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We describe the set of analytic bounded point evaluations for an arbitrary cyclic
bounded linear operator T on a Hilbert space �; some related consequences are
discussed. Furthermore, we show that two densely similar cyclic Banach-space
operators possessing Bishop’s property (β) have equal approximate point spectra.

2000 Mathematics Subject Classification: 47A10, 47A11, 47B20.

1. Introduction. In the present paper, all Banach spaces are complex. Let �

be a Banach space and let �(�) denote the algebra of all linear bounded op-

erators on �. For an operator T ∈�(�), let T∗, σ(T), ρ(T) := C\σ(T), σp(T),
σap(T), Γ(T), kerT , and ranT denote the adjoint operator acting on the dual

space �∗, the spectrum, the resolvent set, the point spectrum, the approximate

point spectrum, the compression spectrum, the kernel, and the range, respec-

tively, of T . For an operator T ∈�(�), let�(T) denote the open set of complex

numbers λ ∈ C for which there exists a nonzero analytic function φ : � → �

on some open disc � centered at λ such that

(T −µ)φ(µ)= 0 ∀µ ∈�. (1.1)

The operator T is said to have the single-valued extension property if �(T) is

empty. Equivalently if, for every open subset U of C, the only analytic solution

φ : U → � of the equation (T − λ)φ(λ) = 0 (λ ∈ U) is the identically zero

function φ ≡ 0 on U . Recall that the operator T is called cyclic with cyclic

vector x ∈ � if the finite linear combinations of the vectors x,Tx,T 2x,. . . are

dense in �. For a subset F of C, let F := {z : z ∈ F} denote the conjugate set

of F .

Let T be a cyclic linear bounded operator on a Hilbert space � with cyclic

vector x. A point λ∈ C is said to be a bounded point evaluation for T if there

is a constant M > 0 such that

∣∣p(λ)∣∣≤M∥∥p(T)x∥∥ (1.2)

for every polynomial p. The set of all bounded point evaluations for T will be

denoted by B(T). Note that it follows from Riesz Representation theorem that
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λ∈ B(T) if and only if there exists a unique vector k(λ)∈� such that

p(λ)= 〈p(T)x,k(λ)〉 (1.3)

for every polynomial p. An open subset O of C is said to be an analytic set for

T if it is contained in B(T) and if for every y ∈�, the complex-valued function

ŷ defined on B(T) by ŷ(λ)= 〈y,k(λ)〉 is analytic onO. The largest analytic set

for T will be denoted by Ba(T) and every point of it will be called an analytic

bounded point evaluation for T .

This paper has been divided into three sections. In Section 2, we give a com-

plete description of the largest analytic set for cyclic Hilbert-space operators

and explain more about bounded point evaluations from the point of view of lo-

cal spectral theory. In Section 3, we prove that�(T∗)= σ(T)\σap(T) for every

cyclic Banach-space operator possessing Bishop’s property (β). Therefore, we

use this result and show that densely similar cyclic Banach-space operators

possessing Bishop’s property (β) have the same approximate point spectra;

this result generalizes [12, Theorem 4].

We will need to introduce some notions from the local spectral theory. Sup-

pose that � is a Banach space. Let T ∈ �(�); the local resolvent set ρT (x) of

T at a point x ∈ � is the union of all open subsets U ⊂ C for which there

is an analytic �-valued function φ on U such that (T − λ)φ(λ) = x for ev-

ery λ ∈ U . The complement in C of ρT (x) is called the local spectrum of T
at x and will be denoted by σT (x); it is a closed subset contained in σ(T).
It is well known that T has the single-valued extension property if and only

if zero is the only element x of � for which σT (x) = ∅. For a closed sub-

set F of C, let �T (F) := {x ∈ � : σT (x) ⊂ F} be the corresponding analytic

spectral subspace; it is a T -hyperinvariant subspace, generally nonclosed in �.

