµ . If ∩λ∈ΛUλ = Uµ , then we have Uµ ⊂ Uλ for any element λ of Λ.

Since Uλ is a maximal open set for any element λ of Λ, we have Uµ =Uλ, which

contradicts our assumption. Hence, we have ∩λ∈ΛUλ ⊊ Uµ . If |Γ | ≥ 2, then by

Theorem 4.7, we have

Uν =
(∩λ∈ΛUλ

)∪(X−∩λ∈Λ\{ν}Uλ
)
,

Uµ =
(∩γ∈Γ Uγ

)∪(X−∩γ∈Γ\{µ}Uγ
)
.

(4.3)

If ∩λ∈ΛUλ = ∩γ∈ΓUγ , then ∩γ∈ΓUγ = ∩λ∈ΛUλ ⊂ ∩λ∈Λ\{ν}Uλ ⊂ ∩γ∈ΓUγ . Hence,

we have ∩λ∈Λ\{ν}Uλ = ∩γ∈ΓUγ . Therefore, ∩λ∈Λ\{ν}Uλ = ∩γ∈ΓUγ ⊂ ∩γ∈Γ\{µ}Uγ .

Hence, we see that Uν ⊃Uµ . It follows that Uν =Uµ with ν ≠ µ. This contradicts

our assumption.

Theorem 4.9. Assume that |Λ| ≥ 2. Let Uλ be a maximal open set for any

element λ of Λ and Uλ ≠ Uµ for any elements λ and µ of Λ with λ ≠ µ. If

∩λ∈ΛUλ =∅, then {Uλ | λ∈Λ} is the set of all maximal open sets of X.

Proof. If there exists another maximal open set Uν of X, which is not

equal to Uλ for any element λ of Λ, then ∅ = ∩λ∈ΛUλ = ∩λ∈(Λ∪{ν})\{ν}Uλ.
By Theorem 4.2(2), we see that ∩λ∈(Λ∪{ν})\{ν}Uλ ≠ ∅. This contradicts our

assumption.

Example 4.10. If each point {x} is closed (e.g., X is a Hausdorff space or a

cofinite space or a cocountable space), then X−{a} is a maximal open set for

any element a of X. Moreover, we see that {X−{a} | a ∈ X} is the set of all

maximal open sets of X by Theorem 4.9, since ∩a∈X(X−{a})=∅.

Proposition 4.11. LetA and B be subsets of X. IfA∪B =X,A∩B is a closed

set, and A is an open set, then B is a closed set.

Proof. Since X−A⊂ B, then we see that

(A∩B)∪(X−A)= (A∪(X−A))∩(B∪(X−A))= B∪(X−A)= B. (4.4)

Since A∩B and X−A are closed sets, we see that B is a closed set.
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Proposition 4.12. Let Uλ be an open set for any element λ of Λ and Uλ∪
Uµ =X for any elements λ and µ of Λ with λ≠ µ. If ∩λ∈ΛUλ is a closed set, then

∩λ∈Λ\{µ}Uλ is a closed set for any element µ of Λ.

Proof. Let µ be any element of Λ. Since Uλ∪Uµ = X for any element λ of

Λ with λ≠ µ, we have

Uµ∪
(∩λ∈Λ\{µ}Uλ

)=∩λ∈Λ\{µ}
(
Uµ∪Uλ

)=X. (4.5)

SinceUµ∩(∩λ∈Λ\{µ}Uλ)=∩λ∈ΛUλ is a closed set by our assumption,∩λ∈Λ\{µ}Uλ
is a closed set by Proposition 4.11.

Theorem 4.13. Let Uλ be a maximal open set for any element λ of Λ and

Uλ ≠ Uµ for any elements λ and µ of Λ with λ ≠ µ. If ∩λ∈ΛUλ is a closed set,

then ∩λ∈Λ\{µ}Uλ is a closed set for any element µ of Λ.

Proof. By Lemma 2.2(2), we have Uλ∪Uµ =X for any elements λ and µ of

Λ with λ≠ µ. By Proposition 4.12, we have that ∩λ∈Λ\{µ}Uλ is a closed set.

If the assumption of Proposition 4.12 does not hold, then the condition that

∩λ∈ΛUλ is a closed set does not always imply that ∩λ∈Λ\{µ}Uλ is closed. The

following is an example.

Example 4.14. Let X = {a,b,c,d,e} with topology θ = {∅,{a},{d},{a,d},
{b,d},{c,d},{a,b,d},{a,c,d},{b,c,d},{a,b,c,d},{b,c,d,e},X}, U1 = {a},
U2 = {a,b,d}, and U3 = {a,c,d}. Then, U1 ∩U2 ∩U3 = U1 is a closed set. It

follows that U1∪U2 = U2 ≠ X, U1∪U3 = U3 ≠ X, U2∪U3 = {a,b,c,d} ≠ X. We

see that U2∩U3 = {a,d} is not a closed set.

5. More about radicals of maximal open sets. In this section, we study the

closure of radicals. We begin with a proposition.

