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For any two points P = (p™1), p@) ... pMyand Q = (¢'V,q@,...,q") of R", we
define the crisp vector PQ = (¢ —pM,qg@ —p@ .. g™ —p™M)) = Q(~)P. Then
we obtain an n-dimensional vector space E" = {P—Q | for all P,Q € R"}. Further,
we extend the crisp vector into the fuzzy vector on fuzy sets of R™. Let D, E be

any two fuzzy sets on R” and define the fuzzy vector ED = D o E, then we have a
pseudo-fuzzy vector space.

2000 Mathematics Subject Classification: 08A72.

1. Introduction. In [1, 2, 4, 5, 6], fuzzy vector space is discussed theoreti-
cally. In Katsaras and Liu [2], E denotes a vector space over K, where K is the
space of real or complex numbers. A fuzzy set F in E is called a fuzzy subspace
if (a) F+F C F; (b) AF C F for every scalar A. Katsaras and Liu introduced the
concept of a fuzzy subspace of a vector space. In Das [1], E denotes a vector
space over a field K. Let I = [0,1] and let I¥ be the collection of all mappings
of E into I. We say u € If is a fuzzy space of E under a triangular norm T
(see [1, Definition 2.1]), or simply a T-fuzzy subspace of E if for all x,y € E
and for all a € K, u(x+1y) = T(u(x),u(y)) and pu(ax) = u(x), respectively.
In Lubczonok [5], a fuzzy vector space is a pair E= (E,u), where E is a vector
space and p : E — [0,1] with the property that, for all a,b € R and x,y € E,
we have pu(ax +by) = u(x) Au(y). In Kumar [4], V is a vector space over F,
where F is the field of real numbers. A fuzzy subset u of V is called a fuzzy
subspace if it has the following properties:

(@) p(vy—v2) =min(u(vy),u(ve)) for all vy, v € V;

(b) pu(xv) = pu(v) forall x e F, v eV.
There are various definitions of fuzzy vector spaces in these papers. All of them
use the fuzzy set u over a crisp vector space E, or u: E — [0,1], to define fuzzy
vector. These are different from our work. IE}( two points P = (p1,p2,...,Pn),
Q =(q1,92,-.-,4x) in R™ to form a vector P_Q =(q1—p1,92 — P2,--,An — Pn)-
Then extend this vector to the fuzzy vector ﬁé = é o P formed by fuzzy sets P,
Q on R™. This is very useful compared to the abstract one defined in [1, 2, 4, 5].
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FIGURE 2.1. «-cut of fuzzy set D on R2.

Section 2 is a preparing work. Section 3 is the extension of the crisp n-
dimensional Euclidean vector E™ to the pseudo-fuzzy vector space. We talk
in Section 4 about the length of the fuzzy vectors and fuzzy inner product.
Section 5 is a more discussion.

2. Preparation. In order to consider the fuzzy vectors of fuzzy sets on R",
we ought to know the following. First, from Kaufmann and Gupta [3] and Zim-
mermann [8], we have the following definition.

DEFINITION 2.1. (a) A fuzzy set A on R = (—o0, %) is convex if and only if
every ordinary set A(x) = {x | Hy (x) = o} for all @ € [0,1] is convex. Thus
A(wx) is a closed interval in R.

(b) A fuzzy set A on R is normal if and only if Viertz(x) =1.

We can extend this definition to R", say if D is a fuzzy set on R™ with
membership function

p(x P, x@ L x™) 0,11 V(xP,x?, ., x™) eRrn, (2.1)

then we have the following definition.

DEFINITION 2.2. The x-cut of fuzzy set D on R", 0 < x <1, is defined by
D(e) = {(xP,x® ., x™) [ us(xP,x?,..,x™) > af. (2.2)

For n = 2, see Figure 2.1.
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DEFINITION 2.3. (a) A fuzzy set D on R" is convex if and only if for each
x € [0,1], every ordinary set

D(e) = {(x®,x@ ., xM™) [ uz(x®,x@, .., xM) > o} (2.3)

is a convex closed subset of R".
(b) A fuzzy set D is normal if and only if

\/ py (W x@ L x™) =1, (2.4)

Let F. be the family of all fuzzy sets on R" satisfying Definition 2.3(a), (b).

REMARK 2.4. When « = 0, then the x-cut is
{(xW,x@ .. x™) |u5(x(1>,x(2),...,x<")) > 0}. (2.5)
Let D(0) be the smallest convex closed subset in R™ satisfying
{(xD,x@ .. x™) Iuﬁ(x(l),x(Z),...,x(")) >0} (2.6)

(see Example 4.11).

DEFINITION 2.5 (Pu and Liu [7]). If the membership function of a fuzzy set
ag, 0<x=<1,onRis

& x=a, ©.7)
Hae 0, x+a, '
then we call a, a level-« fuzzy point on R.
Let F},((x) = {ay | for all a € R} be the family of all level-« fuzzy points on
R satisfying (2.7).

DEFINITION 2.6. If the membership function of a fuzzy set (a¥,a'?,...,
a™)y, 0<x<1,onR"is

(1) 4 (@) n)
u(u(l),a(Z),_“,a(n))D( (X X X )

{a, if (xW,x@ . x®™)=(aV a?, . a"), (2.8)

0, elsewhere,

then we call (aV,a?,...,a™) alevel-« fuzzy point on R™.
Let F'(«) = {(a,a®,...,a"™)y | forall (aV,a?,...,a"™) € R"} be the
family of all level-« fuzzy points on R" satisfying (2.8).
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For every ay € F,},(cx), let ay = (a,a,...,a)«, then a, can be regarded as
a special case of the level- fuzzy point (aV,a?,...,a™), degenerating to
al=a® =...=a"™ =q. Thus

&, (xW x@ xM)=(a,a,...,a),
Ha,a,...a) (X(l) x? X(m) =
7 . o ] yrrey .
0, (xM,x@ ... ,xM)+(a,a,...,a) (2.9)

=u (X(l) x2) x(”))
. , ey .