The operator T is said to satisfy Dunford’s condition (C) if for every closed

subset F of C, the linear subspace �T (F) is closed. For every open subset U
of C, we let �(U,�) denote the space of analytic �-valued functions defined

on U . It is a Fréchet space when endowed with the topology of uniform con-

vergence on compact subsets of U . Recall also that the operator T is said to

possess Bishop’s property (β) provided that for every open subset U of C, the

mapping TU : �(U,�) → �(U,�), given by (TUf)(λ) = (T −λ)f(λ) for every

f ∈ �(U,�) and for λ∈U , is injective and has a closed range. It is known that

the Bishop’s property (β) implies the Dunford’s condition (C) and it turns out

that the single-valued extension property follows from the Dunford’s condi-

tion (C). Stampfli [14] and Radjabalipour [10] have shown that hyponormal

operators satisfy Dunford’s condition (C), and Putinar [9] has shown that hy-

ponormal operators, M-hyponormal operators, and more generally subscalar

operators have Bishop’s property (β). For thorough presentations of the local

spectral theory, we refer to [5, 7].
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2. Analytic bounded point evaluations for cyclic operators. Throughout

this section, let � be a Hilbert space and T ∈ �(�) be a cyclic operator with

cyclic vector x ∈�. For λ∈ B(T), let k(λ) denote the vector of � given by (1.3).

It is well known that an open subset O of C which is contained in B(T) is an

analytic set for T if and only if the function λ� ‖k(λ)‖ is bounded on compact

subsets of O (see [6, Proposition II.7.6] and [15, Lemma 1.2]). Using a similar

proof of [6, Proposition II.7.6], this result can be refined as follows; we include

here the proof for completeness.

Proposition 2.1. Let O be an open subset of C. The following statements

are equivalent:

(i) O is an analytic set for T ;

(ii) O ⊂ B(T) and the function k :O→� is locally Lipschitz on O;

(iii) O ⊂ B(T) and the function k :O→� is continuous on O;

(iv) O ⊂ B(T) and the function λ � ‖k(λ)‖ is bounded on compact subsets

of O;

(v) for every compact subset K of O, there is a constant M > 0 such that for

every λ∈K, ∣∣p(λ)∣∣≤M∥∥p(T)x∥∥ (2.1)

for every polynomial p.

Proof. It is clear that (iv) and (v) are equivalent since for every λ ∈ B(T),
we have

∥∥k(λ)∥∥= sup
p(T)x≠0

∣∣p(λ)∣∣∥∥p(T)x∥∥ . (2.2)

On the other hand, the implications (ii)⇒(iii) and (iii)⇒(iv) are trivial. So, it

suffices to establish the implications (i)⇒(ii) and (iv)⇒(i).

Assume that O is an analytic set for T . Let λ0 ∈O, then there is ε > 0 such

that B := {λ∈ C : |λ−λ0| ≤ ε} ⊂O. For every y ∈�, we have〈
y,
k(µ)−k(λ)
µ−λ

〉
= ŷ(µ)−ŷ(λ)

µ−λ for every (µ,λ)∈O×O, µ ≠ λ. (2.3)

Since the function φy defined on O×O by

φy(µ,λ) :=


ŷ(µ)−ŷ(λ)

µ−λ , if µ ≠ λ,

ŷ ′(λ), if µ = λ,
(2.4)

is continuous, it follows that

sup
(µ,λ)∈B×B, µ≠λ

∣∣∣∣∣ ŷ(µ)−ŷ(λ)µ−λ

∣∣∣∣∣≤ sup
(µ,λ)∈B×B

∣∣φy(µ,λ)∣∣<+∞. (2.5)
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By uniform boundedness principle,

sup
(µ,λ)∈B×B, µ≠λ

∥∥∥∥∥k(µ)−k(λ)µ−λ

∥∥∥∥∥<+∞. (2.6)

Hence, there is a constant M > 0 such that

∥∥k(µ)−k(λ)∥∥≤M|µ−λ| for every (µ,λ)∈ B×B, (2.7)

and the implication (i)⇒(ii) is proved.

