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ON FINITELY EQUIVALENT CONTINUA
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For positive integers m and n, relations between (hereditary) m- and n-equivalence
are studied, mostly for arc-like continua. Several structural and mapping problems
concerning (hereditarily) finitely equivalent continua are formulated.
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A continuum means a compact connected metric space. For a positive in-
teger n, a continuum X is said to be n-equivalent provided that X contains
exactly n topologically distinct subcontinua. A continuum X is said to be hered-
itarily n-equivalent provided that each nondegenerate subcontinuum of X is
n-equivalent. If there exists a positive integer n such that X is n-equivalent,
then X is said to be finitely equivalent. Thus, for n = 1, the concepts of “1-
equivalent” and “hereditarily 1-equivalent” coincide, and they mean the same
as “hereditarily equivalent” in the sense considered, for example, by Cook in [2].

Observe the following statement.

STATEMENT 1. Each subcontinuum of an n-equivalent continuum is m-
equivalent for some m < n. Thus, each finitely equivalent continuum is hered-
itarily finitely equivalent.

Some structural results concerning finitely equivalent continua are obtained
by Nadler Jr. and Pierce in [9]. They have shown that if a continuum X is (a)
semi-locally connected at each of its noncut points, then it is finitely equivalent
if and only if it is a graph; (b) aposyndetic at each of its noncut points and
finitely equivalent, then it is a graph. Furthermore, in both cases (a) and (b), if
X is n-equivalent, then each subcontinuum of X is a 6,,;1-continuum. Recall
that Nadler Jr. and Pierce in [9, page 209] posed the following problem.

PROBLEM 2. Determine which graphs, or at least how many, are n-equivalent
for each n.

The arc and the pseudo-arc are the only known 1-equivalent continua. In [10]
Whyburn has shown that each planar 1-equivalent continuum is tree-like, and
planarity assumption has been deleted after 40 years by Cook [2] who proved
tree-likeness of any 1-equivalent continuum. But it is still not known whether or
not the arc and the pseudo-arc are the only ones among 1-equivalent continua.

In contrast to 1-equivalent case, 2-equivalent continua need not be heredi-
tarily 2-equivalent, a simple closed curve is 2-equivalent while not hereditarily
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2-equivalent. The 2-equivalent continua were studied by Mahavier in [5] who
proved that if a 2-equivalent continuum contains an arc, then it is a simple
triod, a simple closed curve or irreducible, and that the only locally connected
2-equivalent continua are a simple triod and a simple closed curve. It is also
shown that if X is a decomposable, not locally connected, 2-equivalent contin-
uum containing an arc, then X is arc-like and it is the closure of a topological
ray R such that the remainder cl(R) \ R is an end continuum of X. Further-
more, two examples of 2-equivalent continua are presented in [5]: the first, [5,
Example 1, page 246], is a decomposable continuum X which is the closure of
aray R such that the remainder cl(R) \ R is homeomorphic to X; the second,
[5, Example 2, page 247], is an arc-like hereditarily decomposable continuum
containing no arc.

Looking for an example of a hereditarily 2-equivalent continuum note that
the former example surely is not hereditarily 2-equivalent because it contains
an arc. We analyze the latter one.

The continuum M constructed in [5, Example 2, page 247] does not contain
any arc, and it contains a continuum N such that each subcontinuum of M is
homeomorphic to M or to N, see [5, the paragraph following Lemma 3, page
249]. Further, by its construction, N does contain continua homeomorphic
to M (see [5, the final part of the proof, page 251]). Therefore, the following
statement is established.

THEOREM 3. The continuum M constructed in [5, Example 2, page 247] has
the following properties:
(@) M is an arc-like;
(b) M is hereditarily decomposable;
(c) M does not contain any arc;
(d) M is hereditarily 2-equivalent.

In connection with the above theorem, the following problem can be posed.

PROBLEM 4. Determine for what integers n > 3, there exists a continuum
M satisfying conditions (a), (b), and (c) of Theorem 3 and being hereditarily
n-equivalent.

The following results are consequences of [1, Theorem, page 35].

THEOREM 5. For each hereditarily n-equivalent continuum X, that does not
contain any arc, there exists an (n + 2)-equivalent continuum Y such that each
of its subcontinua is homomorphic either to a subcontinuum of X or to'Y, or to
an arc.

PROOF. Indeed, a compactification Y of a ray R having the continuum X as
the remainder, that is, such that X = cl(R) \ R is such a continuum. o

Since if M is arc-like and hereditarily decomposable, then so is any of com-
pactifications Y of a ray having the continuum X as the remainder, we get the
next result as a consequence of Theorem 5.
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COROLLARY 6. If a continuum M satisfies conditions (a), (b), and (c) of
Theorem 3 and is hereditarily n-equivalent, then any of compactifications of
a ray having the continuum M as the remainder satisfies conditions (a) and (b)
of Theorem 3 and is (n + 2)-equivalent.

