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POISSON STRUCTURES ON COTANGENT BUNDLES
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We make a study of Poisson structures of T∗M which are graded structures when
restricted to the fiberwise polynomial algebra and we give examples. A class of
more general graded bivector fields which induce a given Poisson structure w
on the base manifold M is constructed. In particular, the horizontal lifting of a
Poisson structure from M to T∗M via connections gives such bivector fields and
we discuss the conditions for these lifts to be Poisson bivector fields and their
compatibility with the canonical Poisson structure on T∗M . Finally, for a 2-form
ω on a Riemannian manifold, we study the conditions for some associated 2-forms
of ω on T∗M to define Poisson structures on cotangent bundles.

2000 Mathematics Subject Classification: 53D17.

1. Introduction. In this paper, we present the dual version of the subject

discussed in [4] and study graded bivector fields and Poisson structures on

the cotangent bundle of a manifold. Although this study is similar to the one

in [4], it is motivated by the presence of specific aspects. Indeed, we do not

have a natural almost tangent structure and semisprays anymore, but we have

the canonical symplectic structure instead. This makes a separate exposition

required. Another new aspect that we discuss is that of a base manifold which

is a Riemannian space.

2. Graded Poisson structures on cotangent bundles. LetM be ann-dimen-

sional differentiable manifold and π : T∗M →M its cotangent bundle. If (xi)
(i= 1, . . . ,n) are local coordinates on M , we denote by (pi) the covector coor-

dinates with respect to the cobasis (dxi). (We assume that everything is C∞ in

this paper.)

In this section, we discuss graded Poisson structures W on the cotangent

bundle T∗M obtained as lifts of Poisson structuresw on the base manifoldM ,

in the sense that the canonical projection π is a Poisson mapping (see [4]).

Denote by Sk(TM) the space of k-contravariant symmetric tensor fields onM
and by � the symmetric tensor product on the algebra S(TM)=⊕k≥0Sk(TM).
The spaces of fiberwise homogeneous k-polynomials

��k
(
T∗M

)
:=
{
Q̃=Qi1···ikpi1 ···pik |

Q=Qi1···ik ∂
∂xi1

�···� ∂
∂xik

∈ Sk(TM)
} (2.1)
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are interesting subspaces of the function space C∞(T∗M) and play an impor-

tant role in this paper.

The map

∼:
(
S(TM),�) �→ (

�
(
T∗M

)
,·), ∼Q := Q̃, (2.2)

where �(T∗M) :=⊕k��k(T∗M) is the polynomial algebra and the dot denotes

the usual multiplication, is an isomorphism of algebras.

On T∗M we also have the spaces of (fiberwise) nonhomogeneous polynomi-

als of degree less than or equal to k

�k
(
T∗M

)
:=

k⊕
h=0

��h. (2.3)

For k = 1, �(T∗M) := �1(T∗M) is the space of affine functions, having the

elements of the form

a(x,p)= f(x)+m(X), (2.4)

where f ∈ C∞(M),X ∈ χ(M) (the space of vector fields onM), andm(X) :=∼X
is the momentum of X. (The momentum m(X) is X regarded as a function on

T∗M .)

The elements of the space �2(T∗M) of nonhomogeneous quadratic polyno-

mials are

t(x,p)= f(x)+m(X)+s(Q), (2.5)

where Q =Qij(∂/∂xi)�(∂/∂xj) is a symmetric contravariant tensor field on

M and s(Q) :=∼Q.

Hereafter, by a polynomial on T∗M , we always mean a fiberwise polynomial.

Also, we write f for both f on M and f ◦π on T∗M .

Definition 2.1. A Poisson structure W on T∗M is called polynomially

graded if for all Q,R ∈�(T∗M),

Q∈�h, R ∈�k �⇒ {Q,R}W ∈�h+k. (2.6)

Proposition 2.2. A polynomially graded Poisson structure W on T∗M in-

duces a Poisson structure w on the base manifold M such that the projection

π : (T∗M,W)→ (M,w) is a Poisson mapping.

Proof. Any function f on M is a polynomial (f ◦π) ∈ �0(T∗M). By (2.6),

for all f ,g ∈ C∞(M), {f ◦π,g◦π}W ∈ C∞(M) and

{f ,g}w := {f ◦π,g◦π}W (2.7)

defines a Poisson structure w on M .
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Hereafter, the bracket {·,·}W will be denoted simply by {·,·}.
If the local coordinate expression of the Poisson structure w introduced by

Proposition 2.2 is

w = 1
2
wij(x)

∂
∂xi

∧ ∂
∂xj

, (2.8)

Definition 2.1 tells us that W must have the local coordinate expression

W = 1
2
wij(x)

∂
∂xi

∧ ∂
∂xj

+(ϕi
j(x)+paAiaj (x)

) ∂
∂xi

∧ ∂
∂pj

+ 1
2

(
ηij(x)+paBaij(x)+papbCabij (x)

) ∂
∂pi

∧ ∂
∂pj

,
(2.9)

where w, ϕ, η, A, B, and C are local functions on M .

The Poisson structure W is completely determined by the brackets {f ,g},
{m(X),f}, and {m(X),m(Y)}, where f ,g ∈ C∞(M) and X,Y ∈ χ(M) since the

local coordinates xi and pi are functions of this type (pi =m(∂/∂xi)).
By (2.6), the bracket {m(X),f} is in �1(T∗M), that is,

{
m(X),f

}= ZXf +m(γXf ), (2.10)

where ZXf ∈ C∞(M) and γXf ∈ χ(M).
The map {m(X),·} is a derivation of C∞(M). Hence, ZX is a vector field on

M and the mapping γX : C∞(M) → χ(M) also is a derivation. Therefore, γXf
depends only on df .

