IJMMS 2003:22, 1383-1395
PII. S0161171203202222
http://ijmms.hindawi.com
© Hindawi Publishing Corp.
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The relative homotopy theory of modules, including the (module) homotopy ex-
act sequence, was developed by Peter Hilton (1965). Our thrust is to produce an
alternative proof of the existence of the injective homotopy exact sequence with
no reference to elements of sets, so that one can define the necessary homotopy
concepts in arbitrary abelian categories with enough injectives and projectives,
and obtain, automatically, the projective relative homotopy theory as the dual.
Furthermore, we pursue the relative (module) homotopy theory analogously to
the absolute (module) homotopy theory. For these purposes, we embed the rela-
tive category into the category of long exact sequences, as a full subcategory, in
our search for suitable notions of monomorphisms and injectives in the relative
category.

2000 Mathematics Subject Classification: 18G55, 55U30, 55U35.

1. Introduction. The relative homotopy theory of modules, including the
(module) homotopy exact sequence, was developed by Peter Hilton and stated
in [1, Chapter 13]. The approach in this paper produces an alternative proof
of the existence of the injective homotopy exact sequence without involving
any reference to elements of sets in the arguments, so that one can define
the necessary homotopy concepts in arbitrary abelian categories with enough
injectives and projectives, and obtain, automatically, the projective relative
homotopy theory as the dual.

In addition, having established a few new examples of nontrivial (absolute)
homotopy groups of modules in [2], we here pursue the relative (module) ho-
motopy theory analogously to the absolute (module) homotopy theory. For
these purposes, to find suitable notions of monomorphisms and injectives in
the relative category, we embed the relative category .1, in the category € of
long exact sequences as a full subcategory and say that a morphism (an object)
in Jl, is a monomorphism (an injective) if its image in € is a monomorphism
(an injective).

2. The relative category. In the relative category, denoted .l,, of the cat-
egory Jl of, say, right A-modules, where A is a unitary ring, the objects are
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module homomorphisms ¢ : A — B and the morphisms are pairs of module-
homomorphisms (p,0) : ¢ — ¢’ such that the following diagram commutes:

A——B

pl lg @.1)
”

A" ——B.
We are, particularly, interested in the commutative square

sn-14 (&_ csn-la

Pl la (2-2)
B

By ———— By,

where CA is an injective container of A, t,,_; is the inclusion map, and XA is
the suspension of A (see [1, page 134]), for it represents an element of the nth
(injective) relative homotopy group 7, (A,B), n > 1, B : By — B>, which is to be
discussed in Section 4.

Since we build up the relative homotopy theory of modules analogously to
the absolute homotopy theory of modules (see [1, Chapter 13]), we say that a
pair of maps (p,0) : ty,-1 — B is i-nullhomotopic if it can be extended to an in-
jective container of t,,_;. Thus, we must look for suitable notions of monomor-
phisms and injectives in the relative category. If, in (2.1), to say that (p, o) is
a monomorphism in Jt,, simply required p and o to be monomorphic, one
could not expect to obtain injective objects. The following diagram illustrates
this situation:

- oA

B

(2.3)

A
/ J
4 s
/ s
¥ y

CA (injective).

However, it is necessary, though not sufficient, that p and o are both
monomorphic in .t in the search for monomorphisms in Jit,.
The next line of thought is to extend (2.1) to

ker¢ € A B coker ¢

-

ker ¢’ € A B’ coker¢’,
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where p| is the restriction of p and o’ is the induced map of o. This amounts
to embedding Jl, in €, the category of long exact sequences in ., and call-
ing (p,0) a monomorphism if its image in ¢ is a monomorphism. In other
words, we identify the object ¢ : A — B in Jl,, with the exact sequence ker ¢ —
A <. B — coker¢ in € and the morphism (p,0) : ¢ — ¢’ in M, with a col-
lection of maps (pl,p,0,0") in €. It would, then, seem reasonable to regard
(p,0) as a monomorphism if p|, p, o, and o’ are all monomorphisms.

3. The category of long exact sequences. In the category of long exact
sequences, denoted ¢, the objects are long exact sequences in .l and the mor-
phisms are collections of maps of .t such that the following diagram com-
mutes:

T -

Note that a monomorphismin € is a collection of monomorphisms; it forces the
restrictions on kernel images to be monomorphic. By embedding the relative
category ., in ¢, we say that in (2.1), (p,0) is a monomorphism in Jl, if p and
o, together with the induced map o’ on cokernels, are all monomorphisms.
Moreover, we remark that if we embed Jl in Jl, by identifying A with 0 - A, a
monomorphism in .l is automatically a suitable monomorphism in .t,. Thus,
this is a genuine relativization of (module) homotopy theory.