Now, suppose that O ⊂ B(T) and the function λ � ‖k(λ)‖ is bounded on

compact subsets ofO. Lety ∈�, then there is a sequence of polynomials (pn)n
such that limn→+∞‖pn(T)x −y‖ = 0. It follows from the Cauchy-Schwartz

inequality that for every compact subset K of O, we have

sup
λ∈K

∣∣pn(λ)−ŷ(λ)∣∣≤ sup
λ∈K

∥∥k(λ)∥∥∥∥pn(T)x−y∥∥. (2.8)

Hence, the function ŷ is a uniform limit on O of a sequence of polynomials. By

Montel’s theorem, ŷ is an analytic function on O. Therefore, O is an analytic

set for T ; so, the implication (iv)⇒(i) holds.

The following result gives a complete description of Ba(T); it is a simple

but useful result from which one can derive many known results as immediate

consequences.

Theorem 2.2. The following identity hold: Ba(T)=�(T∗).
Proof. First of all, note that if (T−λ)∗u= 0 for someu∈�, then for every

polynomial p, we have

〈
p(T)x,u

〉= p(λ)〈x,u〉. (2.9)

Let λ ∈�(T∗); there is a nonzero analytic �-valued function φ : �→� on

some open disc � centered at λ such that

(T −µ)φ(µ)= 0 ∀µ ∈�. (2.10)

Using the fact that a nonzero analytic �-valued function has isolated zeros, one

can assume that the function φ has no zeros in �. Hence, �⊂ σp(T∗)= B(T);
and therefore, it follows from (2.9) that

k(µ)= φ(µ)〈
x,φ(µ)

〉 for every µ ∈�. (2.11)

This shows that the function k : �→� is continuous. By Proposition 2.1, � ⊂
Ba(T); and so, �(T∗)⊂ Ba(T).
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Conversely, set O = Ba(T) and consider the �-valued function defined on O
by

φ(λ) := k(λ), λ∈O. (2.12)

We will show that the function φ is analytic on O. Indeed, for every y ∈� and

for every λ0 ∈O, we have

lim
λ→λ0

〈
φ(λ),y

〉−〈φ(λ0
)
,y
〉

λ−λ0
= lim
λ→λ0

〈
k
(
λ
)
,y
〉−〈k(λ0

)
,y
〉

λ−λ0

= lim
λ→λ0

ŷ
(
λ
)−ŷ(λ0

)
λ−λ0

=
[

lim
λ→λ0

ŷ
(
λ
)−ŷ(λ0

)
λ−λ0

]

= ŷ ′(λ0
)
.

(2.13)

Hence, for every y ∈�, the function λ� 〈φ(λ),y〉 is analytic on O; therefore,

the function φ is analytic on O. On the other hand, the function φ is without

zeros on O and satisfies the following equation:(
T∗−λ)φ(λ)= 0 for every λ∈O. (2.14)

This gives O = Ba(T)⊂�(T∗), and the proof is completed.

Corollary 2.3. The following identities hold:

Ba(T)=
{
λ∈ B(T) : σ

T∗−λ
(
k(λ)

)=∅}
= {λ∈ B(T) : σT∗

(
k(λ)

)=∅}. (2.15)

Proof. Since for every λ ∈ Ba(T), λ is a simple eigenvalue for T∗ with

corresponding eigenvector k(λ), the proof follows by combining Theorem 2.2

and [1, Theorem 1.9].

Remark 2.4. In view of Theorem 2.2, the following are immediate conse-

quences:

(i) Ba(T) is independent of the choice of cyclic vector for T (see [15, Propo-

sition 1.4]);

(ii) Ba(T)=∅ if and only if T∗ has the single-valued extension property. In

particular, if T is a cyclic normal operator, then Ba(T)=∅.