Proposition 5.1. Let Uλ be a set for any element λ of Λ. If Cl(∩λ∈ΛUλ)=X,

then Cl(Uλ)=X for any element λ of Λ.

Proof. We see that X = Cl(∩λ∈ΛUλ) ⊂ Cl(Uλ). It follows that Cl(Uλ) = X
for any element λ of Λ.

Theorem 5.2. Let Uλ be a maximal open set for any element λ of a finite set

Λ. If Cl(∩λ∈ΛUλ)≠X, then there exists an element λ ofΛ such that Cl(Uλ)=Uλ.
Proof. Assume that Cl(Uλ)=X for any element λ ofΛ. Let µ be an element

of Λ. Since ∩λ∈Λ\{µ}Uλ is an open set, we have

Cl
(∩λ∈ΛUλ

)= Cl
((∩λ∈Λ\{µ}Uλ

)∩Uµ
)⊃ (∩λ∈Λ\{µ}Uλ

)∩Cl
(
Uµ
)

= (∩λ∈Λ\{µ}Uλ
)∩X

=∩λ∈Λ\{µ}Uλ.
(5.1)



SOME PROPERTIES OF MAXIMAL OPEN SETS 1339

Hence, Cl(∩λ∈Λ\{µ}Uλ)⊂ Cl(∩λ∈ΛUλ). On the other hand, we see that ∩λ∈ΛUλ ⊂
∩λ∈Λ\{µ}Uλ, and hence Cl(∩λ∈ΛUλ)⊂Cl(∩λ∈Λ\{µ}Uλ). It follows that Cl(∩λ∈ΛUλ)
= Cl(∩λ∈Λ\{µ}Uλ). Then, by induction on the element of Λ, we see that

Cl(∩λ∈ΛUλ)= Cl(Uλ)=X for an element λ of Λ. This contradicts our assump-

tion that Cl(∩λ∈ΛUλ)≠ X. Therefore, we see that there exists an element λ of

Λ such that Cl(Uλ)=Uλ.
Theorem 5.2 is not true when Λ is not a finite set, as we see by the following

example. This example also shows that ifΛ is not a finite set, then Theorem 4.8

is not always true.

Example 5.3. Let X = Rn, the n-dimensional Euclidean space. Let Ux =
X−{x} for any element x ∈X. Then, Ux is a maximal open set and we have

Cl
(∩x∈X Ux

)= Cl(∅)=∅≠X. (5.2)

However, Cl(Ux)=X for any element x of X.

The radicals of maximal open sets have the following outstanding property.

Theorem 5.4 (the law of radical closure). Let Λ be a finite set and Uλ a

maximal open set for each element λ of Λ. Let Γ be a subset of Λ such that

Cl
(
Uλ
)=Uλ for any λ∈ Γ ,

Cl
(
Uλ
)=X for any λ∈Λ\Γ . (5.3)

Then, Cl(∩λ∈ΛUλ)=∩λ∈ΓUλ (=X if Γ =∅).
Proof. If Γ =∅, then we have the result by Theorem 5.2. Otherwise Γ ≠∅,

and hence we see that

Cl
(∩λ∈ΛUλ

)= Cl
((∩λ∈Γ Uλ

)∩(∩λ∈Λ\Γ Uλ
))⊃ (∩λ∈Γ Uλ

)∩Cl
(∩λ∈Λ\Γ Uλ

)

= (∩λ∈Γ Uλ
)∩X =∩λ∈ΓUλ

(5.4)

by Theorem 5.2 and the fact that ∩λ∈ΓUλ is an open set. It follows that

Cl(∩λ∈ΛUλ) = Cl(Cl(∩λ∈ΛUλ)) ⊃ Cl(∩λ∈ΓUλ). On the other hand, we see

that ∩λ∈ΛUλ ⊂ ∩λ∈ΓUλ, and hence Cl(∩λ∈ΛUλ) ⊂ Cl(∩λ∈ΓUλ). It follows that

Cl(∩λ∈ΛUλ)=Cl(∩λ∈ΓUλ). The radical∩λ∈ΓUλ is a closed set sinceUλ is a closed

set for any λ ∈ Γ by our assumption. Therefore, we see that Cl(∩λ∈ΛUλ) =
∩λ∈ΓUλ.

As an application of Theorem 5.4, we give another proof of Theorem 4.8.

Another proof of Theorem 4.8. Let Γ be a subset of Λ such that

Cl
(
Uλ
)=Uλ for any λ∈ Γ ,

Cl
(
Uλ
)=X for any λ∈Λ\Γ . (5.5)
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We suppose that the radical ∩λ∈ΛUλ is a closed set. We see that Γ ≠ ∅ by

Theorem 5.4. Then, ∩λ∈ΛUλ = Cl(∩λ∈ΛUλ) = ∩λ∈ΓUλ for the subset Γ of Λ by

Theorem 5.4. Then, we see that Λ= Γ by Theorem 4.6.
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