From the Leibniz rule, we get that ZhX = hZX (h ∈ C∞(M)) and γ must

satisfy

γhXf = hγXf +
(
Xwh f

)
X. (2.11)

The bracket of two affine functions has an expression of the form

{
m(X),m(Y)

}= β(X,Y)+m(V(X,Y))+s(Ψ(X,Y)), (2.12)

where β(X,Y) ∈ C∞(M), V(X,Y) ∈ χ(M), and Ψ(X,Y) ∈ S2(TM) are skew-

symmetric operators. If we replace Y by fY in (2.12), the Leibniz rule gives

that β is a 2-form on M and

V(X,fY)= fV(X,Y)+(ZXf )Y ,
Ψ(X,fY)= fΨ(X,Y)+(γXf )�Y . (2.13)

Definition 2.3. A polynomially graded Poisson structure W on T∗M is

said to be a graded structure if for all Q∈��h and for all R ∈��k, it follows

{Q,R}W ∈��h+k.
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Remark that a polynomially graded structure on T∗M is graded if and only

if ZX = 0, β= 0, and V = 0. In this case, (2.9) reduces to

W = 1
2
wij(x)

∂
∂xi

∧ ∂
∂xj

+paAiaj (x)
∂
∂xi

∧ ∂
∂pj

+ 1
2
papbCabij (x)

∂
∂pi

∧ ∂
∂pj

.

(2.14)

As in [4], a bivector field W on T∗M which is locally of the form (2.9) (resp.,

(2.14)) is called a polynomially graded (resp., graded) bivector field.

Proposition 2.4. If W is a graded bivector field on T∗M which is π -related

with a Poisson structure w on M , there exists a contravariant connection D on

the Poisson manifold (M,w) such that

{
m(X),f

}=−m(DdfX), X ∈ χ(M), f ∈ C∞(M). (2.15)

Moreover, if W is a graded Poisson structure on T∗M , then the connection D is

flat.

Proof. A contravariant connection on (M,w) is a contravariant derivative

on TM with respect to the Poisson structure [8].

The required connection is defined by

DdfX :=−γXf . (2.16)

That we really get a connection, which is flat in the Poisson case, follows in

exactly the same way as in [4].

The relation (2.15) extends to the following proposition.

Proposition 2.5. If Q is a symmetric contravariant tensor field on M and

Q̃ is its corresponding polynomial, then for any graded Poisson bivector field W
on T∗M ,

{
Q̃,f

}
W =−D̃dfQ. (2.17)

Proof. The contravariant connection Ddf of (2.17) is extended to S(TM)
by

(
DdfQ

)(
α1, . . . ,αk

)=Xwf (Q(α1, . . . ,αk
))

−
k∑
i=1

Q
(
α1, . . . ,Ddfαi, . . . ,αk

)
,

(2.18)

where α1, . . . ,αk ∈Ω1(M), and Ddfα is defined by

〈
Ddfα,X

〉=Xwf 〈α,X〉−〈α,DdfX〉, X ∈ χ(M). (2.19)
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We put

Ddxi
∂
∂xj

=−Γ ikj
∂
∂xk

, (2.20)

and by a straightforward computation we get for {Q̃,f} and − ˜(DdfQ) the

same local coordinate expression. (See [4] for the complete proof in the case

of a symmetric covariant tensor field on M .)

In order to discuss the next two Jacobi identities, we make some remarks

concerning the operator Ψ of (2.12), which is given in the case of a graded

Poisson structure on T∗M by

{
m(X),m(Y)

}= s(Ψ(X,Y)), X,Y ∈ χ(M). (2.21)

With (2.16), the second relation (2.13) becomes

Ψ(X,fY)= fΨ(X,Y)− 1
2

(
DdfX⊗Y +Y ⊗DdfX

)
(2.22)

and this allows us to derive the local coordinate expression of Ψ . If X =
Xi(∂/∂xi) and Y = Yj(∂/∂xj), we obtain

Ψ(X,Y)=XiY jΨ
(
∂
∂xi

,
∂
∂xj

)
+
(
Xh
∂Yj

∂xk
Γ kih −Yh

∂Xi

∂xk
Γ kjh

)
∂
∂xi

� ∂
∂xj

+wkh ∂Xi

∂xk
∂Y j

∂xh
∂
∂xi

� ∂
∂xj

.

(2.23)

Remark that Ψ : TM×TM →�2TM is a bidifferential operator of the first order.

Proposition 2.6. If the operator Ddf acts on Ψ by

(
DdfΨ

)
(X,Y) :=Ddf

(
Ψ(X,Y)

)−Ψ(DdfX,Y )−Ψ(X,DdfY ), (2.24)

the Jacobi identity

{{
m(X),m(Y)

}
,f
}+{{m(Y),f},m(X)}+{{f ,m(X)},m(Y)}= 0 (2.25)

has the equivalent form

(
DdfΨ

)
(X,Y)= 0, ∀X,Y ∈ χ(M). (2.26)

Proof. Using (2.15), (2.17), and (2.21) for Q = Ψ(X,Y), (2.25) becomes

(2.26).