REMARK 2.7. We can regard a, as a fuzzy set on R as the form in (2.7)
or it can also be regarded as a fuzzy set on R" such as ay = (a,a,...,a) in
(2.9) according to how we want it to be. That is, 0; = (0,0,...,0); and ay =
(a,a,...,a)x, x€[0,1].

From Kaufmann and Gupta [3], for D,E C R", k € R, we have

1) D(+)E={(xD+yD x@ 1@ x40y |y (xD 5@  x0)e
D, (y(l),y(z)’___,y(n)) € E},

(ii) D(,)E:{(X(l),y(l),x(Z),y(z)’_._’x(n),y(n)) | V(X(l),X(Z),...,X(")) c
D, (y(l),y(Z)’.__’y(n)) € E},

(i) k(-)D = {(kx® kx@ ... kx™) | V(x®,x@ ... x™)eD},

(iv) the o-cut of Do E is D(x)(+)E(x),

(v) the a-cut of DeE is D(x)(—)E(«x),

(vi) the x-cut of k; oD is k(-)D(x).

3. The extension of the crisp n-dimensional Euclidean vector space E" to
the pseudo-fuzzy vector space SFR. Incrisp case, forP = (pV),p@ ... . p™),
Q=q",q?%,....q"), A= (@V,a?,...,a™), B=(bV,b?,. .. b") e R",
and k € R, we can define the operations “ +, -” for the crisp vectors P_Q: AB in
E", the n-dimensional vector space over R", by

AB = (bV —aM p@ —q@  pm _gm),

— (3.1
PQ =" -p",q® -p®,....a" -p™),
AB+PQ = (bW +qV —a® —pW) p@ 4 @
—a@ —p@  p g g ) (3.2)

k.p—(i = (kq(l) _kp(l)’kq(Z) —kp(Z),...,kq“” _kp(n))_

Let O = (0,0,...,0) € R", then OP = (pV, p@ ..., p™)and 00 = (0,0,...,0) €
E™.

Let E" be an n-dimensional vector space over R. By Definition 2.6, Fp(1) =
{@V,a?@,...,a™), | forall (a?,a?,...,a™) e R"}. This is a family of all
level-1 fuzzy points on R".
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We notice that there is a one-to-one onto mapping p between (aV,a®, ...,

a™)eRmand (aV,a?,...,a™), € F}(1). That is,
p:(aV,a?,...,a™ erR" —p((a?,a?,...,a™))
(1) 4(2) (n) (3.3)
=(a,a'?,...,a™), e F} (1),
2
H(am‘a(z)’__”a(mn (X(l),x( ),_..,X(TL))
(3.4)

— (1) 4.(2) (n)
*le),a(Z),...,a(m)(X ,x L x))

where C4 is the characteristic function of A.
Let P = (pW,p@,..,p™)1, @ = (@V,q?,...,q"™), € F(1). From (3.1),
(3.3), we have the following definition:

—_—

PG =(a"-p",a?-p?,....a"-p™), =QeP. (3.5)

We call ﬁ@ a fuzzy vector.
Let O = (0,0,...,0)1 € Fj(1), then OP = (pV,p®,...,p");, 00 = (0,0,...,
0);.Let FE™" = {ﬁ(Nz | for all 13,(3 S F:}(l)} be the family of all fuzzy vectors on

Fj(1). From (3.1), (3.5), we can have the one-to-one onto mapping p between
E™ and FE" by

g

PG = (qV —pM,qg® —p@ g _pm) (efpn) p(P_d)

:(q(l)_p(l),q(Z)_p(Z),”_,q(")_p(n))l (3.6)
=PQ e FE".
Since (pW,p@ ..., p™) = OP, hence the point in R" can be regarded as a vec-
tor in E™. Also since (p™M,p@,...,p™); = OP, hence the level-1 fuzzy points

on R™ can be regarded as the fuzzy vectors in FE™. Therefore the mapping in
(3.3) is a special case of the mapping in (3.6).

The operations “@®,®” of the fuzzy vectors in FE™ have the following prop-
erty.

PROPERTY 3.1. For P = (pM, p@ ... p™) Q= (qgV,q?,...,q"), A =
@®,a®, ... ,am),, B=mV,p?,. .. b™) FE" and k £ 0 € R, we have

Aﬁ@ﬁé — (b(l) +€[(1) —ah - p(l),b(Z) +q(2) —a® ,p(Z),___,b(n)

g —qm _pm)

—_—

ki Qﬁ& — (kq(l) _ kp(l),kqm _ kp(2>’ kg™ — kp(n))l_ (3.8)
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PROOEF. For (3.7),

(1) (@) (n)
— . (2W,z29,..z
uﬁﬁeﬁé( )
- (1) ,-(2) (n)
= sup {u , (M xte) ) x M)
2D =x 4y, j=1,2,..m ®D-a® b -a),..pm-alt)
(1) 4,(2) (n)
A1)y (1) g2 pi2gom_pomy, Y5V )}
_ (1) (1)
= sup  {u , (zV - yD,
(y(l),y(2> ..... y(")) (b(l)7,,1(1),b(Z)fa(Z),__,,h(n)fa(n))1
2Dy @ ) )
(1) 4,(2) (n)
AH G ) 4@ _p@), g _p)), Oy )}
_1, ifz0) W) — i) _ g, ) g D jo1,2,.. 0,
_1, if 20 g4 pi) =D _q), j=1,2,...m,
= 1) 5(2) (n)
= H iy g a1 ) g @) @), sqim) atn) piny (2052w 20)
v(zW,z?,...,zW) e R",
(3.9
that is,
ABoPQ = (bW +qM —a®W —p® p@ 4 4@ _q@ (3.10)

—p(z),...,b(") +q(n) —am _p(n))l_

Similarly, we have (3.8). In the case k = 0, it follows by Property 3.7(7).
From Property 3.1, (3.2), (3.6), (3.7), and (3.8), we have

p(A_’B+P_Q>) = (bW +qW —aq® —pM) p@ 4 g2
_a(Z)_p(Z),___’b(n)+q(n)_a(n)_p(n))l
=ﬁ@%=p(ﬁ)@p(ﬁi), (3.11)
p(k-TB) :kleﬁzp(k)ep(ﬁﬁﬁ).