Suppose that � and � are Banach spaces. Recall that the two operators R ∈
�(�) and S ∈ �(�) are said to be densely similar (quasisimilar ) if there exist

two bounded linear transformations X : � → � and Y : � → � having dense

range (having dense range and injectives) such that

XR = SX, RY = YS. (2.16)
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In 1982, Raphael showed that quasisimilar cyclic subnormal operators have the

same analytic bounded point evaluations (see [12]). In 1994, Williams proved

that general quasisimilar cyclic Hilbert-space operators have the same analytic

bounded point evaluations (see [15, Theorem 1.5]). In view of Theorem 2.2, one

can see immediately that general densely similar cyclic Hilbert-space operators

have the same analytic bounded point evaluations.

To end this section, we will be mainly concerned with two interesting open

problems related to the bounded point evaluations for cyclic hyponormal op-

erators. Recall that an operator R ∈ �(�) is said to be subnormal if it has a

normal extension. The operator R is said to be hyponormal if ‖R∗y‖ ≤ ‖Ry‖
for every y ∈�. Note that every subnormal operator is hyponormal with con-

verse false (see [6]). Recall also that the operator R is said to be pure if {0} is

the only reducing subspace M such that R|M is normal.

Combining Theorem 2.2 and [6, Theorem VIII. 4.3], we see that the cyclic

operator T is normal if and only if T is a subnormal operator and T∗ has the

single-valued extension property. So, one may ask if this result remains valid

for noncyclic subnormal cases. Unfortunately, this result is no longer valid; an

example of a nonnormal, decomposable, subnormal operator is constructed by

Radjabalipour (see [11]). However, we do not know if a similar result remains

valid for the case of cyclic hyponormal operators; this suggests the following

question.

Question 2.5. Suppose that T is a cyclic hyponormal operator and T∗ has

the single-valued extension property. Is T a normal operator?

The next problem is of some interest in view of the fact that if it has a positive

answer, then one can deduce immediately that every hyponormal operator has

a proper closed invariant subspace.

Question 2.6. Suppose that T is a pure cyclic hyponormal operator. Do we

have that Ba(T)≠∅?

3. Densely similarity and approximate point spectra for cyclic operators

possessing Bishop’s property (β). We first need to give some notations and

definitions. Let � be a Banach space; recall that an operator T ∈ �(�) is said

to be semi-Fredholm if ranT is closed and dim(kerT) <+∞ or codim(ranT) <
+∞. Moreover, if ranT is closed and both dim(kerT) and codim(ranT) are fi-

nite, then the operator T is said to be Fredholm. If T is semi-Fredholm, then the

index of T is defined by ind(T) := dim(kerT)−codim(ranT). For an operator

T ∈�(�), define

σlre(T) := {λ∈ C : T −λ is not semi-Fredholm},
ρe(T) := {λ∈ C : T −λ is Fredholm}.

These are called the Wolf spectrum and Fredholm domain, respectively, of T .

Let T ∈�(�) be a cyclic operator on a Hilbert space �. It is shown in [3] that

if T possesses Bishop’s property (β), then Ba(T)= Γ(T)\σap(T) if and only if



ON THE LARGEST ANALYTIC SET FOR CYCLIC OPERATORS 1905

Ba(T)∩σp(T) = ∅ and was derived from this result that if T is hyponor-

mal, M-hyponormal, or p-hyponormal operator, then Ba(T) = Γ(T)\σap(T)
(see also [2]). However, using generalized spectral theory, it is proved in [8]

that Ba(T)\σlre(T)= Γ(T)\σg(T), where σg(T) denotes the generalized spec-

trum of T . Therefore, the localized version of Bishop’s property (β) allowed

to show that

Ba(T)\σβ(T)= Γ(T)\σap(T), (3.1)

where σβ(T) is the set of points λ ∈ C on which T fails to have Bishop’s

property (β). As a consequence, it is obtained that if T possesses Bishop’s

property (β), then Ba(T)= Γ(T)\σap(T). In view of Theorem 2.2, one may ask

whether a similar description of�(T∗) can be obtained if T is a cyclic Banach-

space operator possessing Bishop’s property (β). In fact, we will prove that

�(T∗) = σ(T)\σap(T) for every cyclic Banach-space operator T possessing

Bishop’s property (β). The idea behind a part of our proof comes from the

proof of [2, Theorem 4.1].