Since the purpose is to define i-nullhomotopy in the relative category, we
search for injectives in €. First, we make the following definition.

DEFINITION 3.1. In the long exact sequence A:--- - A, 1 — Ay, — Api1 —
-+, if A, =0 for n <r and n > s, the span of A is [r,s].

Notice that we may have v = —o or s = .

THEOREM 3.2. In the category € of long exact sequences, the injectives are
long exact sequences of injective modules with kernel images also injective.

Moreover, this category has enough injectives and the span of an injective
containing A may be taken to be the same as that of the given sequence A.

We remark that the second half of the theorem is an extension of [1, Propo-
sition 13.13].

PROOF. First,letIbe along exact sequence of injective modules with kernel-
images also injective; we show that I is an injective in €. Suppose given two
long exact sequences A and B with a monomorphism p : A — B and a map
& : A — 1, the deduction that the map & extends to B is based on the following
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diagram:

n+1
A: Appg —= -
Hn+1
§n+1
Bn+1

B: > B, > Bpyg —>

/ —

~
Mn+1
e
7
/
/
1: / In+1
: ; (inj)
/ /
\ 7n+1 / _ /

| tn+1 //

| / Pn+l

| /

N2

(3.2)

In (3.2), supplement the sequence I by the kernel images so that, for eachn € 7,
there is a commutative triangle

Yn

In—l In
h g (3.3)
Yn n
Imyy,
which yields a splitting short exact sequence
Imy, ¢ I Ynel  Imypeq.
(hu.r Uﬁ?) ﬁn;3+ (3'4)

This means that there exist maps p, : I, — Imy, and o, : Imy, 1 — I, such
that putn = limy,s ¥n:10n = limy,,,» and 1, pn + 0ny 1 = 11,. In addition, the
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map pn&y in the diagram

An>L By

lann (3.5)
Imy,
(inj.)

extends to By, that is, there is a map n,, : B, — Imy, such that n,u, = pn&n.
Based on these, for each n, we define ¢, : B, — I, via ¢y, = unn +
OnNn+1Bn+1. It remains to show that ¢, uy, =&, and yudn-1 = dnPbu:
(1)

Dnbn = (TnNn + OuNns1Brs1) Un
=TnNnHn + Onln+1Bn+1bn
TnPn&n + OnNn+1Hn+1 O+l
nPn&n+0nPns18&n+16n+1
Pn&n + OnPni1¥Yn+18n (3.6)
Pn&n+ OnPri1lns1Yni18En
nPn&n+O0nYni18&n
= (tnPn+0nYns1)&n

En;

Il
~I

()

YndPn-1=nYp(ta-1Mn-1+0n-11nBn)
Y nOn-1MnBn

TnlnBn
NnBn+0nNns1Bns1Bn

= (tnNn+OnNns1Bni1) Bu

= ¢an

(3.7)

Before deriving the converse, we prove that the category € has enough in-
jectives; by this, we mean that every object in € can be embedded in an in-

jective. Let A: -+ — Ay Lo, Ay, — --- be in €. For each n € Z, embed the
kernel image Im «,, in an injective module I,,, so that the long exact sequence
Ji- = Ju RN Jn — - -+, where J, =I,, 1, and y, is the expected “rota-

tion” on the summands, is an injective in €. To show that J is a container of A,
we use the facts that the inclusion map A, : Im &, < I, n € Z, extends to A,
by a map named 6,, and the map {6y, 0,101} : Ay — Jn is monomorphic to
construct the desired commutative diagram
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An

A

Kn+1

\/

Im (xn

{On—1,0n0n}

n
Im O(n+1

/
{0n,0n+1 041}

An+1

/

/ /

Ans1 / On+1
/ /

/ /

—1—F+—=>Lh ®lo— "

(3.8)

About the span of an injective container, the exact sequence A and a suitably
chosen J end on the left (right) simultaneously because if A, = 0 for n < r
(n>s), thenImoy, =Imay,.1 =0, so that one makes I,, = I,,,1 = 0 since itis a
matter of choice.