1838 GABRIEL MITRIC

We also find

(
DdfΨ

)
(X,hY)= h(DdfΨ)(X,Y)−[CD(df ,dh)X]�Y , (2.27)

and hence we see that (2.26) is invariant by X � fX, Y � gY (f ,g ∈ C∞(M)) if

and only if the curvature CD = 0.

Concerning the Jacobi identity

∑
(X,Y ,Z)

{{
m(X),m(Y)

}
,m(Z)

}= 0, (2.28)

(putting indices between parentheses denotes that summation is on cyclic per-

mutations of these indices) remark that one must have an operatorΘ such that

{
s(G),m(X)

}= Θ̃(G,X), X ∈ χ(M), G ∈ S2(M), (2.29)

and Θ(G,X) is a symmetric 3-contravariant tensor field on M .

We get the formula

Θ(fG,hX)= fhΘ(G,X)−f (DdhG)�X+hG�DdfX+{f ,h}wG�X, (2.30)

and then the local coordinate expression

Θ(G,X)=GijXkΘ
(
∂
∂xi

� ∂
∂xj

,
∂
∂xk

)

+ 1
3

∑
(i,j,k)

(
Ghj

∂Xk

∂xa
Γaih +Gih

∂Xk

∂xa
Γajh − ∂G

ij

∂xa
XhΓakh

+wab ∂Gij

∂xa
∂Xk

∂xb

)
∂
∂xi

� ∂
∂xj

� ∂
∂xk

.

(2.31)

Using the operator Θ, the Jacobi identity (2.28) becomes

∑
(X,Y ,Z)

Θ
(
Ψ(X,Y),Z

)= 0, (2.32)

and we may summarize our analysis concerning the graded Poisson structures

on T∗M in the following proposition.

Proposition 2.7. A graded Poisson structure W on T∗M with the bracket

{·,·} is defined by

(a) a Poisson structure w on the base manifold M such that

{f ,g}W = {f ,g}w, f ,g ∈ C∞(M); (2.33)
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(b) a flat contravariant connection D on (M,w) such that

{
m(X),f

}=−m(DdfX), X ∈ C∞(M); (2.34)

(c) an operator Ψ : TM×TM →�2TM such that

{
m(X),m(Y)

}= s(Ψ(X,Y)), X,Y ∈ χ(M), (2.35)

and formula (2.26) holds;

(d) an operator Θ defined by (2.29), satisfying (2.32).

To give examples, we consider the following situation similar to [4].

Let (M,w) be an n-dimensional Poisson manifold and suppose that its sym-

plectic foliation S is contained in a regular foliation � on M such that T� is

a foliated bundle, that is, there are local bases {Yu} (u = 1, . . . ,p, p = rank �)
of T� with transition functions constant along the leaves of �. Consider a

decomposition

TM = T�⊕ν�, (2.36)

where ν� is a complementary subbundle of T�, and �-adapted local coordi-

nates (xa,yu) (a= 1, . . . ,n−p) on M [7].

The Poisson bivector w has the form

w = 1
2
wuv(x,y)

∂
∂yu

∧ ∂
∂yv

(
wvu =−wuv) (2.37)

since S ⊆�.

If {βu}, {β̃v} (u,v = 1, . . . ,p) are the dual cobases of {Yu}, {Ỹv} (βu(Yv) =
δuv), then their transition functions are constant along the leaves of �.

Now, for all α ∈ T∗M , α = ζadxa+εuβu and we may consider (xa,yu,ζa,
εu) as distinguished local coordinates on T∗M . The transition functions are

x̃a = x̃a(x), ỹu = ỹu(x,y), ζ̃u = ∂x
a

∂x̃u
ζa, ε̃u = avu(x)εv. (2.38)

Proposition 2.8. Under the previous hypotheses, W given with respect to

the distinguished local coordinates by

W = 1
2
wuv(x,y)

∂
∂yu

∧ ∂
∂yv

(2.39)

defines a graded Poisson bivector on T∗M .

Proof. From (2.38) it follows that W of (2.39) is a global tensor field on

T∗M . The Schouten-Nijenhuis bracket [W,W] has the same expression as

[w,w] on M , and thus the Poisson condition [W,W]= 0 holds.
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To prove that W is graded, we also consider natural coordinates and show

that the expression of W with respect to these coordinates becomes of the

form (2.14) (see [4]).

There are some interesting particular cases of Proposition 2.8.

(a) The Poisson structurew is regular, and the bundle TS is a foliated bundle;

in this case we may take �= S.

(b) The symplectic foliation S is contained in a regular foliation � which

admits adapted local coordinates (xa,yu) with local transition functions

ỹv = pvu(x)yu+qv(x). (2.40)

(The foliation � is a leaf-wise, locally affine and regular.) In this case, (∂/∂yu)=∑
v avu(x)(∂/∂ỹv) and we may use the local vector fields Yu = ∂/∂yu.

(c) There exists a flat linear connection ∇ (possibly with torsion) on the

Poisson manifold (M,w). In this case, we may consider as leaves of � the con-

nected components of M , and the local ∇-parallel vector fields have constant

transition functions along these leaves. Therefore, we may take them as Yi
(i= 1, . . . ,n).

In particular, we have the result of (c) for a locally affine manifold M (where

∇ has no torsion), using as Yi local ∇-parallel vector fields, and also for a

parallelizable manifold M (where we have global vector fields Yi).
As a consequence, Proposition 2.8 holds for the Lie-Poisson structure [8] of

any dual �∗ of a Lie algebra �, the graded Poisson structure being defined on

T∗�∗ = �∗×�.

