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POISSON STRUCTURES ON COTANGENT BUNDLES

GABRIEL MITRIC
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We make a study of Poisson structures of T*M which are graded structures when
restricted to the fiberwise polynomial algebra and we give examples. A class of
more general graded bivector fields which induce a given Poisson structure w
on the base manifold M is constructed. In particular, the horizontal lifting of a
Poisson structure from M to T*M via connections gives such bivector fields and
we discuss the conditions for these lifts to be Poisson bivector fields and their
compatibility with the canonical Poisson structure on T* M. Finally, for a 2-form
w on a Riemannian manifold, we study the conditions for some associated 2-forms
of w on T*M to define Poisson structures on cotangent bundles.

2000 Mathematics Subject Classification: 53D17.

1. Introduction. In this paper, we present the dual version of the subject
discussed in [4] and study graded bivector fields and Poisson structures on
the cotangent bundle of a manifold. Although this study is similar to the one
in [4], it is motivated by the presence of specific aspects. Indeed, we do not
have a natural almost tangent structure and semisprays anymore, but we have
the canonical symplectic structure instead. This makes a separate exposition
required. Another new aspect that we discuss is that of a base manifold which
is a Riemannian space.

2. Graded Poisson structures on cotangent bundles. Let M be an n-dimen-
sional differentiable manifold and 1 : T*M — M its cotangent bundle. If (x?)
(i=1,...,n) are local coordinates on M, we denote by (p;) the covector coor-
dinates with respect to the cobasis (dx?). (We assume that everything is C® in
this paper.)

In this section, we discuss graded Poisson structures W on the cotangent
bundle T*M obtained as lifts of Poisson structures w on the base manifold M,
in the sense that the canonical projection 7t is a Poisson mapping (see [4]).

Denote by Sk (T M) the space of k-contravariant symmetric tensor fields on M
and by o the symmetric tensor product on the algebra S(TM) = Py Sk(TM).
The spaces of fiberwise homogeneous k-polynomials

HPr(T*M) = {Q = QU kpy - py |
(2.1)

o 2
Qlel.”lkax—il@-neax—ik ESk(TM)}
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are interesting subspaces of the function space C*(T*M) and play an impor-
tant role in this paper.
The map

~:(S(TM),0) — (P(T*M),-), ~Q:=Q, (2.2)

where P (T*M) := &, %P (T*M) is the polynomial algebra and the dot denotes
the usual multiplication, is an isomorphism of algebras.

On T*M we also have the spaces of (fiberwise) nonhomogeneous polynomi-
als of degree less than or equal to k

k
Pr(T*M) := P %Py (2.3)
h=0

For k =1, A(T*M) := P, (T*M) is the space of affine functions, having the
elements of the form

a(x,p) = f(x)+m(X), (2.4)

where f € C* (M), X € x(M) (the space of vector fields on M), and m(X) :=~ X
is the momentum of X. (The momentum 1 (X) is X regarded as a function on
T*M.)

The elements of the space %, (T*M) of nonhomogeneous quadratic polyno-
mials are

t(x,p) = f(x)+m(X)+s(Q), (2.5)

where Q = QY (0/0x") ® (0/0x7) is a symmetric contravariant tensor field on
M and s(Q) :=~ Q.

Hereafter, by a polynomial on T*M, we always mean a fiberwise polynomial.
Also, we write f for both f on M and f o1 on T*M.

DEFINITION 2.1. A Poisson structure W on T*M is called polynomially
graded if for all Q,R € P(T*M),

Q €Pu, RePr = {Q,R}w € Pnsk. (2.6)

PROPOSITION 2.2. A polynomially graded Poisson structure W on T*M in-
duces a Poisson structure w on the base manifold M such that the projection
w:(T*M,W) — (M,w) is a Poisson mapping.

PROOF. Any function f on M is a polynomial (f o) € Po(T*M). By (2.6),
forall f,ge C®(M), {fomm,gom}y € C*(M) and

U gtwi=A{fom,gomly (2.7)

defines a Poisson structure w on M. O
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Hereafter, the bracket {-, -}, will be denoted simply by {-,-}.
If the local coordinate expression of the Poisson structure w introduced by
Proposition 2.2 is

1 0 0
= — i
w 2 (%) oxt axJ" (2.8)
Definition 2.1 tells us that W must have the local coordinate expression
_ L 0 0 . ) )
W= Sw (x) 3xi N 3xd (cpJ (X) +PaA (X)) 5 i apj
5 5 (2.9)
b
E(rllj( )+l7aB?j(X)+10alﬂbC“ (X)) /\*apj

where w, @, n, A, B, and C are local functions on M.