By Remark 2.7, k = (k,k,...,k). Hence by (3.3), p(k) = p(k,k,...,k) = (k,k,...,
k)1 = k1. From (3.6), (3.11), since E" is a vector space over R, therefore FE™
satisfies the conditions to be a vector space too. We call FE" a fuzzy vector

—_—

space over FQ,(I) and call ﬁ@ (e FE™) a fuzzy vector. ]

REMARK 3.2. The zero fuzzy vector 00 = (0,0,...,0); in FE™ will be ob-

tained from the zero vector 00 = (0,0,...,0) in E™ by mapping 00 to 00.
Obviously, there is a one-to-one mapping between R and F,},(l) such that
acR-a; e F,}, (1). Thus, we have the following property.
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PROPERTY 3.3. The fuzzy vector space FE" over F;(l) is equivalent to the
vector space E" over R denoted by E™ ~ FE™.

Since the «-cut of the fuzzy point P = (pV,p@,...,p™); in Fr)is (p,
p@,...,p™) for all x € [0,1], hence it can be regarded as a special case in F,,
that is, we can take Fj} (1) as a subfamily of F., that s, Fj (1) CFe. Therefore we
can extend the fuzzy vector space FE" to F, and have the following definition
similarly as in (3.5).

DEFINITION 3.4. For X,V € F,, define
XV -Fek. (3.12)
We call XY a fuzzy vector.
Let SFR={XY=YoX| forall X,Y e F.}.

PROPERTY 3.5. For XV,WZ € SFR,

XY=WZ iff YeX=ZoW. (3.13)
PROOF. The proof follows from Definition 3.4 of fuzzy vector. O

PROPERTY36 ForXY WZeSFR k € R,
(1) XYGBWZ AB hereA X@W B= YEBZ
2) kleXY—CD,hereC—kloX,D—kleY.

_P}{OOF. (1) For each & € [0, 1], from (i), (ii), (iv), (v), the x-cuts of)?}N’ = }N’e)?,
WZ=ZoW are Y(x)(—)X(x), Z(x)(—)W(x), respectively. Let
D={(xV,x? . x")eX (), (yV,y?,. .., »yM)eY(),

(3.14)
(z1,z? . zM) e Z(0), (wP,w?,.. ., w™)ew(x)].

Therefore the x-cut of )?_%WZL is
(Y () (=) X (00) (+)(Z () (=)W (0))

— [y —x W 420 gy @) @) 4 @) gy @)
) x4 20 gy | py

(W 20,y @ 4 @m0y (3.15)
[ (yD,y@ ., y™)eY(x), (zV,2?,...,z™) € Z(x)}

()W 4w x@ 4 p@ )y
[ (x,x@ . x™) e X(x), (WP, w@,...,w™)eW(x)]}

which is the a-cut of (Yo Z)e (XeW) =
(2) The same way as in (1). O
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-2,

[\12

PROPERTY 3. 7 For INJ\N/ € SFR, k,t € R,

®><z

@) ()N(%WZ)@U\N/ :ﬁmw_'f o),

3) XYe00 = XY;

@) k1ot oXY) = (kt)loXY

) kio(XYeWZ) = (k1®XY)®(k1®WX)

(6) 1 0 XY = XY

(7) 0,0XY =00.

PROOF. For each 1 X € &1] and from (iv), (v), and (vi),
(1) the a-cutof XYeWZ = (YeX)o (Z-W)is

(Y () ()X () (+)(Z (o) (-)W(x)) (3.16)
= (Z(0) (=)W () (+) (Y () (=) X (c0)) '

which is the «-cut of %@% . Therefore (1) holds;

(2) the proof is similar to (1);

(3) since OO = (0,0,...,0)1, the a-cut of X¥ 00 = (Yo%) ®(0,0,...,0),
is (Y((x)( )X((x))(+)(0 0,. 0) Y (x) (=) X () which is the «-cut of
XY. Therefore XY & 00 —XY, .

(4) for each « € [0,1], the a-cut of ky 0 (0 XY) =k 0 (o (Yo X)) is
k() () (Y(x) (=) X (x))) = (kt)(-)(Y(x) (=) X (e0)) which is the o-cut
of (kt), (1) XY;

(5) the proof is similar to (4);

(6) the proof is similar to (5); .

(7) from (v), (vi), fogch « € [0,1], the x-cut of 0; oXVis (0,0,...,0) which
is the «-cut of 0O.

In order to be a fuzzy vector space, it needs that the followmg hold

(8) for any XY € SFR, there exists WZ = SFR such that XY @ W 55

9 (m+n) @XY (my @XY) & (1 oXY) for all XY € SFR.