3. Graded bivector fields on cotangent bundles. In this section, we discuss

graded bivector fields on a cotangent bundle T∗M , which may be seen as lifts

of a given Poisson structure w on M , that satisfy less restrictive existence

conditions than in the case of graded Poisson structures.

Recall the following definition from [4]. Let � be an arbitrary regular fo-

liation, with p-dimensional leaves, on an n-dimensional manifold N. We de-

note by C∞fol(N) the space of foliated functions (the functions on N which are

constant along the leaves of �). A transversal Poisson structure of (N,�) is a

bivector field w on N such that

{f ,g} :=w(df ,dg), f ,g ∈ C∞fol(N) (3.1)

is a Lie algebra bracket on C∞fol(N). A bivector fieldw onN defines a transversal

Poisson structure of (N,�) if and only if [4]

(
�Yw

)∣∣
AnnT� = 0, [w,w]

∣∣
AnnT� = 0, (3.2)

for all Y ∈ Γ(T�) (the space of global cross sections of T�), where AnnT� ⊆
Ω1(N) is the annihilator space of T�. (Ω1(N) denotes the space of Pfaff forms

on N.)
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The cotangent bundle T∗M of any manifold M has the vertical foliation �

by fibers with the tangent distribution V := T�.

Obviously, the set of foliated functions on T∗M may be identified with

C∞(M).

Proposition 3.1. Any polynomially graded bivector fieldW on T∗M , which

is π -related with a Poisson structure of M , is a transversal Poisson structure of

(T∗M,V).

Proof. The local coordinate expression of W is of the form (2.9), and W
is π -related with the bivector field w defined on M by the first term of (2.9).

Then, (3.2) holds because w is a Poisson bivector on M .

Definition 3.2. A transversal Poisson structure of the vertical foliation of

T∗M will be called a semi-Poisson structure on T∗M .

Remark 3.3. The structures W of Proposition 3.1 are polynomially graded

semi-Poisson structures on T∗M .

In what follows, we discuss some interesting classes of graded semi-Poisson

structures of T∗M . Then, we give a method to construct all the graded semi-

Poisson bivector fields on T∗M , which induce the same Poisson structure w
on the base manifold M .

Let D be a contravariant derivative on a Poisson manifold (M,w). First, for

all Q∈ Sk(TM), define sDQ∈ Sk+1(TM) by

(sDQ)(α1, . . . ,αk+1
)= 1

k+1

k+1∑
i=1

(
DαiQ

)(
α1, . . . , α̂i, . . . ,αk+1

)
, (3.3)

whereα1, . . . ,αk+1 ∈Ω1(M) and the hat denotes the absence of the correspond-

ing factor.

If X =Xi(∂/∂xi)∈ χ(M), then DX, defined by (DX)(α1,α2)= (Dα1X)α2, is

a 2-contravariant tensor field on M , and

DX =DiXj ∂
∂xi

⊗ ∂
∂xj

, (3.4)

where DiXj = (DdxiX)dxj = DdxiXj −X(Ddxidxj). According to (2.20), we

must have

Ddxidx
j = Γ ijk dxk (3.5)

and obtain

DiXj = (dxi)�Xj−Γ ijk dxk = {xi,Xj}w−Γ ijk Xk. (3.6)
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Then

sDX = 1
2

(
DiXj+DjXi) ∂

∂xi
� ∂
∂xj

(3.7)

and we get

sDX = 1
2

[{
xi,Xj

}
w+

{
xj,Xi

}
w−Γ ijk Xk−Γ jik Xk

] ∂
∂xi

� ∂
∂xj

. (3.8)

Proposition 3.4. Let (M,w) be a Poisson manifold and D a contravariant

derivative of (M,w). The bivector field W1 on T∗M , of bracket {·,·}W1 defined

by the conditions

{f ,g}W1 := {f ,g}w, (3.9){
m(X),f

}
W1

:=−m(DdfX), (3.10)

{
m(X),m(Y)

}
W1
= 1

2
s
[sD〈X,Y 〉−〈sDX,Y〉−〈X,sDY〉], (3.11)

where f ,g ∈ C∞(M), X,Y ∈ χ(M), and 〈·,·〉 is the Schouten-Nijenhuis bracket

of symmetric tensor fields (defined by the natural Lie algebroid of M) [1, 4],

defines a graded semi-Poisson structure on T∗M which is π -related with w.

Proof. If the local coordinate expression of w is (2.8), using (3.8) and the

properties of 〈·,·〉 [1, 4], we get

W1 = 1
2
wij ∂

∂xi
∧ ∂
∂xj

−paΓ iaj
∂
∂xi

∧ ∂
∂pj

− 1
4
papb

[
∂
∂xj

(
Γabi +Γbai

)− ∂
∂xi

(
Γabj +Γbaj

)] ∂
∂pi

∧ ∂
∂pj

.