The Poisson structure W is completely determined by the brackets {f,g},
{m(X),f},and {m(X),m(Y)}, where f,g € C*(M) and X,Y € x(M) since the
local coordinates x! and p; are functions of this type (p; = m.(0/0x%)).

By (2.6), the bracket {m(X), f} is in 1 (T*M), that is,

mX), f} = Zxf+m(yxf), (2.10)

where Zx f € C*(M) and yx f € x(M).

The map {m(X),-} is a derivation of C*(M). Hence, Zx is a vector field on
M and the mapping yx : C*(M) — x(M) also is a derivation. Therefore, yx f
depends only on df.

From the Leibniz rule, we get that Z,x = hZx (h € C*(M)) and y must
satisfy

yuxf =hyxf+ (X f)X. (2.11)
The bracket of two affine functions has an expression of the form
(m(X),m(Y)} = BX,Y)+m(V(X,Y)) +s(¥Y(X,Y)), (2.12)

where B(X,Y) € C*(M), V(X,Y) € x(M), and Y(X,Y) € S»(TM) are skew-
symmetric operators. If we replace Y by fY in (2.12), the Leibniz rule gives
that f is a 2-form on M and

VX, fY) = fV(X,Y)+(Zxf)Y,

2.13
V(X £Y) = FYGY) + (yxf) O Y. 19

DEFINITION 2.3. A polynomially graded Poisson structure W on T*M is
said to be a graded structure if for all Q € #%}, and for all R € #HPy, it follows
{Q,R}w € HPp k.
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Remark that a polynomially graded structure on T*M is graded if and only
if Zx =0, B =0, and V = 0. In this case, (2.9) reduces to

1D a i o 1 o d
(2.14)

As in [4], a bivector field W on T*M which is locally of the form (2.9) (resp.,
(2.14)) is called a polynomially graded (resp., graded) bivector field.

PROPOSITION 2.4. IfW is a graded bivector field on T* M which is 1t-related
with a Poisson structure w on M, there exists a contravariant connection D on
the Poisson manifold (M,w) such that

(m(X),f} = -m(DasX), Xex(M), feC>M). (2.15)

Moreover, if W is a graded Poisson structure on T*M, then the connection D is

flat.

PROOF. A contravariant connection on (M, w) is a contravariant derivative
on TM with respect to the Poisson structure [8].
The required connection is defined by

Dde e —yxf. (2.16)

That we really get a connection, which is flat in the Poisson case, follows in

exactly the same way as in [4]. O
The relation (2.15) extends to the following proposition.

PROPOSITION 2.5. If Q is a symmetric contravariant tensor field on M and
Q is its corresponding polynomial, then for any graded Poisson bivector field W
onT*M,

{0, f}w = —DayQ. (2.17)

PROOF. The contravariant connection Dgy of (2.17) is extended to S(TM)
by

(DarQ)(eqa,..., o) = X7 (Q(eqr,..., k)

k 2.18
*ZQ(“I;---,Ddf(Xiy---,O(k), ( )
i=1

where «1,...,ar € Q' (M), and D4« is defined by

(Dayo, Xy = X¥ (0, X) — (&, DasX), X € x(M). (2.19)
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We put

d % 0
Daxizs =15 (2.20)

and by a straightforward computation we get for {Q, f} and *(15(1\1"72) the
same local coordinate expression. (See [4] for the complete proof in the case
of a symmetric covariant tensor field on M.) O

In order to discuss the next two Jacobi identities, we make some remarks
concerning the operator ¥ of (2.12), which is given in the case of a graded
Poisson structure on T*M by

(mX),m()} =s(¥Y(X,Y)), X,YexM). (2.21)
With (2.16), the second relation (2.13) becomes

Y DusxeyyeDyX) (2.22)

Y(X,fY)=fY(X,Y) >

and this allows us to derive the local coordinate expression of V. If X =
X1(0/0x%) and Y = Y/(9/dx/), we obtain

0,0
oxt ~ oxJ

i 0 0 oY OXt ki
— yiyiJ h ki h J
Y(X,Y)=X'Y \Y(axi' 8x1> (X I l"h -Y i F )

w0X' 0¥ 0 0
oxk oxh oxt =~ oxJ°

(2.23)

Remark that ¥ : TM x TM — ©2TM is a bidifferential operator of the first order.

PROPOSITION 2.6. If the operator Dy acts on'Y by
(Dag¥)(X,Y):=Dar(¥Y(X,Y)) =¥ (DarX,Y) =¥ (X,DarY), (2.24)
the Jacobi identity
{{mX),mW)}, fH+ {H{m(Y), f1,mXO )+ {f,mX)},m(Y)} =0 (2.25)
has the equivalent form
(Das¥)(X,Y) =0, VX,Yex(M). (2.26)

PrROOF. Using (2.15), (2.17), and (2.21) for Q = ¥(X,Y), (2.25) becomes
(2.26). O
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We also find
(Dag¥) (X,hY) = h(Das¥)(X,Y) - [Cp(df,dM)X]0Y,  (2.27)
and hence we see that (2.26) is invariant by X —» fX, Y — gY (f,g € C®(M)) if
and only if the curvature Cp = 0.