In [7], an uncountable family % is constructed of compactifications of the
ray with the remainder being the pseudo-arc.

STATEMENT 7. Each member X of the (uncountable) family ¥ constructed
in [7] is an arc-like 3-equivalent continuum. Any subcontinuum of X is home-
omorphic to an arc, to a pseudo-arc, or to the whole X.

A continuum X has the RNT-property (retractable onto near trees) provided
that for each € > 0, there exists a 6 > 0 such that if a tree T is 6-near to X with
respect to the Hausdorff distance, then there is an &-retraction of X onto T,
see [6, Definition 0]. It is shown in [6, Theorem 5] that if a continuum X is a
compactification of the ray R and X has the RNT-property, then the remain-
der cl(R) \R € X = cl(R) is the pseudo-arc. Therefore, Theorem 5 implies the
following proposition.

PROPOSITION 8. Each compactification X of the ray having the RNT-property
is a 3-equivalent continuum. Each subcontinuum of X is homeomorphic to an
arc, a pseudo-arc, or to the whole X.

Observe that M of Theorem 3 being an arc-like is hereditarily unicoherent,
and being hereditarily decomposable, it is a A-dendroid (containing no arc). An-
other (perhaps the first) example of a A-dendroid, in fact, an arc-like, containing
no arc, has been constructed by Janiszewski in 1912, [3] but his description
was rather intuitive than precise. It would be interesting to investigate if that
old example of Janiszewski is or is not n-equivalent (hereditarily n-equivalent)
for some n.

The following problems can be considered as a program of a study in the
area rather than particular questions.

PROBLEMS 9. For each positive integer n, characterize continua which are
(a) n-equivalent; (b) hereditarily n-equivalent.

PROBLEM 10. Characterize continua which are finitely equivalent.

Sometimes a characterization of a class of spaces (or of spaces having a cer-
tain property) can be expressed in terms of containing some particular spaces.
A classical illustration of this is a well-known characterization of nonplanar
graphs by containing the two Kuratowski’s graphs: K5 and K33, see, for ex-
ample, [8, Theorem 9.36, page 159]. To be more precise, recall the following
concept. Let & be a class of spaces and let ? be a property. Then % is said to be
finite (or countable) in the class s« provided that there is a finite (or countable,
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respectively) set ¥ of members of « such that a member X has the property
% if and only if X contains a homeomorphic copy of some member of &. The
result of [7] mentioned above in Statement 7 shows that this is not the way
of characterizing 3-equivalent continua. Namely, the existence of the family %
shows the following theorem.

THEOREM 11. The property of being 3-equivalent is neither finite nor count-
able in the class of (a) all continua; (b) arc-like continua.

A mapping f : X — Y between continua X and Y is said to be
(i) atomic provided that for each subcontinuum K of X, either f(K) is de-
generate or f1(f(K)) =K;
(ii) monotone provided that the inverse image of each subcontinuum of Y is
connected;
(iii) hereditarily monotone provided that for each subcontinuum K of X, the
partial mapping f|K : K — f(K) is monotone.

It is known that each atomic mapping is hereditarily monotone, see, for
example, [4, (4.14), page 17]. Since each arcwise connected 2-equivalent con-
tinuum is either a simple closed curve or a simple triod, see [5, Theorem 2,
page 244], each semilocally connected 3-equivalent continuum is either a sim-
ple 4-od [8, Definition 9.8, page 143] (i.e., a letter X) or a letter H, see [9, page
209]. And since these continua are preserved under atomic mappings (as it is
easy to see), we conclude that atomic mappings preserve the property of being
2-equivalent and being 3-equivalent for locally connected continua. However,
this is not an interesting result, because each atomic mapping of an arcwise
connected continuum onto a nondegenerate continuum is a homeomorphism,
see [4, (6.3), page 51]. But the result cannot be extended to hereditarily mono-
tone mappings, because a mapping that shrinks one arm of a simple triod to
a point is hereditarily monotone and not atomic, and it maps a 2-equivalent
continuum onto an arc that is 1-equivalent. On the other hand, if X is the 2-
equivalent continuum which is the closure of a ray R as described in [5, Exam-
ple 1, page 246], then the mapping f : X — [0,1], that shrinks the remainder
cl(R) \ R to a point (and is a homeomorphism on R), is atomic and it maps
2-equivalent continuum X onto the 1-equivalent continuum [0, 1]. Therefore,
atomic mappings do not preserve the property of being a 2-equivalent contin-
uum. In connection with these examples, the following question can be asked.

QUESTION 12. Let a continuum X be n-equivalent and let a mapping f :
X — Y be an atomic surjection. Must then Y be m-equivalent for some m < n?

In general, we can pose the following problems.

PROBLEMS 13. What kinds of mappings between continua preserve the
property of being: (a) n-equivalent? (b) hereditarily n-equivalent? (c) finitely
equivalent?
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