Theorem 3.1. Suppose that T ∈�(�) is a cyclic operator on a Banach space

�. If T possesses Bishop’s property (β), then

�(T∗)= σ(T)\σap(T). (3.2)

Proof. A straightforward proof of [6, Lemma II.7.8] shows that

σ(T)\σap(T)⊂�
(
T∗
)
. (3.3)

In order to prove the reverse inclusion of (3.3), it suffices to show that T −λ is

injective and has a closed range for every λ∈�(T∗).
First, we prove that for every λ∈�(T∗), we have codim(ran(T −λ))= 1; in

particular, ran(T −λ) is closed (see [7, Lemma 3.1.2]). Indeed, let λ0 ∈�(T∗);
there is an analytic function without zeros, Λ : �→ �∗, on some open disc �

centered at λ0 such that

(
T∗−λ)Λ(λ)= 0 ∀λ∈�. (3.4)

Set Φ(λ)=Λ(λ)/〈x,Λ(λ)〉, λ∈�, where x ∈� is a cyclic vector for T , and the

symbol 〈·,·〉 designs the duality map between � and �∗. Note that for every

polynomial p, we have

p(λ)= 〈p(T)x,Φ(λ)〉 ∀λ∈�. (3.5)
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Let y ∈�; there is a sequence of polynomials (pn)n≥0 such that (pn(T)x)n≥0

converges to y in �. Define analytic �-valued functions on � by

f(λ) :=y−〈y,Φ(λ)〉x, fn(λ) := pn(T)x−pn(λ)x (n≥ 0). (3.6)

For every compact subset K of �, we have

sup
λ∈K

∥∥fn(λ)−f(λ)∥∥≤ ∥∥pn(T)x−y∥∥+sup
λ∈K

∥∥[pn(λ)−〈y,Φ(λ)〉]x∥∥
≤ ∥∥pn(T)x−y∥∥+‖x‖sup

λ∈K

∣∣pn(λ)−〈y,Φ(λ)〉∣∣
≤
[

1+‖x‖sup
λ∈K

∥∥Φ(λ)∥∥]∥∥pn(T)x−y∥∥.
(3.7)

Therefore, fn→ f in �(�,�). As ran(T�) is closed and each fn ∈ ran(T�), there

is g ∈ �(�,�) such that f(λ)= (T−λ)g(λ) for all λ∈�. In particular, we have

y = (T −λ0
)
g
(
λ0
)+〈y,Φ(λ0

)〉
x. (3.8)

This shows that codim(ran(T −λ0))= 1.

Next, suppose for the sake of contradiction that there is λ0 ∈ �(T∗) such

that T−λ0 is not injective. As codim(ran(T−λ0))= 1, T−λ0 is a semi-Fredholm

operator with

ind
(
T −λ0

)= dim
(
ker

(
T −λ0

))−codim
(
ran

(
T −λ0

))≥ 0. (3.9)

By [1, Corollary 2.7], we deduce that ind(T −λ0) = 0; and so, T −λ0 is a Fred-

holm operator for which dim(ker(T − λ0)) = codim(ran(T − λ0)) = 1. Since

ρe(T) is an open set and the index is a constant function on the components

of ρe(T), there is δ > 0 such that

B
(
λ0,δ

)
:= {λ∈ C :

∣∣λ−λ0

∣∣< δ}⊂�(T∗)∩ρe(T),
ind(T −λ)= ind

(
T −λ0

)= 0 for every λ∈ B(λ0,δ
)
.

(3.10)

As codim(ran(T −λ))= 1, for every λ∈�(T∗), we have

dim
(
ker(T −λ))= 1 for every λ∈ B(λ0,δ

)
; (3.11)

in particular, B(λ0,δ) ⊂ σp(T). We have a contradiction to [1, Theorem 2.6]

since T has the single-valued extension property. Thus, T−λ0 is injective, and

the proof is completed.