Concerning the Jacobi identity

S {{m(X),m(Y)},m(2)} =0, (2.28)
(X,Y,Z2)

(putting indices between parentheses denotes that summation is on cyclic per-
mutations of these indices) remark that one must have an operator © such that

(s(G),m(X)} =0(G,X), Xex(M), GeS(M), (2.29)

and ©(G, X) is a symmetric 3-contravariant tensor field on M.
We get the formula

O(fG,hX) = fhO(G,X) - f(DanG) ©X+hGoDyarX +{f,h},GoX, (2.30)

and then the local coordinate expression

» 0 0 0
_ (cijyk
0(G.X) = GVX ®<axi®ax1'axk>
+3 2 <G Il G ST - S X (2.31)

(i,7,k)

wabaGua—){k>i i@i
0xa oxb ) axt ~ oxJ ~ oxk’

Using the operator O, the Jacobi identity (2.28) becomes

> 0(Y(X,Y),Z) =0, (2.32)
(X,Y,Z)

and we may summarize our analysis concerning the graded Poisson structures
on T*M in the following proposition.

PROPOSITION 2.7. A graded Poisson structure W on T*M with the bracket
{-,-} is defined by
(a) a Poisson structure w on the base manifold M such that

fogtw =1f,9tw, f,.ge€C™(M); (2.33)
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(b) a flat contravariant connection D on (M,w) such that
{m(X), f} = -m(DarX), XeC*(M); (2.34)
(¢) an operator ¥ : TM x TM — ©2TM such that
mX),m()} =s(¥Y(X,Y)), X,Ye€x(M), (2.35)

and formula (2.26) holds;
(d) an operator © defined by (2.29), satisfying (2.32).

To give examples, we consider the following situation similar to [4].

Let (M,w) be an n-dimensional Poisson manifold and suppose that its sym-
plectic foliation S is contained in a regular foliation % on M such that T% is
a foliated bundle, that is, there are local bases {Y,} (u=1,...,p, p =rank %)
of T¥ with transition functions constant along the leaves of %. Consider a
decomposition

TM =TF e VvF, (2.36)
where v% is a complementary subbundle of T%, and %-adapted local coordi-

nates (x%,y%) (a=1,...,n—p) on M [7].
The Poisson bivector w has the form

(w¥" = —w

w = lw”v(x,y)i A 9 uvy (2.37)

2 dyuw  oyv
since § < F.
If {B*}, {BY} (u,v =1,...,p) are the dual cobases of {Y,}, {Y,} (B“(Y,) =
oY), then their transition functions are constant along the leaves of %.
Now, for all x € T*M, & = C,dx% + &, f* and we may consider (x4, y"*,C,,
&) as distinguished local coordinates on T*M. The transition functions are

_ox“
- oxu

X =x%x),  I'=3"(x»), Cu Cay  E&u=ah(x)e. (2.38)
PROPOSITION 2.8. Under the previous hypotheses, W given with respect to

the distinguished local coordinates by

0 0

_l uv
W = 2w (x,y)ayu Aay“

(2.39)

defines a graded Poisson bivector on T*M.

PROOF. From (2.38) it follows that W of (2.39) is a global tensor field on
T*M. The Schouten-Nijenhuis bracket [W,W] has the same expression as
[w,w] on M, and thus the Poisson condition [W,W] = 0 holds.
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To prove that W is graded, we also consider natural coordinates and show
that the expression of W with respect to these coordinates becomes of the
form (2.14) (see [4]). O

There are some interesting particular cases of Proposition 2.8.

(a) The Poisson structure w is regular, and the bundle TS is a foliated bundle;
in this case we may take & = S.

(b) The symplectic foliation S is contained in a regular foliation % which
admits adapted local coordinates (x%,y%) with local transition functions

PV =prx)y*+q"(x). (2.40)

(The foliation ¥ is a leaf-wise, locally affine and regular.) In this case, (0/0y%) =
>,ab(x)(0/07Y) and we may use the local vector fields Y, = 0/0y".

(c) There exists a flat linear connection V (possibly with torsion) on the
Poisson manifold (M, w). In this case, we may consider as leaves of ¥ the con-
nected components of M, and the local V-parallel vector fields have constant
transition functions along these leaves. Therefore, we may take them as Y;
(i=1,...,n).

In particular, we have the result of (c) for a locally affine manifold M (where
V has no torsion), using as Y; local V-parallel vector fields, and also for a
parallelizable manifold M (where we have global vector fields Y;).