(3.12)

Remark 3.5. The relation (3.11) provides us with the expression of the op-

erator ΨW1 associated to W1 (see (2.21)):

ΨW1(X,Y)=
1
2

(sD〈X,Y 〉−〈sDX,Y〉−〈X,sDY〉). (3.13)

Now, instead of D we consider a linear connection ∇ on a Poisson manifold

(M,w) and define the vector field K on T∗M by

K(α)= (�wα)Hα , α∈ T∗M, (3.14)
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where �w : T∗M → TM is defined by β(α�) = w(α,β) for all β ∈ Ω1(M), and

the upper index H denotes the horizontal lift with respect to ∇ (see [2, 9]). In

local coordinates, we get

K = pawai ∂
∂xi

+ 1
2
papb

(
wakΓbki+wbkΓaki

) ∂
∂pi

. (3.15)

On T∗M , we have the canonical symplectic formω= dλ= dpi∧dxi, where

λ= pidxi is the Liouville form, and the vector bundle isomorphism

�ω : T∗M �→ TM, iXω∈ T∗M � �→X ∈ TM (3.16)

leads to the canonical Poisson bivector W0 := �ωω on T∗M . It follows that

W0(dF,dG)=ω
(
�(dF),�(dG)

)
, F,G ∈ C∞(T∗M), (3.17)

and, locally, one has

W0 = ∂
∂pi

∧ ∂
∂xi

. (3.18)

Proposition 3.6. If (M,w) is a Poisson manifold, then the bivector field

W2 = 1
2

�KW0 (3.19)

defines a graded semi-Poisson structure on T∗M which is π -related with w.

Proof. We get

W2 = 1
2
wij ∂

∂xi
∧ ∂
∂xj

+ 1
2
pa
(∇jwai+2wikΓakj

) ∂
∂xi

∧ ∂
∂pj

+ 1
4
papb

[
∂
∂xj

(
wakΓbki+wbkΓaki

)− ∂
∂xi

(
wakΓbkj+wbkΓakj

)] ∂
∂pi

∧ ∂
∂pj

,

(3.20)

where ∇jwai are the components of the (2,1)-tensor field on M defined by

X �∇Xw, X ∈ χ(M).
We will say that W2 of (3.19) is the graded ∇-lift of the Poisson structure w

of M .

Using local coordinates and the notation of (2.2), we get

�KQ̃= s̃DQ, (3.21)

where D is the contravariant derivative induced by the linear connection ∇,

defined by Ddf =∇(df)� (see [8]).
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From (3.19) we have

{
F1,F2

}
W2

:=W2
(
dF1,dF2

)= 1
2

(
�K

({
F1,F2

}
W0

)
−{�KF1,F2

}
W0
−{F1,�KF2

}
W0

)
,

(3.22)

where F1,F2 ∈ C∞(T∗M).
If Q1,Q2 ∈ S(TM), using (3.21) and the relation

{Q̃,H̃}W0 := 〈̃Q,H〉, Q,H ∈ S(TM) (3.23)

(see [1, 4]), we get the explicit formula

{
Q̃1,Q̃2

}
W2
= 1

2
∼ [sD〈Q1,Q2

〉−〈sDQ1,Q2
〉−〈Q1, sDQ2

〉]
. (3.24)

Proposition 3.7. The graded ∇-lift W2 of w is characterized by the follow-

ing:

(i) the Poisson structure induced on M by W2 is w, that is,

{f ,g}W2 = {f ,g}w, ∀f ,g ∈ C∞(M); (3.25)

(ii) for every f ∈ C∞(M) and X ∈ χ(M),
{
m(X),f

}
W2
=−m(D̄dfX), (3.26)

where D̄ is the contravariant derivative of (M,w) defined by

D̄αβ=Dαβ+ 1
2
(∇·w)(α,β), α,β∈Ω1(M), (3.27)

where the contravariant derivative D is induced by ∇ and (∇·w)(α,β)
is the 1-form X � (∇Xw)(α,β);

(iii) for any vector fields X and Y of M ,

{
m(X),m(Y)

}
W2
= 1

2
s
(sD〈X,Y 〉−〈sDX,Y〉−〈X,sDY〉). (3.28)

Proof. (i) If f ∈ C∞(M), then Df = −Xwf and from (3.22), (3.23), and the

formula

〈Q,f 〉 = i(df)Q, f ∈ C∞(M), Q∈ Sp(TM), (3.29)

we get

{f ,g}W2 =−
1
2

(〈Df,g〉+〈f ,Dg〉)= 1
2

(
Xwf g−Xwg f

)= {f ,g}w. (3.30)
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(ii) As W2 is graded, the bracket {m(X),f}W2 must be of the form (3.26).

Denoting

D̄dxidx
j = Γ̄ ijk dxk, (3.31)

(3.20) gives us

Γ̄ ijk = Γ ijk +
1
2
∇kwij, (3.32)

where

Γ ijk =−wihΓ jhk, (3.33)

(Γ ijk are the coefficients of the linear connection ∇) and hence (3.27).

(iii) Equation (3.28) is a direct consequence of (3.24).

Notice from (3.28) that the operator ΨW2 associated to W2 has the same

expression as ΨW1 of (3.13), but in the case of W1, the contravariant derivative

D is induced by a linear connection ∇ on M .

Proposition 3.8. If the graded semi-Poisson structure W1 is defined by a

linear connection on (M,w), then it coincides with W2 if and only if w is ∇-

parallel.

Proof. Compare the characteristic conditions of Propositions 3.4 and 3.7

(or the coefficients of (∂/∂xi)∧ (∂/∂pj) of (3.12) and of (3.20), using (3.33)).

We prove now the following proposition.