Now since FE™ is a vector space, ( (8), (9) hold without any question. If X, Ye

F., but ¢ F"(l) and XY £ OO WZ + 00. By (iv), (v), for each « € [0,1] the

x-cuts of XY and WZ are Y(x) (=) X(x) # (0,0,...,0) and Z(x)(—)W(x) #
(0,0,...,0), respectively. The x-cut of XYeWZ = ()N/e)?) ® (feW) is

(Y (00 =X () (+)(Z(e0) (=)W () # (0,0,...,0), (3.17)

—_ —

that is, there exists no WZ e SFR such that X}N’ WZ =00. That is, (8) does

not hold in this case.
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For X,Y € F. but ¢ F}(1), from (i), (ii), (iii), (iv), (v), and (vi), the a-cut (0 <

x<1)of (m+n),0XY=m+n)oFeX)is

(m+n)Y(x) (=) ((m+n)X(x))
= [(m+n)yP —(m+n)xV, (m+n)y?® - (m+n)x?,...,

1
(m+n)y™ —m+n)x™) | (xV,x@ ... x™) e X(0), (5-18)

(M, y@ L y™) ey ()}
However, the «-cut of (mle)NﬂN/)ea(nle)N(lN/) = (mle(ye)?))@(nle(?e)?))
is
m (Y (e0) (=) X () (+)n(Y (e) (=) X ()
= {(m(y(l)’ _x(l)’) +n(y(l)” _x(l)”)’m(y(z)’ —X(Z)’)
+n(y®@ —x@) L om(y™ —x™ ) en(y™ —x™")) (3.19)
| (x®x @ x ™) (x D7 x @7 x™) e X (),

(y(l)’,y(zy,...,y(")’),(y(””,ym”,...,y(")”) c Y((x)}.

Therefore (m +n)yY — (m +n)xP £ m(y9 —xD) + n(y" —x@O") if
(xW) £ x0 or xD") or (W) 4 W@ or "), Hence (9) does not hold. O

DEFINITION 3.8. The SFR which satisfies Property 3.7(1), (2), (3), (4), (5), (6),

and (7) is called pseudo-fuzzy vector space over F,}, (1), and call XY (e SFR) a
fuzzy vector.

Then E™ ~ FE™ C SFR. That is, we can regard SFR as an extension of E",
but only obtain a pseudo-fuzzy vector space instead of a fuzzy vector space.
Its addition @ and multiplication ® are followed by Property 3.6.

_—

PROPERTY 3.9. For )?j?j e SFR, a(l‘i) eFy(1),j=1,2,...,m,
(alVoXit))e (a0 Xot2) e o (a™ 0 Xpn¥m) = AB; (3.20)

here A=CioCo@---@Cpn, B=D1@Dr@--- @Dy, and C; = a’ o X}, D; =
a0V, j=1,2,.,m.

PROOF. The proof follows from Property 3.6(1), (2) and mathematical in-
duction. O

PROPERTY 3.10. For ¥ e F,but ¥ ¢ F(1), ¥ # 0, and X € F,

(1) YoV £0;

() YY +00;
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—

“<z

3) )?_ Yok +00;

@) YX=XeV+£00.

PROOF. (1) Since Y # 5, the a-cut of Y is Y(x) # (0,0,...,0) for all x €
[0,1]. By (ii), (v), the a-cut of Yo Y is

Y (o) (-)Y(x)
= (s =M s@ @ s -t (s,sP,,s™M), 3.2

(L, t™W) e Y(x) # (0,0,...,0).

Therefore Yo Y # O.
(2) The proof follows by (1).
(3) The proof is similar to (1).
(4) The proof is similar to (1). O

~

REMARK 3.11. @ If ¥ = (pM,p@,...,p™), € F#(1), then YoV = (pV -
pM,p@ —p@ p(”) p("))l (0,0,...,0);. Hence }N’IN/ 00.
(b) It is trivial that 00000 =00.
(p

~

(c) Let SFV = {PX\ forall P =
E" =~ FE" C SFV C SFR.

W, p@ . p™),eFi(1), X €F.}, then

PROPERTY 3.12. For X € F.,
(1) 00X =0;
) OeX=X.

PROOF. The proof is obvious. |

EXAMPLE 3.13 (n = 2). A car carrying arocket departs from point Q = (1,2)
passes through point S = (5,8), arrives at point W = (10,15), and launches the
rocket from there. Suppose its target is located at Z = (100,200). Chances are
the rocket will not hit at Z exactly. Instead it would probably drop in the vicinity
of Z. Let

0((100,200),1) = {(x,7) | (x —100)% + (y —200)> < 1}, (3.22)
and the point hit is 7 , (Ze F.) with membership function

— (x—100)% - (y —200)2, if (x,v) € 0((100,200),1),
U, (x,y) = . (3.23)
z 0, if (x,v) ¢ 0((100,200),1).

The x-cut (0 < x <1) of 7 is

Z(x) = {(x,2) |, (x,) = }

24
={(x,¥) | (x=100)?+ (¥ -200)2 < 1 -«}. (3-24)
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0((100,200),1)
U

Q(1,2)
FIGURE 3.1. Fuzzy vector éf

If we choose the route from base to target to be Q - 8§ - W — Z, then we have
the crisp vectors QS = (4 6) SW = (5,7), and WZ = (90,185). So the crisp
vector from Q to Z is QS +SW+ WZ = (99,198). And the route in the fuzzy
sense is

Q0=0,2), —S=(5,8), —W=(10,15); — Z (3.25)

—

with (3.23) as the membership function of 7. We then have fuzzy vectors (’j§ =
(4,6)1, SW = (5,7)1, and WZ = Z o W. From (3.23), the membership function
of WZ is
U— (x,¥)=u, (x+10,y +15)
Wz z

3 1—(x—90)2—(y—185)2, if(X—90)2+(y—185)2§1,
o, elsewhere.

(3.26)

The fuzzy vector from base Q to target 7 by Property 3.6(1) is (§§® SWeWZ =
(32 , with membership function
U— (x,y) = uz(x+1,y+2)
¥4
1= (x=99)2 - (y-198), if (x-99)2+ (¥ -198)2 <1, (3:27)
o, elsewhere.
Let Z=(100,200), U=(99.5,200.5), and V =(100.2,199.7) € O((100,200),1).