As a consequence, Proposition 2.8 holds for the Lie-Poisson structure [8] of
any dual 4* of a Lie algebra %, the graded Poisson structure being defined on
T*G* =G* x4.

3. Graded bivector fields on cotangent bundles. In this section, we discuss
graded bivector fields on a cotangent bundle T*M, which may be seen as lifts
of a given Poisson structure w on M, that satisfy less restrictive existence
conditions than in the case of graded Poisson structures.

Recall the following definition from [4]. Let & be an arbitrary regular fo-
liation, with p-dimensional leaves, on an n-dimensional manifold N. We de-
note by Cg; (N) the space of foliated functions (the functions on N which are
constant along the leaves of %). A transversal Poisson structure of (N, %) is a
bivector field w on N such that

{f,gt=w(df,dg), f,g¢€Cq(N) (3.1)

is a Lie algebra bracket on Cg; (N). A bivector field w on N defines a transversal
Poisson structure of (N, %) if and only if [4]

(Eyw) | annrs = 0 [w, w1 spnrs = 0, (3.2)

for all Y e I'(T%) (the space of global cross sections of T%), where AnnT% <
Q!(N) is the annihilator space of T%. (! (N) denotes the space of Pfaff forms
on N.)
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The cotangent bundle T*M of any manifold M has the vertical foliation %
by fibers with the tangent distribution V := T%.

Obviously, the set of foliated functions on T*M may be identified with
C®(M).

PROPOSITION 3.1. Any polynomially graded bivector field W on T* M, which
is Tt-related with a Poisson structure of M, is a transversal Poisson structure of
(T*M,V).

PROOF. The local coordinate expression of W is of the form (2.9), and W
is 1r-related with the bivector field w defined on M by the first term of (2.9).
Then, (3.2) holds because w is a Poisson bivector on M. O

DEFINITION 3.2. A transversal Poisson structure of the vertical foliation of
T*M will be called a semi-Poisson structure on T*M.

REMARK 3.3. The structures W of Proposition 3.1 are polynomially graded
semi-Poisson structures on T*M.

In what follows, we discuss some interesting classes of graded semi-Poisson
structures of T*M. Then, we give a method to construct all the graded semi-
Poisson bivector fields on T*M, which induce the same Poisson structure w
on the base manifold M.

Let D be a contravariant derivative on a Poisson manifold (M,w). First, for
all Q € Sy (TM), define DQ € Sy+1(TM) by

1 n
(*DQ) (&x1,..., Ok+1) Zk—Z (De, Q) (1,0, Riyeney Oies1 ) (3.3)

where «1,..., a1 € Q1 (M) and the hat denotes the absence of the correspond-
ing factor.

If X = X1(9/0x") € x(M), then DX, defined by (DX) (&1, ) = (D, X) X2, is
a 2-contravariant tensor field on M, and

DX =D'X/ aa 6ch (3.4)

where DiXJ = (DyiX)dx/ = Dy,i X — X(D4,idx?). According to (2.20), we
must have

Dgyidx! =T dx* (3.5)
and obtain

DiXI = (dx')* X/ -1 dx* = {x', X7}, T X*, (3.6)
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Then
1, . . C o 0 0
s _ = iyJ Jyi
DX 2(DX +DX)axi®axf 3.7)
and we get
DX = Lixi, xi}, 4 X}, T - L0 )
2 o o dwe Tk k oxt ~ oxJ’ '

PROPOSITION 3.4. Let (M,w) be a Poisson manifold and D a contravariant
derivative of (M,w). The bivector field W, on T*M, of bracket {-, -}y, defined
by the conditions

{f!g}Wl = {f!g}wy (39)
{(m(X), fly, == —m(DasX), (3.10)
M0, m(x)}y, = %S[SD(X,Y)— (*DX,Y) - (X,*DY)], 3.11)

where f,g € C*(M), X,Y € x(M), and {-,-) is the Schouten-Nijenhuis bracket
of symmetric tensor fields (defined by the natural Lie algebroid of M) [1, 4],
defines a graded semi-Poisson structure on T*M which is 1t-related with w.