Finally, by the following diagram, we assure that if I is an injective in €, it
has to be a sequence of injective modules with kernel images also injective for
the diagram shows that Imy,,, as a direct summand in Imn,,, is injective:

I: - —1I, W/In%----
Imyn
J .]nfl .]n
(inj. (inj.)
/ \ / /
/ /
/ \ / /
/ Imn, /
/ (inj.) /
/ / /
/ / /
y - // y
I Iy 7 I, — -
/
/
14
Imyn

(3.9)
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Since the proof of Theorem 3.2 does not involve any reference to elements
of sets, by duality, we introduce epimorphisms and projectives in ¢ without
further argument.

An epimorphism in the category of long exact sequences is a collection of
epimorphisms, which forces the induced maps on kernel images to be epimor-
phic.

THEOREM 3.3. In €, the projectives are long exact sequences of projective
modules with kernel images also projective.

Moreover, this category has enough projectives, and the span of a projective
P over A may be taken to be the same as that of the given sequence A.

In the case where an injective (a projective) in ¢ ends on the left (right), we
have the following corollary.

COROLLARY 3.4. In the category of long exact sequences €,

(i) a sequence 0 — I, — I, — --- — I, — --- Is an injective if and only if
each I, is an injective module;
(ii) a sequence --- — P, — --- — P» — P — 0 is a projective if and only if

each P, is a projective module.

We remark that Corollary 3.4(i) is [1, Proposition 13.14].

4. Homotopy in the relative category. As mentioned in Section 2, we will
embed the relative category .1, in the category of long exact sequences ¢ as
a full subcategory. Thus, diagram (2.1) is essentially diagram (2.4); the map
(p,0) : p — ¢’ is amonomorphism in ., if p and o, together with the induced
map o', are all monomorphisms, and A 2, B is an injective if A and B, together
with ker ¢ and coker ¢, are all injective modules.

Notice that these extra criteria are not automatic, even for abelian groups.
For instance, in the diagram

077 Zs
l XSI Ixz l (4.1)
0¢ 7257 74,

the induced map Zg — Z4 is clearly not monomorphic; in the exact sequence
Z - Q —~ Q/Z, the kernel Z is not injective although Q and Q/Z are.
Hereafter, diagram (2.2) becomes

0 ——=sn1g s oxnoig — T s

T

kerp € B, B, coker B,
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where (,,_; is the inclusion map and €, is the quotient map, and Theorem 3.2
lets us pursue the relative homotopy theory analogously to the absolute theory
(see [1, Chapter 13]). We first quote the definitions of i-nullhomotopy and the
nth relative homotopy group (see [1, page 142]).

DEFINITION 4.1. The map (0,p) : t,-1 — B is i-nullhomotopic, denoted by
(p,0) =; 0, if it can be extended to an injective container of t,,_;.

DEFINITION 4.2. Suppose given a map f : By — B, the nth (injective) rela-
tive homotopy group, n > 1, is 1, (A, ) = Hom(t,,—1,8)/Homg (t,—1, B), where
Hom(t,,-1, B) is the abelian group of maps of t,,_; to 8, and Homg (t,,-1,8) is
the subgroup consisting of i-nullhomotopic maps.

We remark that, by duality, given a map « : A; — Ay, one can define p-
nullhomotopy and the nth (projective) relative homotopy group 1, (,B) ac-
cordingly.

5. The homotopy exact sequence of modules. We introduce the relative
homotopy groups in module theory in order to imitate the homotopy exact
sequence in topology. As expected, in the injective relative (module) homotopy
theory, let 8 : By — B> be a map, there is then an exact sequence of the map S
(see [1, Theorem 13.15]).

THEOREM 5.1. Suppose given a map B : By — B,. Then, there exists, for each
A, a homotopy exact sequence

0 — *  — — 0 — *
2 T (AB1) £ 0 (A, By) L T (A B) - a1 (A B) £

(5.1)
27 (A,B) £ T (A By) L (A, B) - T(ALB) £ T (AL By).

We remark that a proof of this theorem is given in [1]. We produce an al-
ternative proof without any reference to elements of sets, so that it is suit-
able for arbitrary abelian categories with enough injectives and projectives,
and one can define the necessary homotopy concepts. Especially, the dual, the
homotopy exact sequence in the projective relative homotopy theory, arises
automatically.

The approach is, first, to prove the special case when the map £ is a mono-
morphism, then to expand to Theorem 5.1 the general case by exploiting the
mapping cylinder of 8. We start with a couple of propositions; Proposition 5.2
is an evident relativization.