As shown in Figure 3.1, the crisp vectors from Q to Z, U,V in O((100,200),1)
are QZ = (99,198), QU = (98.5,198.5), and QV = (99.2,197.7), respectively.
The grades of membership of these crisp vectors belonging to fuzzy vector



2360 KWEIMEI WU

Q7 are
K= (QZ) = . (99,198) = 1,
Qz Qz
1 (QU) = i (98.5,198.5) = (3.28)

p_.(QV) =p_(99.2,197.7) = 0.87.
lo¥4 lo¥4

4. The length of fuzzy vectors in SFR and fuzzy inner product

4.1. The length of fuzzy vectors in SFR. Let P = (pW,p@ ..., pM) Q=
(q(l q(2) q(n)) € R™. The vector PQ in E", PQ (q(l) _p(l)’q(Z) p(Z)’___,
q™ —p™) = Q(-)P, has length |PQ| = \/Zj:l(q(J —p)2, called the length
of the vector P—Q Now let P = (pW,p@ ... . p™), and Q = (q”),q(i..,
qa™)1 € FJ(1). Since FE" ~ E™, we can define the length of fuzzy vector PO =
@V —pM qg@ —p@ g _pm)y by |ﬁ—é| = |PQ| = \/Z;l:l(q(j) —p)2,

Since FE™ C SFR, we may ex_tqnd this thought to SFR. Similar to the fuzzy

vectors in FE™, for the vector XY=VeXe SFR,its x-cut (0 <= x<1) is
Y (o) (—)X () = {(yV =xW, 3@ — x50 _x0))
[ (xP,x@ . x™) e X(x), 4.1)
(Y, »@,., ™) ev(w},
where X (), Y(«) are the «-cuts of )?, EN’, respectively. For each point Px(x) =

(xM x@ xM) e X(x) and Py(x) = (y,y@, ..., y™) e Y(x), the crisp
vector Py (x)Py () = (1) —xW) y@ _x@ 50 _xM) hag length

n
Py (c)Py ()| = Z (Y —x)? 4.2)
which is the distance between two points Px () and Py (). For any (xV),x@®,
., x™M) e X(«), denoted simply by (x) € X(), let

d* (Y (@) (-)X () = sup | Px () Py (o) |
(xUex (e, (y)eY (o)

(4.3)
(yW) —x )2,

M=

= sup
(xW)ex(e), (y)eY (e

~.
Il
—

Since )?, Ye F., and by Definition 2.3(a), X(x), Y («) are convex closed sub-
sets of R", so d* (Y(x)(—)X(«x)) exists. And d* (Y (x) (—)X(x)) is the longest
one among all the distances between points Px («) in X («) and Py (x) in Y (),
which makes sense for using this as the distance between X(x) and Y ().
Therefore, we have the following definition.
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DEFINITION 4.1. For XY € SF R, define the length of XY to be

= sup d*(Y () (—)X(x)). (4.4)

O=x<1

PROPERTY 4.2. For XY € SFR, let the 0- cuts (x-cuts, & = 0) of X, Y be X (0),
Y(O) by Remark 2.4. Then there exist (x4’ (0),x2(0),...,x2(0)) € X(0),
((0), 752(0), ..., 5P (0)) € Y(0) such that

"= sup d* (Y(@)(2)X () JZ i (0) = xit (0))°. (4.5)

O=x=<1 =1

PROOF. Let the a-cuts (0 < x < 1) of X, ¥ be

X(o) = {(xM,x@ ... x™)] ut(x“),xm,...,x(")) > «f,
4.6
Y() = {(vM, 2@, 0™ [ (v, 0®,...,y") = af. *0
It is obvious that X(x) c X(B), Y(x) cY(B)if 0<B=<wu=<1.
Since
d* (Y (o) (-)X () = sup >y -xD)? @47)
(xW)ex (), (yD)eY () j=1
we have
A*(Yo) (=) X(x) =d*(Y(B)(—)X(B)) VO<B=<«x<x<l. (4.8)
So
Osupld*(Y(cx)(—)X(a))
n ' ) (4.9)
— sup z (J)(O) —X(J)(())) .
(x(D(0)€X(0), (¥ (0)eY (0) j=1

Since X , Ve F., by the definition of F., we know that X(0), Y(0) are convex
closed subsets of R". Hence there exist (x (0) x (0) (”)(0)) e X(0),
(yin) (0), 72 (0),..., v’ (0)) € Y (0) such that

O=sx=<1

\XY\ = sup d* (Y (o) (=) X () JZ (v(0) = x (0))2. 4.10)
B O

EXAMPLE 4.3. In Example 3.13, the rocket ejected at W takes the route Q =
(1,2) - S =(5,8) = W =(10,15) and aims at Z = (100,200). The membership
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function of fuzzy target Zis

1-(x—-100)2—(y—200)2, if (x—-100)2+(y—-200)2<1,
0, elsewhere.

My (x,5) ={
(4.11)

We obtain Fuzzy vectors d§ = (4,6)q, SW = (5,7)4, I/NVZ and Qf The for-
mer two have lengths |(§§|* = /42+62 = 7.21 and |§W|* = +/52+72 = 8.6,

_—

respectively. As for the length of WZ, since for each @ € [0,1], the x-cuts of
W, Z are W(x) = (10,15), Z(x) = {(x,¥) | (x —100)?+ (y —200)2 < 1 — «},
respectively. The longest distance between points P, =(10,15) € W(x) and
P =(x,y)eZ(x)is

Z() —

W(x)

A* (Z() ()W () =/(100=10)2 + (200~ 15)2 + V1 — ox

(4.12)
=+/42325+V1 -« =205.73+vV1 - «.

Hence by Definition 4.1 IWfl* = SUPg<x<1 A" (Z(x) (=)W (x)) = 206.73.

—_—

Similarly, we can calculate the length of éf : for each « € [0,1], the x-cut
of Q is Q () = (1,2), s0

A (Z(0) (-)Q(x)) =+/(100-1)2 + (200—2)2 + V1 —

(4.13)
=+49005++vV1 —x =221.37+vV1 - .

Therefore |Q Z|* = supg-q<; d* (Z () (-)Q(x)) = 222.37.