PrROOF. If the local coordinate expression of w is (2.8), using (3.8) and the
properties of (-,-) [1, 4], we get

_l ij 0 i_ ia 0 i
W= Wi Naxi ~ Pali 5y op;
1 . ; 5 ) (3.12)
1 _9 (pab ,ybay_ 9 (rab , rba —
4pam,[axj(rl FI) = 5 (7 15 )]api/\apj.
O

REMARK 3.5. The relation (3.11) provides us with the expression of the op-
erator ¥y, associated to Wi (see (2.21)):

Yy, (X,Y) = = (°D(X,Y) - (*DX,Y) - (X,*DY)). (3.13)

N | —

Now, instead of D we consider a linear connection V on a Poisson manifold
(M,w) and define the vector field K on T*M by

K(x) = (4p0)t, aeT*M, (3.14)
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where #,, : T*M — TM is defined by B(«?) = w(«,B) for all B € Q1 (M), and
the upper index H denotes the horizontal lift with respect to V (see [2, 9]). In
local coordinates, we get

.0 1 0
K = pow it Epuph(w"kl",?i+wbkl",?i)a—m. (3.15)

On T*M, we have the canonical symplectic form w = dA = dp; Adx?, where
A = p;dx' is the Liouville form, and the vector bundle isomorphism

fw:T*M — TM, ixweT*M— XeTM (3.16)
leads to the canonical Poisson bivector Wy := #,w on T*M. It follows that
Wo(dF,dG) = w(4(dF),£(dG)), F,GeC™(T*M), (3.17)

and, locally, one has

o 0
T 0p; | oxt’

Wo (3.18)

PROPOSITION 3.6. If (M,w) is a Poisson manifold, then the bivector field

W, = %ggKWO (3.19)

defines a graded semi-Poisson structure on T*M which is 1t-related with w.

PROOF. We get

1 .. 0 0 1 . ) 2 o
Wo= oWt g Naxa T Pe(Viw + 2w i) S g
1 0 akpb ., bkpa 0 akyb bkpa y | © 0
+Zpaph|:w(w L +w Fki)—ﬁ(w I +w rkj)] p ABTJJ’
(3.20)

where V ;w4 are the components of the (2,1)-tensor field on M defined by
X - Vxw, X e x(M). ]

We will say that W, of (3.19) is the graded V-lift of the Poisson structure w
of M.

Using local coordinates and the notation of (2.2), we get
#xQ =<DQ, (3.21)

where D is the contravariant derivative induced by the linear connection V,
defined by Dy = V(df)u (see [8]).
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From (3.19) we have

1
{F1,F2}y, 1= W2 (dFy,dFy) = E(ggK({FI,FZ}WO) —{ExF, Fa2by, — {F1, $xFa by, ).
(3.22)
where F;,F> € C*(T*M).
If Q1,Q2 € S(TM), using (3.21) and the relation

{Q,H}wy = (Q,H), Q,HeS(TM) (3.23)

(see [1, 4]), we get the explicit formula

~ o~ 1

{Q1,Qzly, = 5~ [*D(Q1,Q2) - {*DQ1,Q2) - (Q1,°DQ2)]. (3.24)

PROPOSITION 3.7. The graded V-lift W, of w is characterized by the follow-
ing:
(i) the Poisson structure induced on M by W is w, that is,
9w, ={f,9}w, Vf,g9€C”M); (3.25)
(ii) for every f e C®(M) and X € x(M),
{mX), fly, = -m(DarX), (3.26)
where D is the contravariant derivative of (M,w) defined by
Da6=DuB+%(V.w)((x,B), o, B et (M), (3.27)
where the contravariant derivative D is induced by V and (V.w)(x,B)

is the 1-form X — (Vxw) (&, B);
(iii) for any vector fields X andY of M,

M), m}y, = %S(SD(X,Y) — (DX, Y) - (X,°DY)). (3.28)

PROOF. (i) If f € C*(M), then Df = —X}” and from (3.22), (3.23), and the
formula

(Q,f)=idf)Q, feC*(M), QeSp(TM), (3.29)

we get

N | =

{f,g}wz=—%(<Df,y>+<f,Dg>)= (XYg-X5f)=1f.g}w.  (3.30)
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(ii) As W is graded, the bracket {m(X), f}w, must be of the form (3.26).
Denoting

Dyyidx’ =T dx, (3.31)
(3.20) gives us
=17+ %vkwif, (3.32)
where
Y = —wir),, (3.33)

(F}k are the coefficients of the linear connection V) and hence (3.27).
(iii) Equation (3.28) is a direct consequence of (3.24). O

Notice from (3.28) that the operator Yy, associated to W, has the same
expression as ¥y, of (3.13), but in the case of W, the contravariant derivative
D is induced by a linear connection V on M.

PROPOSITION 3.8. If the graded semi-Poisson structure Wy is defined by a
linear connection on (M,w), then it coincides with W, if and only if w is V-
parallel.

PROOF. Compare the characteristic conditions of Propositions 3.4 and 3.7
(or the coefficients of (9/0x%) A (0/0pj) of (3.12) and of (3.20), using (3.33)).
O

We prove now the following proposition.