Proposition 3.9. Let (M,w) be a Poisson manifold and π : T∗M → M its

cotangent bundle. The graded semi-Poisson structures W on T∗M which are

π -related with w are defined by the relations

{f ,g}W = {f ,g}w,
{
m(X),f

}
W =−m

(
DdfX

)
,{

m(X),m(Y)
}
W = s

(
Ψ(X,Y)

)
, f ,g ∈ C∞(M), X,Y ∈ χ(M), (3.34)

where D is an arbitrary contravariant connection of (M,w) and the operator

Ψ is given by

Ψ = Ψ0+A+T , (3.35)

where Ψ0 is the operator Ψ of a fixed graded semi-Poisson structure and A :

TM×TM →�2TM is a skew-symmetric, first-order, bidifferential operator such

that

A(X,fY)= fA(X,Y)−τ(df ,X)�Y , (3.36)
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where τ is a (2,1)-tensor field on M and T is a (2,2)-tensor field on M with the

properties T(Y ,X)=−T(X,Y) and T(X,Y)∈ S2(TM) for all X,Y ∈ χ(M).
Proof. If two graded semi-Poisson bivector fields, π -related with w, have

associated the same contravariant connectionD, it follows from (2.22) that the

difference Ψ ′ −Ψ is a tensor field T , as in Proposition 3.8. To change D means

to pass to a contravariant connectionD′ =D+τ , where τ is a (2,1)-tensor field

on M and from (2.22) again, it follows that A= Ψ ′−Ψ becomes a bidifferential

operator with the property (3.35).

4. Horizontal lifts of Poisson structures. In this section, we define and

study an interesting class of semi-Poisson structures on T∗M which are pro-

duced by a process of horizontal lifting of Poisson structures from M to T∗M
via connections.

On T∗M , we distinguish the vertical distribution V, tangent to the fibers of

the projection π and, by complementing V by a distribution H, called horizon-

tal, we define a nonlinear connection on T∗M [5, 6].

We have (adapted) bases of the form

V= span
{
∂
∂pi

}
, H= span

{
δ
δxi

= ∂
∂xi

−Nij ∂
∂pj

}
, (4.1)

and Nij are the coefficients of the connection defined by H.

Equivalently, a nonlinear connection may be seen as an almost product struc-

ture Γ on T∗M such that the eigendistribution corresponding to the eigenvalue

−1 is the vertical distribution V [6].

We assume that the nonlinear connection above is symmetric, that is, Nji =
Nij . This condition is independent [6] of the local coordinates.

The complete integrability of H, in the sense of the Frobenius theorem, is

equivalent to the vanishing of the curvature tensor field

R = Rkijdxi∧dxj⊗ ∂
∂pk

, Rkij = δNkjδxi
− δNki
δxj

. (4.2)

For a later utilization, we also notice the formulas [5, 6]

[
δ
δxi

,
δ
δxj

]
=−Rkij ∂

∂pk
,

[
δ
δxi

,
∂
∂pj

]
=−Φjik

∂
∂pk

, Φjik =−
∂Nik
∂pj

. (4.3)

Let w be a bivector on M with the local coordinate expression (2.8).

Definition 4.1. The horizontal lift of w to the cotangent bundle T∗M is

the (global) bivector field wH defined by

wH = 1
2
wij(x)

δ
δxi

∧ δ
δxj

. (4.4)
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Proposition 4.2. Let (M,w) be a Poisson manifold. If the connection Γ on

T∗M is defined by a linear connection∇ onM , the bivectorwH defines a graded

semi-Poisson structure on T∗M .

Proof. In this case, the coefficients of Γ are

Nij =−pkΓ kij, (4.5)

where Γ kij are the coefficients of∇ and, with respect to the bases {∂/∂xi,∂/∂pj},
the local expression of wH becomes

W = 1
2
wij ∂

∂xi
∧ ∂
∂xj

+wikΓakjpa
∂
∂xi

∧ ∂
∂pj

+ 1
2
wkhΓakiΓ

b
hjpapb

∂
∂pi

∧ ∂
∂pj

.
(4.6)

Proposition 4.3. The horizontal lift wH is a Poisson bivector on the cotan-

gent bundle T∗M if and only if w is a Poisson bivector on the base manifold M
and

R
(
XHf ,X

H
g
)= 0, ∀f ,g ∈ C∞(M), (4.7)

where XHf denotes the usual horizontal lift [2, 9], from M to T∗M , of the w-

Hamiltonian vector field Xf on M .

In this case, the projection π : (T∗M,wH)→ (M,w) is a Poisson mapping.

Proof. We compute the bracket [wH,wH] with respect to the bases (4.1)

and get that the Poisson condition [wH,wH]= 0 is equivalent with the pair of

conditions

∑
(i,j,k)

whk ∂wij

∂xh
= 0, wilwjhRklh = 0. (4.8)

(Putting indices between parentheses denotes that summation is on cyclic per-

mutations of these indices.)

The first condition in (4.8) is equivalent to [w,w]= 0 and the second is the

local coordinate expression of (4.7).

Notice that the condition (4.7) has the equivalent form

R
(
(�α)H,(�β)H

)= 0, ∀α,β∈Ω1(M). (4.9)

Remark 4.4. If w is defined by a symplectic form on M , condition (4.8)

becomes R = 0.
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Corollary 4.5. If (M,w) is a Poisson manifold and the connection Γ on

T∗M is defined by a linear connection∇ onM , the bivectorwH defines a Poisson

structure on T∗M if and only if the curvatureCD of the contravariant connection

induced by∇ on TM vanishes. In this case,wH is a graded Poisson structure on

T∗M .