REMARK 4.4. By Cauchy-Schwartz inequality

(a1by+asho+ - +anbp)’ < (a2 +ad+---+a2) (b2 +b3+---+b2),

(4.14)
we have
n n n n
Yajbj<|>ajbj| < | a3 b (4.15)
j=1 =1 =1 =1
Therefore,
n n n n n n
dai+ > bi+2> ajbj< > ai+ > bi+2 | > a5 > b, (4.16)
j=1 j=1 j=1 j=1 Jj=1 Jj=1 j=1
that is,

JZ(aj+bj)szZa§+JZb§. 4.17)
j=1 j=1 j=1
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PROPERTY 4.5. For )?17 (N]‘N/ SFR, ki € F3(1),k #0,
(1) |kloXY|*—|k| Y17

@) IXYeWZ|* <|XY|* +|W§|*.

PROOF. (1) For each @ €[0,1], the x-cut of k; oXY = k1o ()N/(—))?) is

k() (Y (o) (-)X(x))

— {(ky(l) _kx(l)’ky(z) —kx(2>,...,ky("> _kx(n)) (4.18)
[ (xP,x@ . x™) e X(x), (P, y?,...,y™) eV ()}

For each x € [0,1],

a* (k(-)(Y(e) (=) X(x)))

n
= sup \J (kyW) — kx))? (4.19)

(xW)yex (e, (yU)eY (e j=1

= |k|ld* (Y(x) = X(x)).

Therefore,

‘kle)?lN/ = sup d*(k(-)(Y(x)(=)X(c0))
O<x<l . (4_20)
— 1kl sup d* (Y (e)(-)X(e0)) = kI | KF|

O<x<1

(2) From Property 3.6(1), XYoWZ =AB = §eﬁ, where A = )?@W, B=Va&Z.
For each & € [0,1], the x-cuts of )?, XN’, W, and Z are X(), Y(x), W(x), and
Z (o), respectively, and the x-cut of BeAis

(Y(a)(+)Z(o<))(—)(X(0<)(+)W(0<))
{ y +Z x(l)—w(l),y(2)+z(2)—x(2)—w(Z),...,
) 20 ) 00y | (D) @) e (), 4.21)
(_)/(2),_’)/(2),...,_’)/(")) c Y((X), (Z(l),Z(Z),...,Z(n)) c Z(O(),

(wDw® L w™)ew(x)}.
For each x € [0,1], let

D={(xMx? .. x™)eX(), (yV,y? ..., y"M)ey(a),

4.22
(zV,z? .z e Z(), (wP,w? .., w™)ew (). “-22)

From Remark 4.4,

Ji(aj+bj)25\Jia§+sz; (4.23)
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and inequality sup(A + B) < sup A +sup B, we have
A* ((Y(o) (+)Z(00)) (=) (X () (+)W(x)))

n 1/2
zsup{z D4z x(J’)_w(j))Z}
D :

n
j i 2
< sup > (P —x) (4.24)
(xUeXx(w), (yW)eY(x) j=1

n
- sup Z w)?
Wwiew (w, (zD)ez(@ j=1

=d*(Y(o) (=) X(x)) +d*(Z(0<)(—)W(0<))-

By Definition 4.1, we have I)N(lN/e;Wfl* < I)N(lN/\*+ IWfl*. O

4.2. The fuzzy inner product and the angle between fuzzy vectors
for the fuzzy vectors in SFR. Corresponding to the equation

d' (Y (e) ()X (00, V() (-)U(ex))
n
= sup Z ) _ X(]) (J) _u(J))’
(xW)eXx(e), (yW)eY (), uD)eU (), (vD)eV(a) j=1
4.25)

we define the fuzzy inner product as follows.

DEFINITION 4.6. For )? Y, 17 ¥ € SFR, define the fuzzy inner product of them
to be

=

'-<z
C:z

XV o* 07 = sup d (Y (0) (=) X (), V() (—) U (). (4.26)

PROPERTY 4.7. For )?—,?EN/ € SFR, let the O-cuts (x-cuts, « =0) of X, Y, U,
and V be X(0), Y(0), U(0), and V(0), respectively. Then there exist
(x)(0), xn?(o) LxM(0)) € X(0),
(¥ (0), 75 (0),.., ¥4 (0)) € Y (0),
(ui(0),u(0),...,ul(0)) € U(0),
(viV(0),v2(0),...,v{M(0)) € V(0),

(4.27)

such that

=
~

Ko V=3 (0 x5 (0) (v (0) —ull (0)). 4.28)
j=1
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PROOF. Use the same way of the proof of Property 4.2 to prove it. O

PROPERTY 4.8. For XV,UV,WZ € SFR, k1 € F3(1), k> 0,

@) XY o*(IVeWZ) < XY o UV)e (XY 0*WZ);
3) k(XY o*UV) = (k1o XY)o* UV =XV o* (k0 UV);

XY oxOV| < | XY|*-|0V]*.

PROOF. (1) By Property 4.7,

XF 0 0V = 3 (1) (00— x4 (0) (v (0) —ud (0)
J

Il
—

(4.29)
W (0) —ul (0)) (v (0) - x & (0)) = UV o* XV

Il
M:

~.
I
—

(2) By Definition 4.6 and Property 3.6(1), UVeWZ=AB = Eeﬁ, where A =
UeoW,B=VaeZ The a-cut of Be A is (V(x)(+)Z(x)) (=) (U () (+)W(x)).
Hence for each o« € [0,1], set

H={(x",x?,..,x") e X(), (yV,9?,...,y") e Y(0),

(u® u® .. u(”)) eU(x), (v, v? .., v™) eV(x),

(W, w®, . w™) e W, (zV,22,....zM) € ()},
E={(x",x?, .. x")eXx(), (yV,y?,...,y") eY(a), (4.30)

P u® L uMeU(x), (V0@ . v™)evix]l,
D={(xD,x? .. x™eX(, (yV,y? . . y")ey(n),

(wPw®? wm)yew(x), (zM,z2,...,z2M) e Z(x)].