PROPOSITION 3.9. Let (M,w) be a Poisson manifold and 1 : T*M — M its
cotangent bundle. The graded semi-Poisson structures W on T*M which are
mt-related with w are defined by the relations

{f!g}W:{f!g}‘W! {m(X)lf}W:_m(Dde)l

3.34
{mX),mY)}, =s(Y(X,Y)), f,9€C(M), X,Y € x(M), ( )

where D is an arbitrary contravariant connection of (M,w) and the operator
Y is given by

¥Y=Yy+A+T, (3.35)

where Y is the operator Y of a fixed graded semi-Poisson structure and A :
TM xTM — 02TM is a skew-symmetric, first-order, bidifferential operator such
that

AX,fY) = FAX,Y) - T(df,X) 0, (3.36)
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where T is a (2,1)-tensor field on M and T is a (2,2)-tensor field on M with the
properties T(Y,X) = —-T(X,Y) and T(X,Y) € S2(TM) forall X,Y € x(M).

PRrROOF. If two graded semi-Poisson bivector fields, rr-related with w, have
associated the same contravariant connection D, it follows from (2.22) that the
difference ¥’ — V¥ is a tensor field T, as in Proposition 3.8. To change D means
to pass to a contravariant connection D’ = D + T, where T is a (2, 1)-tensor field
on M and from (2.22) again, it follows that A =¥’ —¥ becomes a bidifferential
operator with the property (3.35). O

4. Horizontal lifts of Poisson structures. In this section, we define and
study an interesting class of semi-Poisson structures on T*M which are pro-
duced by a process of horizontal lifting of Poisson structures from M to T*M
via connections.

On T*M, we distinguish the vertical distribution V, tangent to the fibers of
the projection 1t and, by complementing V by a distribution H, called horizon-
tal, we define a nonlinear connection on T*M [5, 6].

We have (adapted) bases of the form

0 1) 0 0
R A P ol T 7 R

V= span{

and N;; are the coefficients of the connection defined by H.

Equivalently, a nonlinear connection may be seen as an almost product struc-
ture I on T*M such that the eigendistribution corresponding to the eigenvalue
—1 is the vertical distribution V [6].

We assume that the nonlinear connection above is symmetric, that is, Nj; =
Nj;. This condition is independent [6] of the local coordinates.

The complete integrability of H, in the sense of the Frobenius theorem, is
equivalent to the vanishing of the curvature tensor field

; ; 0 ONkj ONyi
— R...dat J = _
R = Ryijdx' ndx’ ® e’ Ryij Sxi Sl 4.2)
For a later utilization, we also notice the formulas [5, 6]
o o 0 o 0 i 0 i ONik
L — | = —Rpij=— =l T, el =K (4.
[6xl’6x1] ik [6x"6pj] kopy’ op; (4.3)

Let w be a bivector on M with the local coordinate expression (2.8).

DEFINITION 4.1. The horizontal lift of w to the cotangent bundle T*M is
the (global) bivector field w¥ defined by
o o

1 ..
H ij
w = wa (x)6 ;A Sxi” 4.4)
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PROPOSITION 4.2. Let (M,w) be a Poisson manifold. If the connectionT on
T*M is defined by a linear connection V on M, the bivector w¥ defines a graded
semi-Poisson structure on T*M.

PROOF. In this case, the coefficients of I' are
Nij = —puI. 11' (4.5)

where Fk are the coefficients of V and, with respect to the bases {0/09x?, 0/0pj},
the local expression of wf becomes

— 1 ij 0 ikTa 0 0
W= oW oxi Mo TV PGy M gy,
1 (4.6)
khr 1"
+ 2w ki hjpapba apJ -

PROPOSITION 4.3. The horizontal lift w¥ is a Poisson bivector on the cotan-
gent bundle T*M if and only if w is a Poisson bivector on the base manifold M
and

R(X{,X}) =0, Vf,geC*M), (4.7)

where X? denotes the usual horizontal lift [2, 9], from M to T*M, of the w-
Hamiltonian vector field Xy on M.
In this case, the projection 1 : (T*M,w™) — (M,w) is a Poisson mapping.

PROOF. We compute the bracket [wH,wH] with respect to the bases (4.1)
and get that the Poisson condition [w#,wH] = 0 is equivalent with the pair of
conditions

ij
S whkaa“’7 -0,  wlwhRyy, =0. 4.8)
(i,7,k)

(Putting indices between parentheses denotes that summation is on cyclic per-
mutations of these indices.)

The first condition in (4.8) is equivalent to [w,w] = 0 and the second is the
local coordinate expression of (4.7). O

Notice that the condition (4.7) has the equivalent form
R((ze0",(#B)") =0, Vo, BeQl(M). (4.9)

REMARK 4.4. If w is defined by a symplectic form on M, condition (4.8)
becomes R = 0.
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COROLLARY 4.5. If (M,w) is a Poisson manifold and the connection I on
T*M is defined by a linear connection V on M, the bivector w! defines a Poisson
structure on T* M if and only if the curvature Cp of the contravariant connection
induced by V on TM vanishes. In this case, w is a graded Poisson structure on
T*M.