PROPOSITION 5.2. The following are equivalent:

@ (p,0) =i 0;

(i) (p,0) can be extended to every object containing t,—1;
(iii) (p,0) can be factored through some injective object.
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PROPOSITION 5.3. In Hom(t,,-1, ), when B is monomorphic, (p,o) ~; 0 if
and only if o = BO + xt,€, for some 0:CE"'A - By and x : CS"A — By:

sn1g s s g — e sng O osngy
- d o’ -~ -
P 6/ d (o2 X - (5-2)
Ve —
e -
By f B> - a By, (= coker ).
PROOF.
sn-14 (L_ csn-lp cn >n A
n-1 {1,tnen} n
g U"
p Csnlg ———F—— C3nlaeCsnA —> C3"A
/
/ g - g /
Y P 4 /
70 o) /n
% _ /
¥ 8 A « ¥
B B> B1> (= coker ).
(5.3)

Assume that (p, o) ~; 0; by Proposition 5.2(ii), (p, ") must extend to the con-
tainer CI" 1A - C3" 1A@ CI"A -~ C3"A, in which the maps are the canon-
ical inclusion into the first factor and the projection onto the second factor,
respectively. This assures the existence of the maps 0, (v,x), and n in the
commutative diagram (5.3), and the facts that 60 = v and 0 = v1 + Xtn€n
force o = BO+ Xin€n.

Conversely, if 0 = B0+ xtn€, for some 0:CZ"1A - B; and x: CZ"A — Bo,
by letting v = B0 and n = kx, we have BOt,-1 = Viy-1 = (V,X) o {1,1n€n} o
ln-1 = Oly-1 = Bp,sothat O1,,—1 = p. Therefore, the map (p, o) factors through
the injective CS" 1A - CS"" 1A @ CI"A - CI"A; thus, it is i-nullhomotopic
by Proposition 5.2(iii). O

PROOF OF THEOREM 5.1. Assume, first, that the map B is monomorphic.
We construct an injective resolution of A; thus,

C:iACS cA— Y s osa- %Il ey syt

NN N

A
(5.4)
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When applying the functor Homa (C,—) to B, there arises a short exact se-
quence of chain complexes; thus,

HOHlA G, Bl

|

Homy (C, B>) (5.5)

*

i quotient map

Hom, (C,B»)/image B.

To conclude that, when B is monomorphic, the induced homology sequence
coincides with the homotopy exact sequence (5.1); it suffices to show that in
the third complex,

keri_, /image o) =7, (A,B), m > 1, naturally. (5.6)

--—>=Homp (CZ" A, By) ‘>H0mA (Cz=n-1A,By) *>HomA (CZ"=2A,By)—>

N A A

B+ Homp (™A, Bq) B+ Homp (E""1A,B) B

B Bx
o) 1 o 2
-+—>Homy (CZ" A, Bz) ——Homy (CZ" 1A, B)) —>Homy (CZ""2A,By) —> " -

__ Hom, (C3"A,By) «ii Homp (CS""LA,By) *nls HomA(CZ"’ZA,BZ)%

image S« image B« image B«
\ 71 \ 7
\ / N\ /
\ / N 4
EIIN s €n IEN /e
NV ./ \
Homy (S A, Bp) Homy (5" 1A, By)
image 3« image B«

(5.7)
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To prove (5.6), first, we pick ¢ : CZ""'A — B,, for which the equivalence class
[¢] € kereet_,. Since €;;_, is monomorphic, ker «;;_; = ker¢);_, which yields
¢ptn_1 = Bv for some v : 3" 'A — B;. In addition, since B is monomorphic,
the map v is uniquely determined; call it ¢|. Therefore, the map ¢ forces a
commutative square

sn-14 (&_ csn-la

¢l l¢ (5.8)
B

BB

which represents an element in 77, (A, 8); we thus define & : ker «;;_, /image o
— T, (A, B) via E[P] = [(P],¢)] and prove that it is an isomorphism. Suppose
a given [¢] such that (¢|,¢) ~; 0. Then, by Proposition 5.3, there are maps
0:C3" 1A - By and x: CIZ"A — By such that ¢ = BO+ Xtn€n = B« (0) + i (X)-
Thus, [¢] = 0 and &€ is a monomorphism. On the other hand, let [(p,0)] €
T, (A, B);then, E[o] = [(ol],0)] = [(p,0)]; so, & is epimorphic. This completes
the proof if B is a monomorphism.