Then, for each x € [0,1],

a’ (Y () (=) X (), (V(e) (+) Z () (=) (U () (+)W (x)))

_Supz D = x W) (0D 4 2 =gy ) g ()
n .
<sup Z ) _ x(;) _u(J))
E j=1 (4.31)
I Sup Z W) — X)) (2D — )

=d (Y (a)(f)X(a),V(a)(f)U(a))
d (Y(e) (=) X(00),Z (o) (=)W (0)).
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By Definition 4.6, (2) is proved.
(3) The proof follows from Property 3.6(2) and (v), (vi).
(4) The proof follows from Properties 4.2 and 4.7.
(5) For each o, where 0 < x <1,

(xDx@ L xM)eXx(w), (P, »?,..,yM)ev(n),

(4.32)
(u(l),u(Z)’___’u(n)) eU(x), (U(D,U(Z),...,U(n)) eV(w),
by Cauchy-Schwartz inequality, that is,
n n
— | >y —x(1)? > (v —uh)?
j=1 j=1
n
Z (J) (j) *’LL(J')) (433)

n n
< J Z (y<1> X(J) J Z ) _ u(J)
j=1

since supAB < supAsupB, if A > 0, B > 0. Then, we have

—d* (Y (o) (=) X(x))d* (V(e)(—)U ()
<d (Y(x) (=) X (), V(x)(—)U(x)) (4.34)
<d*(Y(x) (=) X(x))d* (V(x)(-)U(x)), Vael[0,1].

Therefore, |)N@_ V1% < 1KV o* V| < IXV|* - |TV|*. Hence, |XV o*
OV| < |XY|*-|0V|*. O

REMARK 4.9. If |[XY|* >0 and |UV|* > 0, by Property 4.8(5),

V %
e YOOV (4.35)
Xy |0V

So we have the following definition.

DEFINITION 4.10. For XY,UV € SER, if XY # 00, UV # OO0, define the
angle 0 between XY and 0V by
P
cos0 = 2 UV (4.36)

EXAMPLE 4.11 (n = 2). Eject the rocket from (2,3) aiming at (6,8). The
rocket falls in the circle centered at (6,8) with radius 2. Also eject another
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rocket aiming at (10,4), the rocket falls in the circle centered at (10,4) with
radius 1.
Then we have the membership functions of the fuzzy sets X , 17, ﬁ, and V:

1, ifx® =2 x®@ =3,
IJ);(Z, 3) =
0, elsewhere,

b (y1), @)
G- 0 =6 @ =87, it -6~ (2 -8)" <4,
0, elsewhere,

—_

, ifu® =4 u® =1,
Ilﬁ (4! 1) =
0, elsewhere,

oo 1-(v M =10)* = (v® -4)%, if (VD -10)°— (v@ -4)* <1,
ps (v, v) =
\%
0, elsewhere.
4.37)
The «-cuts, 0 < x <1, of )?, )N/, 17, V are
X(x) =(2,3),
Y(e) = {(y",y®) [ (2" =6)" = (»*~8)" <4(1- )},
Ux) = (4,1),
Vi = {(vM,v@) [ (v -10)° - (v? -4)° < (1 - )},
4.38
X(0) = (2,3), @-38)
Y(0) = {(r",y*) [ (" -6)" - (v -8)" <4},
U(0) = (4,1),
V) ={(vD,v@) | (v -10)* - (v? —4)* <1}.
By Figure 4.1, we have
xV0)y=2, x2(0)=3,
(1)
ym (0)—2 4142 W = fa S
4 - \/ﬁ ’ ym (O)_6+ \/ﬁ’ (439)
@)y )
ym' (0)=3 _ JH+2’ yy(é)(o):mﬂ_
5 NZS) VAT

By Property 4.2, the length is

1 =i (0) = 2 (00)7 + (12 (0) — x2) (0))° = 8.403. (4.40)
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107 yi) (0,32 (0))
V=624 (@ -8)? =4
ai (v 0,02 (0))
X(0)=(2,3) (W —10)2+ (1@ —4)2 =1
U(0) = (4,1)
0 5 1'0 1'5
FIGURE 4.1. Fuzzy vectors XV and OV
Similarly, we have
ul}(0) =4 ul2(0) =1,
6 3 (4.41)
2(0) =10+ —=, 20) =4+ —=,
Uy, (0) NS Uy (0) NS
and the length
[07]" = V(o (0~ u ()" + (i () —uid) (0)) = 7.708.  (4.42)
By Property 4.7,
Vo OV = (P 0) -xV(0) (v (0) —uly (0))
+ (¥ (0) = x13 (0)) (v (0) —uly) (0)) (4.43)
=58.81125.
By Definition 4.10, the angle between XY and UV has
cosO = % =0.907996. (4.44)
X7 |07
In crisp case, the vector XY from X = (2,3)toY =

(6,8) is (4,5) and the vector
UV from U = (4,1) toV =

(10,4) is (6,3). Their lengths are I)??I =6.403 and
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UV =6.708; XY - UV =4-6+5-3 =39 and
cos 0 = _X,Y'UV =0.908005. (4.45)
|X¥[- [0V
EXAMPLE 4.12. Let
(xM,x @)

1-(xM=5)" = (x®-10)% if (xM=5)*+ (x? -10)° <1,
0, elsewhere,

py (v,
i (0 -14)2 - (D 15, (Y0 - 14)+ (v@ - 15)° < 4,
0, elsewhere,

(', u?)
U

b (0, v @)

M _17)*

We have the « = 0-cuts of )?, }N’, lNJ, V:

X(0) = {(xM,x@) | (xD -
Y(0) = {(»",»®)

U(©) = {(u™,u®) | (u® -
V() ={(vV,v@) | (vP -

-7,

| (-

{1{4— (uh -8)2 = (u®-2)*}, if (u® -8)*+(u®-2)* <4,

elsewhere,
it (v -17)%+ (v@-7)" <1,

elsewhere.
(4.46)

5)%+ (x@ -10)* <1},
14)° + (y® -15)° <4},
8)+ (u®-2)* <4},

17)°+ (v®-7)* < 1}.