PROOF. If R,ﬁ‘i ; are the components of the curvature Ry, then

Ryij = _th]];Lij (4.10)
and (4.9) becomes
Ry(#c,#B)Z =0, V& BeQ' (M), VZ e x(M), (4.11)
or, equivalently,
Ry (Xf,Xy)Z=0, Vf,geC>M), VZexM). (4.12)
This is equivalent to Cp = 0. O

In the case where w¥ is a Poisson bivector, it is interesting to study its
compatibility with the canonical Poisson structure Wy of (3.17).

PROPOSITION 4.6. If wH is a Poisson bivector, then it is compatible with W,
if and only if

owi
oxk

+whe), —whel, =0,  w"Ryj =0. (4.13)
PROOF. By a straightforward computation, we get that the compatibility
condition [wf,W] = 0 is equivalent to (4.13). O

The Bianchi identity [6]
Rkij +Rijk +Rjki =0 (4.14)
shows that the second relation in (4.13) implies (4.7). Then we have the follow-

ing corollary.

COROLLARY 4.7. If (M,w) is a Poisson manifold and the cotangent bundle
T*M is endowed with a symmetric nonlinear connection, then w¥ is a Poisson
bivector on T*M compatible with Wy if and only if conditions (4.13) hold.

REMARK 4.8. Considering the isomorphism

¥Y:V, — HI, W(Xk%) = X, dq*, (4.15)
k
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where u € T*M and H} is the dual space of H,,, the second condition in (4.13)
may be written in the equivalent form

[¥(RX, V)] (#wx)’ =0, VX,Yex(T*M), VaeQ'(M). (4.16)

We recall that a symmetric linear connection V on a Poisson manifold (M, w)
is called a Poisson connection if Vw = 0. Such connections exist if and only if
w is regular, that is, rank w = const (see [8]).

PROPOSITION 4.9. Let (M,w) be a regular Poisson manifold with a Poisson
connection V. Then the bivector w!, defined with respect to V, is a Poisson
structure on T*M compatible with the canonical Poisson structure Wy if and
only if the 2-form

(X,Y) — Rvy(X,Y) (tw), X,YexM) (4.17)

vanishes for every Pfaff form « on M.

PROOF. With (4.5), the first condition in (4.13) becomes Vw = 0, which we
took as a hypothesis. The second condition in (4.13) becomes

w’R} =0, (4.18)
and we get the required conditions. |

REMARK 4.10. If w is defined by a symplectic structure of M, then (4.17)
means Ry = 0.

5. Poisson structures derived from differential forms. If w is a 2-form
on a Riemannian manifold (M, g), we associate with it a 2-form ©(w) on the
cotangent bundle 7t : T*M — M, and considering (pseudo-)Riemannian metrics
on T*M related to g, we study the conditions for ®(w) to produce a Poisson
structure on this bundle.

Let (M, g) be an n-dimensional manifold and V its Levi-Civita connection. If
l"i’} are the local coefficients of V, a connection I' with the coefficients (4.5) is
obtained on T*M.

The system of local 1-forms (dxt,ép;) (i=1,...,n), where

5pi:= dpi+Nijdxj, (5.1)

defines the dual bases of the bases {5/6x%,0/0p;}.

The components of the curvature form are given by (4.2). Since the connec-
tion is symmetric, the Bianchi identity (4.14) holds. The elements <I>£‘j of (4.3)
are

o, =Tf. (5.2)
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The Riemannian metric g provides the “musical” isomorphism #,: T*M — TM
and the codifferential

Og: kM) — k1 (M), (5g0()i1...ik71 = —g°'"Vi&siy iy (5.3)
where k > 1,
(X:%O(i]-..ikdxil/\"-/\dxik € Qk(M), (5.4)

and (g°!) are the entries of the inverse of the matrix (g;;) [8].
Let

w = %wij(x)dxiAdxf, Wji = —Wij, (5.5)

be a 2-form on M.