Proof. If Rhkij are the components of the curvature R∇, then

Rkij =−phRhkij (4.10)

and (4.9) becomes

R∇(�α,�β)Z = 0, ∀α,β∈Ω1(M), ∀Z ∈ χ(M), (4.11)

or, equivalently,

R∇
(
Xf ,Xg

)
Z = 0, ∀f ,g ∈ C∞(M), ∀Z ∈ χ(M). (4.12)

This is equivalent to CD = 0.

In the case where wH is a Poisson bivector, it is interesting to study its

compatibility with the canonical Poisson structure W0 of (3.17).

Proposition 4.6. If wH is a Poisson bivector, then it is compatible with W0

if and only if

∂wij

∂xk
+wihΦjhk−wjhΦihk = 0, wihRhjk = 0. (4.13)

Proof. By a straightforward computation, we get that the compatibility

condition [wH,W]= 0 is equivalent to (4.13).

The Bianchi identity [6]

Rkij+Rijk+Rjki = 0 (4.14)

shows that the second relation in (4.13) implies (4.7). Then we have the follow-

ing corollary.

Corollary 4.7. If (M,w) is a Poisson manifold and the cotangent bundle

T∗M is endowed with a symmetric nonlinear connection, then wH is a Poisson

bivector on T∗M compatible with W0 if and only if conditions (4.13) hold.

Remark 4.8. Considering the isomorphism

Ψ : Vu �→H∗
u, Ψ

(
Xk

∂
∂pk

)
=Xkdqk, (4.15)
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where u∈ T∗M and H∗
u is the dual space of Hu, the second condition in (4.13)

may be written in the equivalent form

[
Ψ
(
R(X,Y)

)](
�wα

)H = 0, ∀X,Y ∈ χ(T∗M), ∀α∈Ω1(M). (4.16)

We recall that a symmetric linear connection∇ on a Poisson manifold (M,w)
is called a Poisson connection if ∇w = 0. Such connections exist if and only if

w is regular, that is, rankw = const (see [8]).

Proposition 4.9. Let (M,w) be a regular Poisson manifold with a Poisson

connection ∇. Then the bivector wH , defined with respect to ∇, is a Poisson

structure on T∗M compatible with the canonical Poisson structure W0 if and

only if the 2-form

(X,Y) �→ R∇(X,Y)
(
�wα

)
, X,Y ∈ χ(M) (4.17)

vanishes for every Pfaff form α on M .

Proof. With (4.5), the first condition in (4.13) becomes ∇w = 0, which we

took as a hypothesis. The second condition in (4.13) becomes

wihRlhjk = 0, (4.18)

and we get the required conditions.

Remark 4.10. If w is defined by a symplectic structure of M , then (4.17)

means R∇ = 0.

5. Poisson structures derived from differential forms. If ω is a 2-form

on a Riemannian manifold (M,g), we associate with it a 2-form Θ(ω) on the

cotangent bundle π : T∗M →M , and considering (pseudo-)Riemannian metrics

on T∗M related to g, we study the conditions for Θ(ω) to produce a Poisson

structure on this bundle.

Let (M,g) be an n-dimensional manifold and∇ its Levi-Civita connection. If

Γ kij are the local coefficients of ∇, a connection Γ with the coefficients (4.5) is

obtained on T∗M .

The system of local 1-forms (dxi,δpi) (i= 1, . . . ,n), where

δpi := dpi+Nijdxj, (5.1)

defines the dual bases of the bases {δ/δxi,∂/∂pi}.
The components of the curvature form are given by (4.2). Since the connec-

tion is symmetric, the Bianchi identity (4.14) holds. The elements Φkij of (4.3)

are

Φkij = Γ kij. (5.2)
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The Riemannian metric g provides the “musical” isomorphism �g : T∗M → TM
and the codifferential

δg :Ωk(M) �→Ωk−1(M),
(
δgα

)
i1···ik−1

=−gst∇tαsi1···ik−1 , (5.3)

where k≥ 1,

α= 1
k!
αi1···ikdx

i1∧···∧dxik ∈Ωk(M), (5.4)

and (gst) are the entries of the inverse of the matrix (gij) [8].

Let

ω= 1
2
ωij(x)dxi∧dxj, ωji =−ωij, (5.5)

be a 2-form on M .

Definition 5.1. The 2-form Θ(ω) on T∗M given by

Θ(ω)=π∗ω−dλ, (5.6)

where λ is the Liouville form, is said to be the associated 2-form of ω.

With respect to the cobases (dxi,δpi), we get

Θ(ω)= 1
2
ωij(x)dxi∧dxj+dxi∧δpi. (5.7)

Now, we consider two (pseudo-)Riemannian metrics G1 and G2 on T∗M and

study the conditions for the bivectorsWi = �GiΘ(ω) (i= 1,2) to define Poisson

structures on T∗M . The Poisson condition [Wi,Wi] = 0, i = 1,2, is equivalent

to [8]

δGi
(
Θ(ω)∧Θ(ω))= 2Θ(ω)∧δGiΘ(ω), i= 1,2. (5.8)

First, consider [5, 6] the pseudo-Riemannian metric G1 of signature (n,n)

G1 = 2δpi�dxi. (5.9)