ON THE LARGEST ANALYTIC SET FOR CYCLIC OPERATORS 1907

Note that (3.3) holds for arbitrary Banach-space operator T not necessarily

cyclic. The following example shows that this inclusion may not be reversed

in general even if the operator T possesses Bishop’s property (β).

Example 3.2. Let (en)n≥0 be the canonical basis of the Banach space �= l1
of all complex sequences x := (xn)n≥0 such that ‖x‖ =∑n≥0 |xn|<+∞. Let

Uen = en+1 (n≥ 0) (3.12)

be the unweighted unilateral shift on � and let T = U ⊕2U . Note that T pos-

sesses Bishop’s property (β) since U is an isometry [7, Proposition 1.6.7]. On

the other hand, it follows from [13] that σ(T) = {λ ∈ C : |λ| ≤ 2}, σap(T) =
{λ ∈ C : |λ| = 1}∪{λ ∈ C : |λ| = 2}, and �(T∗) = {λ ∈ C : |λ| < 2}. This shows

that σ(T)\σap(T)��(T∗).
Note that in general two densely similar Banach-space operators which pos-

sess Bishop’s property (β) have equal spectra, compression spectra, and essen-

tial spectra (see, e.g., [7]), but may have unequal approximate point spectra as

shown by an example in [4]. Here, we show that general densely similar cyclic

Banach-space operators possessing Bishop’s property (β) have the same ap-

proximate point spectra.

Proposition 3.3. Two densely similar cyclic operators possessing Bishop’s

property (β) have equal approximate point spectra.

Before proving this result, we need the following lemma. This is a special

case of much more general results from [7]; we give here a direct proof.

Lemma 3.4. Suppose that � and � are Banach spaces. Let R ∈ �(�), S ∈
�(�), and let X : �→ � be a bounded linear transformation with dense range

such that XR = SX. If S satisfies Dunford’s condition (C), then σ(S) ⊂ σ(R);
in particular, if both R and S satisfy Dunford’s condition (C) and are densely

similar, then σ(S)= σ(R).
Proof. We will first show that σS (Xy) ⊂ σR(y) for every y ∈ �. Indeed,

let y ∈�. If Xy = 0, then clearly σS (Xy)=∅⊂ σR(y). Thus, we may suppose

that Xy ≠ 0. Let λ0 ∈ ρR(y); so, there is an open neighborhood � of λ0 and a

nonzero analytic �-valued function φ : �→� such that

(R−λ)φ(λ)=y for every λ∈�. (3.13)

Since X(R−λ)= (S−λ)X for every λ∈ C, we have

(S−λ)Xφ(λ)=Xy for every λ∈�. (3.14)

It is clear that the analytic �-valued function Xφ : � → � is without zeros

since Xy ≠ 0. Hence, � ⊂ ρS (Xy); thus, σS (Xy) ⊂ σR(y) for every y ∈ �.

Since �S (σ(R)) is a closed linear subspace and X has dense range, we have
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�S (σ(R)) = �. This shows that σS (y) ⊂ σ(R) for every y ∈ �. As σ(S) =⋃
y∈�σS (y) (see [7, Proposition 1.3.2]), we have σ(S)⊂ σ(R), and the proof is

completed.

Proof of Proposition 3.3. Suppose that � and � are Banach spaces and

let T1 ∈�(�) and T2 ∈�(�) be two densely similar cyclic operators possessing

Bishop’s property (β). We have �(T∗1 ) = �(T∗2 ); so, in view of Theorem 3.1,

we have

σ
(
T1
)\σap

(
T1
)= σ(T2

)\σap
(
T2
)
. (3.15)

As σ(T1)= σ(T2) (see Lemma 3.4), we have σap(T1)= σap(T2).

We conclude this paper by mentioning that one can show with no extra

effort that Theorem 3.1 and Proposition 3.3 remain valid for rationally cyclic

Banach-space operators.
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