DEFINITION 5.1. The 2-form @(w) on T*M given by
O(w) =1 w —dA, (5.6)

where A is the Liouville form, is said to be the associated 2-form of w.
With respect to the cobases (dx?,5p;), we get

O(w) = %wij(x)dxi Adx? +dxtASp;. (5.7)

Now, we consider two (pseudo-)Riemannian metrics G; and G, on T*M and
study the conditions for the bivectors W; = #5,0(w) (i = 1,2) to define Poisson
structures on T*M. The Poisson condition [W;,W;] =0, i = 1,2, is equivalent
to [8]

06, (0(w) AB(w)) =20(w) Adg,O(w), i=1,2. (5.8)

First, consider [5, 6] the pseudo-Riemannian metric G, of signature (n,n)

G, =26p;odxt. (5.9)
To find the condition which ensures that (5.8) holds, we need the local expres-
sion of the codifferential 6, of G;. Denote by V the Levi-Civita connection of

G1, and for simplicity we put

vi = ﬁ5/5xi! @i = @a/api. (510)
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The connection V is defined by [6]

@ii =0, Vl 0 - riJ}(i,
op; or; Pk 5.11)
5 .5 O n 0 )

Vi = Vie— =T == PRl 5—.
sai =" Visai T Nusar PRy,

PROPOSITION 5.2. The bivector #;,0(w) defines a Poisson structure on the
cotangent bundle T*M if and only if w is a closed 2-form on M andT; = 0, for
alli=1,...,n. In this case, ©(w) is a symplectic form.

PROOF. The proofis by along computation in local coordinates. After com-
puting the exterior product ®(w) AO(w), we get

56, (0(W) AB(w)) = = > Viwjrdx' Adx) ndxk. (5.12)

|
3 (1,7,k)

Then we compute 6,0 (w) and obtain

O(w)AS6,0 Z ;T4 dxt Adx! A dx*
(i,7,k) (513)
+ (85T, — 8T, ) dx' ndxT A Spy.

Equation (5.8) implies

Skre —okre. =0, Vi, j,k=1,...,n. (5.14)

jrai itaj

Making the contraction k = j, it follows that 'Y, = 0. Conversely, if [%, = 0, then
(5.14) holds. Also, since V is symmetric, we get

ow;
P L S T (5.15)
oxt !
(i.j.k) (i,4,k)
Therefore, the condition 3 (; j 1) Viw ik = 0 is equivalent to dw = 0. a

We consider now the Riemannian metric of Sasaki type
G» = gijdx'odx’ + g Sp; 0 5p; (5.16)

(see [3] for the Sasaki metric).

LEMMA 5.3. The local coordinate expression of the Levi-Civita connection V
of Gy is

99 o  v,0 - 1R1’ii—r{’}<i,

op; op; oq* opi (5.17)
gi 0 _lpik 0 o 0 kO 1, 0 '

sq) 277 sgk’ “Sqi T VUsgk 2 apy’
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where the notations of (5.10) are used again and Rjki (also Rij k) are obtained
from Ry;j by the operation of lifting the indices, that is,

Rjki = 979" Rapi, Rij k=gig*Ryjp. (5.18)

PROOF. The result is proved by a straightforward computation. |

PROPOSITION 5.4. The bivector 6;,0(w) defines a Poisson structure on the
cotangent bundle T*M if and only if

Vw=0, g*"RK. =0, w*RE, =0, (5.19)

where w = g4igliw;; are the components of the bivector w = 44w on M.

PROOF. By a new long computation again, we get

5@2(®(w)/\®(w)) 1 abva( > (Uij(,()kh)dxi/\dxj/\dxk
(i,7,k)

-9 > (Vawi;6f)dxt Adxi Adpk
(i,,)

1 . ) )
+ 5 @ap (RYV 5]~ RISE)dx' £ Sp; A Spi,

1 , ,
0(w) A 86,0 (w) = ; > (66,0(w))dxt Adx! Adx*

: ijk)
[6"(6(;2(9((»)) —6%(66,0(w)), |dx’ AdxT A Spy,
(5.20)
where
1
86,0(w) = (56,0(ww)) dx* =g‘”’<Vawkh— ERahk>dxk. (5.21)

Identifying the coefficients, the Poisson condition (5.8) for W» becomes

g > wijRi, =0, g% > (Vawij)wi =0, (5.22)
(1,7,k) (1,7,k)

Vw=0, g"Rk,. =0, (5.23)

w Rk, =0. (5.24)

We remark that the conditions (5.23) imply (5.22) because if Vw = 0, then
Vawij =0, and g*’R¥,. = 0 implies g’ w;;R",, = 0. O
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REMARK 5.5. If the bivector #¢,0(w) defines a Poisson structure on 7T*M,
then w = #,w defines a Poisson structure on M, as the second condition in
(5.22) is equivalent to the Poisson condition [8]

> wiav,wik =o. (5.25)
(1,4,k)

(The local coordinate expression of w is (2.8).)

COROLLARY 5.6. If #¢,0(w) is a Poisson bivector on T*M, then the scalar
curvature v of (M, g) vanishes.

PROOF. The expression of v is ¥ = g%’ R, where Ry, = R(’;kh = R,p are the
components of the Ricci tensor, and if we make the contraction k = i in the
second relation in (5.19), we get g“bRﬁkh =0, and whence » = 0. O
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