Now, if the map f is arbitrary, we apply the mapping cylinder of 8 : By —
By; thus, {t,B} : By = CB; @ B>, where CB; is an injective container of B; and
L: By — CB; is the inclusion map. It yields a monomorphism {¢, 8} equivalent
to B and a short exact sequence

Bl>% CB, @B Kk B>, (5.9)

where k is the quotient map and B;» = coker{t, B}, which leads to a homotopy
exact sequence; thus,

27, (A By) T, (A, CBy @ By) <L T (AL {1 BY) < a1 (ALB)

{68}« . i’ﬁl(A,Bl) {68}«

{48} %

771 (A,CBy @ By) - 7, (A, {1, B})

2.7 (A,B)) 7T(A,CB, ©By).

(5.10)

Since CB; is injective, 71, (A,CB, @ By) = 1, (A, B>) for n = 0. Thus, to conclude
that the homotopy exact sequence (5.10) of {¢, 8} is canonically isomorphic to
the homotopy exact sequence (5.1) of 8, we show that 7T, (A, {(, 8}) = T, (A, B),
n=x=1.
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Note that the diagrams

sn-1y CLo oyne1g sn-14 Cs ooy
Pl J/{y,a} pJ/ lo (5.11)
{,B} B
By >—— CB1 9B, By ———— By,

where y : C3""1A — CB, is an arbitrary extension of tp, represent elements in
7T, (A, {t, B}) and 7T, (A, B), respectively. We thus define the map x : 7T, (A, {t, B})
— Tty (A, B) by assigning the equivalence class [(p,{y,o})] to [(p,0)].

To assure that x is well defined, suppose a given [(p,{y,o})] such that
(p,{y,o}) =; 0. By Proposition 5.3, there exist maps 0 : C" 1A — B; and
{n1,n2} : CZ"A — CBy @ B such that {y,o} ={(,}0 + {n1,n2}tn€n. The facts
that {tp,Bp} = {,Blop = {y,0totn1 = {0+ Ntn€n, BO+ N2tn€nt oty 1 =
{t0t;,-1,B01,-1} and that ( is monomorphic force p = 0,1, and thus imply
the existence of the following commutative diagram:

0 ——=3sn1a " oxneig - A
ln-1 {1,tnen} n
P o o’
00— (3" 1A ——F—— s 1A CS"A ——> C3"A
/ / (BO.n2) //,72
ker € B, F B, X coker B.

(5.12)

Then, by Proposition 5.2(iii), (p,0) ~; 0.

To show that x is monomorphic, let [(p,{y,o0})] € kery; then, (p,0) ~; 0
and Proposition 5.2(ii) gives us the existence of diagram (5.12). In addition,
since (y —10)ty-1 = Yln-1 — 1011 = tp — tp = 0, we obtain a commutative
diagram; thus,

Zn—lA (L_ Czn—lA $> ZnA

-
OJ Jy—l@ _ : (5.13)

e

B;¢€ CB; cokert

in which the map y — (60 factors through €, by a unique map v : 3"A — CB;.
Furthermore, since CB; is injective, the map v extends to CXZ"A by a map nj.
Hence, y = 10 + vey, = 10 + N1 ty€, Which yields {y,o} = {(, 810+ {n1, N2} tw€n,
so that (p,{y,o0}) =~; 0 by Proposition 5.3.
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Finally, if [(p,0)] € Tt (A, B), since CB; is injective, the map tp : 3" 1A —
CB; extends to CZ"'A by a map y. Thus, there exists the equivalence class
[(p,{y,0})] € (A, {1, B}), that is, the preimage of [(p,0)]. The proof of
Theorem 5.1 is complete. O

One final remark is that our arguments do not involve any elements of sets,
so that, by duality, one can easily proceed with the projective relative (module)
homotopy theory without further argument. As an example, the statement dual
to that of Theorem 5.1 is the following theorem.

THEOREM 5.4. Suppose given a map «: A1 — A». Then, there exists, for each
B, a (projective) homotopy exact sequence
0 o* J il o*
T En(AZ;B) I En(AlsB) - En(‘an) . En—l(AZlB) -
2oy (A2, B) = 1, (A1, B) L 11, (o4, B) -2 10(A,B) < 11(A1,B).
(5.14)
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