(4.47)

As in Example 4.11, from Figure 4.2, we have

x%’(O):S—%,

yr‘y}><o>:14+flsm,
W(O):S—jl—sm,
viD(0) =17+ 9

V106’

S5
10— —
0 V106’

10
106’

x{2(0) =

Y2(0) =15+

10

/106’
5

V106°

(4.48)
WwH0) =

20) =7+
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B(yi (0,75 (0)

151
104 D (v’ (0),v3i (0)
A(xin’ (0,313 (0)) %
51 V106
c(u ©,u? )
0 5 10 15

FIGURE 4.2. Fuzzy inner products of )?? [7\7.

By Property 4.2,

|X7|" = Vo (0 —xiy () + (42 (0) x5 (0))°
27 \? 15 2
_\/(9+\/106) +<5+w/106)
=13.29563,
.. (4.49)
(07| = (vi (0) —uii (0))* + (037 (0) iz (0))
27 \? 15 2
_\/(9+\/106) +<5+\/106)
=13.29563
and by Property 4.7,
%@*%
= (¥ (0)=xP(0)) - (v (0) —uy) (0))
(4.50)

+(¥2(0)-x2(0)) - (v2(0) —u'?(0))

- (9+

2 2
\/ﬁ> +<5+J1—5W) =13.295632.
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N

By Definition 4.10, the angle between Y and UV has
UKN. =1. (4.51)
|- |6V

X
cosf = —
‘XY
Hence 0 = 0. That is, )N()N///ﬁ\N/.

In the crisp case, the vector XY from X = (5,10) to Y = (14,15) is (9 5)

and the vector UV from U = (8,2) to V = (17,7) is (9,5). The lengths |XY|
IUV\ =10.2956 and the angle between them has cos¢ = 1. That is, XY//UV

5. Discussion

5.1. The comparison of the second definition (Definition 5.1) of the length
of the fuzzy vector XY € SFR and the length I)? }N’I * of Definition 4.1

METHOD 2

DEFINITION 5.1. (a) The length of the fuzzy vector XY € SFR is defined as

)?ff J A* (Y (o) (=) X () dex (5.1)

(b) The inner product of X 17, UV € SFR is defined as

—_ —_—
~ o~

1
Yo' UV J d' (Y (o) (=) X(x),V(x)(—)U(00)dex. (5.2)

(c1) By Definition 4.1, since | XY|* = SUPp<p<1d*(Y(B) =X (B)) = d* (Y (c0) —
X(x)) for all x € [0,1], so we have

. 1 .
|XY|* zj dx (Y(o) (=) X(x))de = | XY (5.3)
0

Using the same ne way as in Section 4, we can prove the following.
(c2) For XY, WZ € SFR, k € F,(1), k # 0, we have
W) ko XV| = k[XF;

@) 1XYeWZ| < |XY|+ |WZ|.
This leads to the same re: results as Property 4.5.

(c3)For)7§ ov,w WZESFR R, ki €Fy(1), k=0,
(1) XY@ FT\“/ UV@ XY
(2) XY@ (UVEBWZ) < (XY@ UV)@(XY@ WZ)
(3) k(XY@ 0V) = (ko XY)o OV =XYoo’ (kleUV).
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These are the same results as Property 4.8(1), (2), (3). However, Property 4.8(4),
(5) do not hold in Method 2. Therefore, we cannot define the angle between two
fuzzy vectors in SFR as in Definition 4.10.

5.2. In [5], Lubczonok defined the fuzzy vector space as follows.

DEFINITION 5.2 (see [5, Definition 2.1]). The fuzzy vector space is a pair
= (E,u), where E is a vector space and u : E — [0,1] with the property that
forall a,b € R, and x,y € E, u(ax+by) > u(x) Au(y) holds.

Then he obtained some results from this in [5].

In this paper, we obtained fuzzy vector space FE™ over F},(l) through n-
dimensional vector space E" over R, then extended this to the pseudo-fuzzy
vector space SFR over Fl}(l). It is strongly linked with E™ throughout this
process, so it has more practical usage.

Since E™ ~ FE™, we may consider the fuzzy vector space under the sense of
[5]. The mapping
P—Q — (q(l) p(l) q(Z) _p(Z) q(n) _p(n)) c F" —. ﬁ—d
’ (5.4)

=@V —pW,q@ —p® . g™ _pm) e FEn

is one-to-one onto. In [5], let E = E™ and u = v. For P—Q € E", define v(P—Q) =
(@D —pM @ —p@ g Wy =1 Let ST = (tMW —sM) @) _ 5@

]
tm — M) c E" and let a,b € R. Then

a@+bﬁ
( (q(l) (1))+h(t(1>—s(1)),a(q( (2>)+b( 5(2))’.__,
a(q(n) (n)) +b(t(n) _S(n))) €E" VabeR
== (5.5)
(ﬂl OPQ) (bl @ST)
(a(q(l) )+b( 5(1)),a(q(2)—p(Z))+b(t(2)—s(2>),...,
a(q(n) )) +h(t(1’L) _S(n)))l c FE™.
Hence by the definition of v, we have
v(aﬁi+bﬁ)
=u _ (a(q(l)—pm)+b(t(1>—sm),a(qm—p@)) (5.6)
(aj0PQeby0S8T)

Fh(ED D), a(q™ —p™) + b(EW W) =1.

Then v(aP_(i + bﬁ) =1= v(P_Q)) A v(S’_Y:). Thus we get the fuzzy vector space
[E™,v] by Definition 5.2 under the sense of [5].

In this paper, we emphasize on solving the practical problem instead of just
working it out theoretically.
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