To find the condition which ensures that (5.8) holds, we need the local expres-

sion of the codifferential δG1 of G1. Denote by ∇̃ the Levi-Civita connection of

G1, and for simplicity we put

∇̃i = ∇̃δ/δxi , ∇̃i = ∇̃∂/∂pi . (5.10)
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The connection ∇̃ is defined by [6]

∇̃i ∂
∂pj

= 0, ∇̃i ∂∂pj =−Γ
j
ik
∂
∂pk

,

∇̃i δ
δqj

= 0, ∇̃i δδqj = Γ
k
ij
δ
δqk

−phRhijk
∂
∂pk

.
(5.11)

Proposition 5.2. The bivector �G1Θ(ω) defines a Poisson structure on the

cotangent bundle T∗M if and only if ω is a closed 2-form on M and Γaai = 0, for

all i= 1, . . . ,n. In this case, Θ(ω) is a symplectic form.

Proof. The proof is by a long computation in local coordinates. After com-

puting the exterior product Θ(ω)∧Θ(ω), we get

δG1

(
Θ(ω)∧Θ(ω))= 2

3!

∑
(i,j,k)

∇iωjkdxi∧dxj∧dxk. (5.12)

Then we compute δG1Θ(ω) and obtain

Θ(ω)∧δG1Θ(ω)=
2
3!

∑
(i,j,k)

ωijΓaakdx
i∧dxj∧dxk

+(δkj Γaai−δki Γaaj)dxi∧dxj∧δpk.
(5.13)

Equation (5.8) implies

δkj Γ
a
ai−δki Γaaj = 0, ∀i,j,k= 1, . . . ,n. (5.14)

Making the contraction k= j, it follows that Γaai = 0. Conversely, if Γaai = 0, then

(5.14) holds. Also, since ∇ is symmetric, we get

∑
(i,j,k)

∂ωjk

∂xi
=

∑
(i,j,k)

∇iωjk. (5.15)

Therefore, the condition
∑
(i,j,k)∇iωjk = 0 is equivalent to dω= 0.

We consider now the Riemannian metric of Sasaki type

G2 = gijdxi�dxj+gijδpi�δpj (5.16)

(see [3] for the Sasaki metric).

Lemma 5.3. The local coordinate expression of the Levi-Civita connection ∇̄
of G2 is

∇̄i ∂
∂pj

= 0, ∇̄i ∂∂pj =−
1
2
Rjki

δ
δqk

−Γ jik
∂
∂pk

,

∇̄i δ
δqj

= 1
2
Ri k
j

δ
δqk

, ∇̄i δδqj = Γ
k
ij
δ
δqk

− 1
2
Rkij

∂
∂pk

,
(5.17)
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where the notations of (5.10) are used again and Rjki (also Ri k
j ) are obtained

from Rkij by the operation of lifting the indices, that is,

Rjki = gjagkbRabi, Ri k
j = giagkbRajb. (5.18)

Proof. The result is proved by a straightforward computation.

Proposition 5.4. The bivector δG2Θ(ω) defines a Poisson structure on the

cotangent bundle T∗M if and only if

∇ω= 0, gabRkabi = 0, ωabRkiab = 0, (5.19)

where ωab = gaigbjωij are the components of the bivector w = �gω on M .

Proof. By a new long computation again, we get

1
2
δG2

(
Θ(ω)∧Θ(ω))= 1

3!
gab∇a

( ∑
(i,j,k)

ωijωkb

)
dxi∧dxj∧dxk

−gab
∑
(i,j,k)

(∇aωijδkb
)
dxi∧dxj∧δpk

+ 1
2
ωab

(
Rkabδji −Rjabδki

)
dxi∧δpj∧δpk,

Θ(ω)∧δG2Θ(ω)=
1
3!

∑
(i,j,k)

(
δG2Θ(ω)

)
kdx

i∧dxj∧dxk

+ 1
2!

[
δki
(
δG2Θ(ω)

)
j−δkj

(
δG2Θ(ω)

)
i

]
dxi∧dxj∧δpk,

(5.20)

where

δG2Θ(ω)=
(
δG2Θ(ω)

)
kdx

k = gab
(
∇aωkb− 1

2
Rabk

)
dxk. (5.21)

Identifying the coefficients, the Poisson condition (5.8) for W2 becomes

gab
∑
(i,j,k)

ωijRhabk = 0, gab
∑
(i,j,k)

(∇aωij
)
ωkb = 0, (5.22)

∇ω= 0, gabRkabi = 0, (5.23)

ωabRkiab = 0. (5.24)

We remark that the conditions (5.23) imply (5.22) because if ∇ω = 0, then

∇aωij = 0, and gabRkabi = 0 implies gabωijRhabk = 0.



POISSON STRUCTURES ON COTANGENT BUNDLES 1853

Remark 5.5. If the bivector �G2Θ(ω) defines a Poisson structure on T∗M ,

then w = �gω defines a Poisson structure on M , as the second condition in

(5.22) is equivalent to the Poisson condition [8]

∑
(i,j,k)

wia∇awjk = 0. (5.25)

(The local coordinate expression of w is (2.8).)

Corollary 5.6. If �G2Θ(ω) is a Poisson bivector on T∗M , then the scalar

curvature r of (M,g) vanishes.

Proof. The expression of r is r = gabRab, where Rba = Rkakb = Rab are the

components of the Ricci tensor, and if we make the contraction k = i in the

second relation in (5.19), we get gabRkakb = 0, and whence r = 0.
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